~a
. P ProVerif, restrictions, equivalence...
U what could go wrong?

Alexandre Debant

Universite de Lorraine, Inria, CNRS, Nancy, France

Pesto seminar
April 12th, 2024 - Nancy, France

FRANCE

2020
-/

OOOOOOOO

Opening remarks

> this talk does not necessarily follow ProVerif notations
> what is written is not necessarily formally correct

> this talk is about ProVerif v2.05 (unless specific comment)

Modelling protocols

P,O:=0

new n; P

in(c,x); P

out(c,u); P

let u =v In P else O

insert tbl(u); P

get tbl(x) suchthat ¢ in P else O
(P | Q)

\P

event e(uy,...,u,); P

ProVerif before v2.02

Modelling protocols

P,O:=0

new n; P
in(c, x); P Restrictions:

out(c,u); P p=F&& .. F & => H

let u =v iIn P else O

insert tbl(u); P +

get tbl(x) suchthat ¢ in P else O = “Consider only traces that satisfy
p,ie trk=p”

(P | O) _ .
P
event e(uy,...,u,); P

ProVerif before v2.02 ProVerif since v2.02

Example

Evoting: ballot weeding

Server =
L (
In(c, X);
in(cell, x, .,..);
get BB(y) suchthat x =y In
out(cell, x,,,,) (*ballot already accepted *)

else
insert BB(x);
out(cell, x, . ,.);

Example

Evoting: ballot weeding

Server =
L (
In(c, X);
in(cell, x, .,..);
get BB(y) suchthat x =y In
out(cell, x,,,,) (*ballot already accepted *)

else
insert BB(x);
out(cell, x, . ,.);

You may have troubles with
else branches and cells ...

Example

Evoting: ballot weeding

Server =
Server = (
| (in(c, x);
in(c, x); new st; event Inserted(st, x);

in(cell, x, ;.,.);
get BB(y) suchthat x =y In

I insert BB(x);
out(cell, x,,,,) (*ballot already accepted *))

else _|_

insert BB(x); Restriction:
out(cell, X, 10, event(Inserted(st,, x))
&& event(Inserted(st,, x)) = st; = st, .

You may have troubles with
else branches and cells ...

Example

Evoting: ballot weeding

Server =
Server = (
| (in(c, x);
in(c, x); new st; event Inserted(st, x);

in(cell, x, ;.,.);
get BB(y) suchthat x =y In

I insert BB(x);
out(cell, x,,,,) (*ballot already accepted *))

else _|_

insert BB(x); Restriction:
out(cell, X, 10, event(Inserted(st,, x))
&& event(Inserted(st,, x)) = st; = st, .

You may have troubles with
>
else branches and cells ... @ No cell, no else branch

Other examples

> Ballot weeding in evoting protocols event(Inserted(st;, x)) && event(Inserted(st,, x)) = st; = st,

» Key updates / key revocations event(Use(k,)) && event(Inserted(k,)) && subterm(k,, k,) = false
> Model protocol assumptions (e.g., audits) event(PublishedOnBB(b)) = ¢(b)

» Easily bound the number of executions event(lteration(n)) > n < 2

» Abstract e.g. arithmetic properties See [Cortier et. al. - CCS’21]

How does it work?
(simplified)

CU{R=H- C} AN_F,>yp) €R Foralli, Fo € H

CU{R=HAwo — C}

How does it work?
(simplified)

CU{R=H- C} AN_F,>yp) €R Foralli, Fo € H

CU{R=HAwyo — C}

It is just a
matching!

If the clause is not instantiated enough (e.g. noselect)
the restriction will not be applied!

Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1l) = event(£2), isevent(£3) reachable?

Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1l) = event(£2), isevent(£3) reachable?

No!
A Restrictions have the same semantics as queries

Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1l) = event(£2), isevent(£3) reachable?

No!
A Restrictions have the same semantics as queries

Given the process P := (event(E1);event(£2)) | event(£3)
and the restriction p := event(E3) = event(E?2),
is ProVerif able to prove p’ := event(E3) = event(E1)?

adebant®macbook-pro-de—alexandre-2 proverif—-examples % proverif exampleé4.pv
Process O (that is, the initial process):
(
{1}event E1;
{2}event E2
y 1
{3}event E3
)

—— Restriction event(E3) ==> event(E2) in process 0.
—— Query event(E3) ==> event(E1l) in process 0.
Translating the process into Horn clauses...
Completing...

Starting query event(E3) ==> event(E1l)

goal reachable: b-event(E2) -=> event(E3)

Derivation:

1. Event E3 may be executed at {3}.
event(E3).

2. By 1, event(E3).
The goal is reached, represented in the following fact:
event (E3).

A more detailed output of the traces is available with
set traceDisplay = long.

event E3 at {3} (goal)

The event E3 1is executed at {3}.
A trace has been found.

The attack trace does not satisfy the following restriction, declared at File "example4.pv", line 16, characters 13-35:
event(E3) ==> event(E2)
RESULT event(E3) ==> event(E1l)

Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1l) = event(£2), isevent(£3) reachable?

No!
A Restrictions have the same semantics as queries

Given the process P := (event(E1);event(£2)) | event(£3)
and the restriction p := event(E3) = event(E?2),
is ProVerif able to prove p’ := event(E3) = event(E1)?

No... apply p Not enough to
= event(£3) > event(£2) = event(E3) conclude... &

Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1) = event(E£2), isevent(£3) reachable?

No!
A Restrictions have the same semantics as queries

Given the process P := (event(E1);event(£2)) | event(£3)
and the restriction p := event(E3) = event(E?2),
is ProVerif able to prove p’ := event(E3) = event(E1)?

No... apply p Not enough to
= event(£3) > event(£2) = event(E3) conclude... &

 You can use the development branch improve —scope —1lemma to make it prove

What about
equivalence properties?

Reminder

Pla,,...,a, = Plby,...,b,]
> ProVerif proves equivalence of processes that differ only by terms

> ProVerif internally proves diff-equivalence l
Pldiffla,, by], ..., diffla,, b,]1 N
Definition - “A biprocess P is in diff-equivalence if traces(P) |l i.e., for all
traces of P, the first and the second projections progress in the same way.”

Reminder

Pla,,...,a, = Plby,...,b,]
> ProVerif proves equivalence of processes that differ only by terms

> ProVerif internally proves diff-equivalence l
Pldiffla,, by], ..., diffla,, b,]1 N
Definition - “A biprocess P is in diff-equivalence if traces(P) |l i.e., for all
traces of P, the first and the second projections progress in the same way.”

(let x=vin Pelse Q) | # — P{x v diff (M- MR} | & iffst(v){ = M"and snd(v) |} = MR

Reminder

Pla,,...,a, = Plby,...,b,]
> ProVerif proves equivalence of processes that differ only by terms

> ProVerif internally proves diff-equivalence l
Pldiffla,, by], ..., diffla,, b,]1 N
Definition - “A biprocess P is in diff-equivalence if traces(P) |l i.e., for all
traces of P, the first and the second projections progress in the same way.”

(let x=vin Pelse Q) | # — P{x v diff (M- MR} | & iffst(v){ = M"and snd(v) |} = MR

(let x=vinPelse Q)| X— Q| &P iffst(v)| = fail and snd(v){ = fail

Reminder

Pla,,...,a, = Plby,...,b,]
> ProVerif proves equivalence of processes that differ only by terms

> ProVerif internally proves diff-equivalence l
Pldiffla,, by], ..., diffla,, b,]1 N
Definition - “A biprocess P is in diff-equivalence if traces(P) |l i.e., for all
traces of P, the first and the second projections progress in the same way.”

(let x=vin Pelse Q) | # — P{x v diff (M- MR} | & iffst(v){ = M"and snd(v) |} = MR
(let x=vinPelse Q)| X— Q| &P iffst(v)| = fail and snd(v){ = fail

(in(c,x); P) | (out(c’,u); Q)| P — Plx—u} | Q| &L iffst(c) = fst(c’) and snd(c) = snd(c’)

Reminder

Theorem [Blanchet et. al. 2006]

Given a biprocess P, traces(P) |l = fst(P) ~ snd(P)

where &~ denotes the observational equivalence relation.

10

Reminder

Theorem [Blanchet et. al. 2006]

Given a biprocess P, traces(P) |l = fst(P) ~ snd(P)

where &~ denotes the observational equivalence relation.

adebant@macbook-pro-de—-alexandre-2 proverif-examples % proverif examplel.pv
Biprocess @ (that is, the initial process):
(
{1}new n: bitstring;
{2}new m: bitstring;
{3}out(cpriv, choiceln,m])
) |
{4}in(cpriv, x: bitstring);
{5}out(cpub, x)
)

—— Observational equivalence in biprocess 9.

Translating the process into Horn clauses...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -=> bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) => bad
Selecting ©

Completing...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) => bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) => bad
Selecting ©

RESULT Observational equivalence is true.

Verification summary:

Observational equivalence is true.

Equivalence with restrictions

> We can write restrictions, e.qg.

p = event(E(diff[x", xR], diff[y5, yR])) = x- = y- && xR = yR

171

Equivalence with restrictions

» We can write restrictions, e.g. p = event(E(diff[xL,xR], diff[y",yR])) = xt = y" && xR = yR

p' = event(E(x,y) > x=y#p *

N\

p':=event(E(x,y)) > x =y = event(E(diff[x, x],diff[y,y])) = x =y

171

Equivalence with restrictions

> We can write restrictions, e.qg.

p' = event(E(x,)_

N\

p = event(E(diff[x", xR], diff[y5, yR])) = x- = y- && xR = yR

{4y Mada

Always define restrictions with explicit
diff| - , - | operators!

A ‘ —
p = event(E(x,y}}—/./L—_y = SVGHIWLAULJ [As AUy) LYs Y])) = X =V

171

Equivalence with restrictions

» We can write restrictions, e.g. p = event(E(diff[xL,xR], diff[y",yR])) = xt = y" && xR = yR

i el
p' = event(E(x,)_ L
- Always define restrictions with explicit
A diff| - , - | operators!
IO/ .= event(E(x,y]} — A — y = SVGHWLAUL [[As AUl) LYs Y])) = X =V

Definition - A biprocess P is in diff-equivalence for the restrictions A, if traces, 2(P)1T e,

for all traces fr of P that satisfy X, Vp € X, tr = p the first and the second projections
progress in the same way.

171

Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces

that satisfy restrictions @) and denoted (P-, #%) ~ (PR, %%

12

Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces

that satisfy restrictions @) and denoted (P-, #%) ~ (PR, %%

New-theorem?

Given a biprocess P, and a set of restrictions &%,

traces; 5(P) It = (fst(P), fst(R#)) ~ (snd(P), snd(X)).

12

Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces

that satisfy restrictions @) and denoted (P-, #%) ~ (PR, %%

New-theorem?

Given a biprocess P, and a set of restrictions &%,

traces; 5(P) It = (fst(P), fst(R#)) ~ (snd(P), snd(X)).

12

Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces
that satisfy restrictions @) and denoted (P-, #%) ~ (PR, %%)

—

|

adebant@Pmacbook-pro-de-alexandre-2 proverif-examples % proverif examplel.pv
Biprocess @ (that is, the initial process):
(
{1}new n: bitstring;
{2}new m: bitstring;
{3}out(cpriv, choiceln,m])
B
{4}in(cpriv, x: bitstring);
{5}out(cpub, x)
)

—— Restriction not event(E(x_1)) encoded as not event2(E(x_1),E(x_1)) in biprocess 0.

—— Diff-equivalence in biprocess 0.

Translating the process into Horn clauses...

New_theorem’? Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) => bad
r Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) =-> bad

Selecting ©

. s Completing...

leen a b|proceSE Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) =-> bad

Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) =-> bad

l'rc Selecting @

RESULT Diff-equivalence is true.

Verification summary:

m Query(ies):
—

- Diff-equivalence is true.
Associated restriction(s):
— Restriction not event(E(x_1)) encoded as not event2(E(x_1),E(x_1)) in biprocess 0.

Why is it false?

13

Strange restrictions

Why is it false?

p = event(E(diff[x", xR]) = x- = xR

13

Strange restrictions

Why is it false?

p = event(E(diff[x", xR]) = x- = xR

X fst(p) is not properly defined!

13

Why is it false?

Strange restrictions p = event(E(diff[x", xX])) = xt = xR

A bi-restriction impact both sides of the equivalence

X fst(p) is not properly defined!

13

Why is it false?

Strange restrictions p = event(E(diff[x", xR]) = x- = xR

A bi-restriction impact both sides of the equivalence

P =
new n, new m;
out(cprivl,diff[n, n]);
out(cpriv,diff|n, m));
) | (
In(cprivl ,x);
In(cpriv, y);
event E(x,V);
out(cpub, ok)
)

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

X fst(p) is not properly defined!

13

Why is it false?

Strange restrictions p = event(E(diff[x", xX])) = xt = xR X fst(p) is not properly defined!

A bi-restriction impact both sides of the equivalence

P =
new n, new m, T =
out(cprivl,diff[n, n]);
out(cpriv2,diff[n, m]); out(cpub, ok)
) (B
n(cprivl x): T € traces(fst(P)) and T - true = fst(p)
In(cpriv, y);
event E(x,y); But event(E(n, m)) cannot be executed in
out(cpub, ok) snd(P) while satisfying snd(p)
)

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

13

Why is it false?

Strange restrictions p = event(E(diff[x", xX])) = xt = xR X fst(p) is not properly defined!

A bi-restriction impact both sides of the equivalence

P =
new n, new m;
out(cprivl,diff[n, n]);
out(cpriv,diff|n, m));
) | (
In(cprivl ,x);
In(cpriv, y);
event E(x,V);
out(cpub, ok)
)

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

T .= out(cprivl,n) . in(cprivl,n).
out(cpriv2,n) . in(cprivi,n).

F\ ’A“+/ D/1A 1/‘\\ ~ 1 l"'/n1/\1"/\ /\]T\

7 (fst(P), D) % (snd(P),snd(p))

But event(E(n, m)) cannot be executed in
snd(P) while satisfying snd(p)

13

Strang

A bi-r¢

P =
new
out(¢
out(¢

) | (
In(cp
In(cp
even
out(¢

)

A ie it falea?

adebant®macbook-pro-de—alexandre-2 proverif-examples % proverif example3.pv
Biprocess @ (that is, the initial process):
(

{1}new n: bitstring;

{2new m: bitstring;

{3toutlcprivi,; n):]
{4Yout(cpriv2, choiceln,ml) rly defined!
) 1«

{5rin(cprivl, x: bitstring);

t6rinlepriv2, v: bitstring):

{7}event E(x,y);

{8}out(cpub, choicelok, kol)
)

—— Restriction event(E(choicelxL,xR]1,choicel[yL,yR])) ==> xR = yR encoded as event2(E(xL,yL),E(xR,yR)) ==> xR = yR in biprocess 0.
—— Diff-equivalence in biprocess 0.

Translating the process into Horn clauses...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -> bad
Selecting ©

Completing...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -=> bad

Selecting © k
RESULT Diff-equivalence is true.
--- d(p))
Verification summary:
. P
Query(ies):
— Diff-equivalence is true.
Associated restriction(s): | .
suted In

— Restriction event(E(choicelxL,xR],choicel[yL,yR])) ==> xR = yR encoded as event2(E(xL,yL),E(xR,yR)) ==> xR = yR in biprocess 0.

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

13

What can | do now...?

| don’t know what I’m proving...

14

Solution 1

Trust yourself &

It’'s the most often used technique...

19

Solution 2

Do a paper proof to
justify each restriction...

©

1&

16

Solution 3

Let ProVerif do the proof for you

&

W\

l

&
NN
%‘

&

17

Solution 3

O O

Let ProVerif do the proof for you I ®

-

Methodology - Given a biprocess P, and a restriction p := F;, && ... && F, = H"“ && H® such that;

- vars(HY) C vars(fst(p)) and vars(H®) C vars(snd(p))
- vars(fst(p)) Nvars(snd(p)) = B

Let ProVerif prove that: for all tr € traces(P), tr = fst(p) implies tr = snd(p) and conversely.

17

Solution 3

Let ProVerif do the proof for you

Methodology - Given a biprocess P, and a restriction p := F;, && ... && F, = H"“ && H® such that;

- vars(HY) C vars(fst(p)) and vars(H®) C vars(snd(p))
- vars(fst(p)) Nvars(snd(p)) = B

Let ProVerif prove that: for all tr € traces(P), tr = fst(p) implies tr = snd(p) and conversely.

Add diff] - , -] each time it is necessary

with fresh variables on the right side

17

Solution 3

(>,.X>

W

Let ProVerif do the proof for you I

g

Methodology - Given a biprocess P, and a restriction p := F;, && ... && F, = H"“ && H® such that;

- vars(HY) C vars(fst(p)) and vars(H®) C vars(snd(p))
- vars(fst(p)) Nvars(snd(p)) = B

Let ProVerif prove that: for all tr € traces(P), tr = fst(p) implies tr = snd(p) and conversely.

Add diff][- , -] each time it is necessary

with fresh variables on the right side

Example: p := event(E(diff[x", xX], diff[y", yR]) = xb =y && xR =R

fst(p) := event(E(diff [xh, x,1, diff [y", X)) = xt = y -
snd(p) := event(E(diff[x;, x\], diff[x,, yX])) = xR = yR

17

Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the
first side of a trace with the second side of another trace

18

Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[N~
o O
bd first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Tag

r<k

new nr
get r as kr

{(nT,h(kr,nr))

Reader
k e DB

input (1, z2)

if 3kp 4 DB, 75 = h(kg, 1)

<€

ok

<€

error

Basic Hash protocol

18

Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[N~
o 0
bd first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Problem: the key k appears in many entries in DB(-),
= diff-equivalence does not hold...

Tag

Reader

r—k ke DB
new nr
get r as kr
(nr,h(kr,nr))
input (z1,22)
if 3kr ¢ DB, x4 = h(kRaxl)J
ok
<€
elseJ
error
<
I I

Basic Hash protocol

18

Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[N~
o 0
b\?j first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Problem: the key k appears in many entries in DB(-),
= diff-equivalence does not hold...

Solution: add a restriction to read the “good” entry when it exists

Tag

r<k

new nr
get r as kr

{(nT,h(kr,nr))

Reader
k e DB

inPUt <$1, $2>

if 3kp 4 DB, 75 = h(kg, 1)

<€

ok

<€

error

Basic Hash protocol

18

Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[N~
o 0
b\?j first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Problem: the key k appears in many entries in DB(-),
= diff-equivalence does not hold...

Solution: add a restriction to read the “good” entry when it exists

The previous lemma does not hold for traces
using the “bad” entries

Tag

r<k

new nr
get r as kr

{(nT,h(kr,nr))

Reader
k e DB

inPUt <$1, $2>

if 3kp 4 DB, 75 = h(kg, 1)

<€

ok

<€

error

Basic Hash protocol

18

Solution 4
(ongoing work with Vincent and ltsaka)

Methodology
1. reinforce diff-equivalence to make it even stronger

2. adapt ProVerif procedure to make it sound w.r.t. this new definition
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

19

Solution 4
(ongoing work with Vincent and ltsaka)

(> Q Methodology
| ’.\ & 1. reinforce diff-equivalence to make it even stronger

2. adapt ProVerif procedure to make it sound w.r.t. this new definition

.L 3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

1. Reinforce diff-equivalence

Given a trace 1 and a well-formed restriction p, 1|) if T [T and for all T — P we have:

(T'—= P) I fst(p) if and only if (T'— P) F snd(p)

19

Solution 4
(ongoing work with Vincent and ltsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note €' (P) the initial set of clauses generated by ProVerif.

Given a well-formed restriction p := F; && ... && F, = H" && HR, we define:
- C;=F && ... & F, && H" &% —H" = bad

- CY=F && ... & F, && H" && —~H" = bad

We define €4 = {C) | p € #,X € {L,R}}

20

Solution 4
(ongoing work with Vincent and ltsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note €' (P) the initial set of clauses generated by ProVerif.

Given a well-formed restriction p := F; && ... && F, = H" && HR, we define:
- C;=F && ... & F, && H" &% —H" = bad

- CY=F && ... & F, && H" && —~H" = bad

We define €4 = {C) | p € #,X € {L,R}}

Lemma [soundness of the set of initial clauses]

Given a process P and a set of well-formed restrictions &£ , if =P |1 4 then bad is derivable

from G (P) U € 4.

20

Solution 4
(ongoing work with Vincent and ltsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note €' (P) the initial set of clauses generated by ProVerif.

Given a well-formed restriction p := F; && ... && F, = H" && HR, we define:
- C;=F && ... & F, && H" &% —H" = bad

- CY=F && ... & F, && H" && —~H" = bad

We define €4 = {C) | p € #,X € {L,R}}

Lemma [soundness of the set of initial clauses]

Given a process P and a set of well-formed restrictions &£ , if =P |1 4 then bad is derivable

from G (P) U € 4.

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too @

20

Solution 4
(ongoing work with Vincent and ltsaka)

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:

- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are
unnecessary to prove session equivalence

= \/incent<saka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

2

Solution 4
(ongoing work with Vincent and ltsaka)

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:

- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are
unnecessary to prove session equivalence

= \/incent<saka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

TODO

- adapt Vincent<saka extension (i.e. adapt all the proofs...)

- extend ProVerif (or find tricks) to support = H X in premise of a clause for any fact H A

2

O

Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a
restriction on the right side

22

Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a
restriction on the right side

The manual of ProVerif and the long version of S&P’21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you’re not sure
about what you’re proving.

22

Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a
restriction on the right side

The manual of ProVerif and the long version of S&P’21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you’re not sure
about what you’re proving.

The improve—scope—lemma branch brings many new features

But part of them are under-documented...

22

