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Context 
Fractional diffusion equations arise in many domains to model complex diffusion phenomena 
(pollutant dispersion in the ocean, flows in fractured porous media, dispersion in random 
media, …). Spatial fractional diffusion models are needed to handle scale dependencies and 
correlations absent in standard Fickian models. Time fractional models are required for 
diffusion processes involving memory effects.  
 
Besides their mathematical analysis, the practical use of fractional models for simulations 
faces several difficulties. One difficulty concerns the development of accurate numerical 
schemes adapted to the non-locality of the fractional operators (space-, time-convolutions) 
[1,2]. The non-locality also translates into dense discrete problems, with substantial 
computational challenges when applied to problems in 2 and 3 spatial dimensions. Further, 
applications require the calibration of the fractional and diffusion coefficients against 
experimental observations. Finally, as the coefficients are not perfectly known, they should 
be treated as random quantities, and efficient stochastic procedures are needed to assess the 
uncertainty in the fractional model predictions.  

Objectives 

Depending on the interest and skills of the research intern, the work proposed will consider 
the following: 

• Galerkin solvers for stochastic fractional diffusion equations. The intern will develop 
advanced numerical methods relying on Polynomial Chaos expansions [3] to account 
for random fractional coefficients. The computational complexity of the convolutions 
inherent to the fractional diffusion operators will call for hierarchical matrix and 
sparse approximation techniques [4] that will have to be extended to the stochastic 
case. 

Or 

• The Bayesian Calibration fractional diffusion models. The intern will work on 
advanced inference methods for calibrating the (space or time) fractional and 
diffusion coefficients [5]. They will develop a) surrogate-based approximations of the 
Bayesian posterior of the coefficients and its sampling and b) design experiments to 
prevent confusion between fractional and diffusion coefficients (identifiability 
problem). 

This work will be held in the Platon Team at CMAP. O. Le Maître and P.M. Congedo will 
supervise it. For further details, don't hesitate to get in touch with O. Le Maître or P.M. 
Congedo.  (olivier.le-maitre@polytechnique.edu  pietro.congedo@inria.fr ).  



 
Figure 1: Illustration of the Stochastic Galerkin solution of a time-fractional diffusion problem [6]. 
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(a) Domain ⌦ and finite element mesh
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(b) Mean solution at t = 0.5 coloured by standard deviation.
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(c) Mean solution at t = 1.1 coloured by standard deviation.
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(d) Mean solution at t = 5 coloured by standard deviation.

Figure 5: Computational domain, finite element mesh and mean of the PC solution coloured by standard deviation value at

di↵erent times as indicated. Case of ↵ ⇠ U [0.75, 1], with PC expansions using no = 10.
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(a) ↵ ⇠ U [0.95, 1]
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(b) ↵ ⇠ U [0.75, 1]
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(c) ↵ ⇠ U [0.5, 1]

Figure 6: Solutions at the Neumann point (center of the Neumann boundary) for increasing range of ↵. The plots show the

mean values of the PC approximation, with ±2� bounds, and a set of 10 random realizations of the PC expansion. Computation

with no = 10. Other numerical parameters are provided in the text.

Figure (7) reports the errors on the computed mean ✏mean and standard deviation ✏std at the Neumann
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