
ProVerif, restrictions, equivalence...
what could go wrong?

Université de Lorraine, Inria, CNRS, Nancy, France

Pesto seminar
April 12th, 2024 - Nancy, France

Alexandre Debant

1

Opening remarks

2

‣ this talk does not necessarily follow ProVerif notations

‣ what is written is not necessarily formally correct

‣ this talk is about ProVerif v2.05 (unless specific comment)

Modelling protocols

3

P, Q := 0
| 𝗇𝖾𝗐 n; P
| 𝗂𝗇(c, x); P
| 𝗈𝗎𝗍(c, u); P
| 𝗅𝖾𝗍 u = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q
| 𝗂𝗇𝗌𝖾𝗋𝗍 tbl(u); P
| 𝗀𝖾𝗍 tbl(x) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 ϕ 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q
| (P | Q)
| !P
| 𝖾𝗏𝖾𝗇𝗍 e(u1, …, un); P

ProVerif before v2.02

Modelling protocols

3

P, Q := 0
| 𝗇𝖾𝗐 n; P
| 𝗂𝗇(c, x); P
| 𝗈𝗎𝗍(c, u); P
| 𝗅𝖾𝗍 u = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q
| 𝗂𝗇𝗌𝖾𝗋𝗍 tbl(u); P
| 𝗀𝖾𝗍 tbl(x) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 ϕ 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q
| (P | Q)
| !P
| 𝖾𝗏𝖾𝗇𝗍 e(u1, …, un); P

ProVerif before v2.02 ProVerif since v2.02

+
Restrictions:

ρ := F1 && …Fn && ⇒ H

“Consider only traces that satisfy
, i.e. ”ρ tr ⊢ ρ

Example

4

Evoting: ballot weeding

Server =
! (

𝗂𝗇(c, x);
𝗂𝗇(cell, xtoken);
𝗀𝖾𝗍 BB(y) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 x = y 𝗂𝗇

𝗈𝗎𝗍(cell, xtoken) (* ballot already accepted *)
𝖾𝗅𝗌𝖾

𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
𝗈𝗎𝗍(cell, xtoken);
. . .

)

Example

4

Evoting: ballot weeding

Server =
! (

𝗂𝗇(c, x);
𝗂𝗇(cell, xtoken);
𝗀𝖾𝗍 BB(y) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 x = y 𝗂𝗇

𝗈𝗎𝗍(cell, xtoken) (* ballot already accepted *)
𝖾𝗅𝗌𝖾

𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
𝗈𝗎𝗍(cell, xtoken);
. . .

)

You may have troubles with
else branches and cells …

Example

4

Evoting: ballot weeding

Server =
! (

𝗂𝗇(c, x);
𝗂𝗇(cell, xtoken);
𝗀𝖾𝗍 BB(y) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 x = y 𝗂𝗇

𝗈𝗎𝗍(cell, xtoken) (* ballot already accepted *)
𝖾𝗅𝗌𝖾

𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
𝗈𝗎𝗍(cell, xtoken);
. . .

)

You may have troubles with
else branches and cells …

Server =
! (

𝗂𝗇(c, x);
𝗇𝖾𝗐 st; 𝖾𝗏𝖾𝗇𝗍 Inserted(st, x);
𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
. . .

)

Restriction:

𝖾𝗏𝖾𝗇𝗍(Inserted(st1, x))
&& 𝖾𝗏𝖾𝗇𝗍(Inserted(st2, x)) ⇒ st1 = st2 .

+

Example

4

Evoting: ballot weeding

Server =
! (

𝗂𝗇(c, x);
𝗂𝗇(cell, xtoken);
𝗀𝖾𝗍 BB(y) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 x = y 𝗂𝗇

𝗈𝗎𝗍(cell, xtoken) (* ballot already accepted *)
𝖾𝗅𝗌𝖾

𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
𝗈𝗎𝗍(cell, xtoken);
. . .

)

You may have troubles with
else branches and cells …

Server =
! (

𝗂𝗇(c, x);
𝗇𝖾𝗐 st; 𝖾𝗏𝖾𝗇𝗍 Inserted(st, x);
𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
. . .

)

Restriction:

𝖾𝗏𝖾𝗇𝗍(Inserted(st1, x))
&& 𝖾𝗏𝖾𝗇𝗍(Inserted(st2, x)) ⇒ st1 = st2 .

+

No cell, no else branch😇

Other examples

5

‣ Ballot weeding in evoting protocols

‣ Key updates / key revocations

‣ Model protocol assumptions (e.g., audits)

‣ Easily bound the number of executions

‣ Abstract e.g. arithmetic properties

‣ …

𝖾𝗏𝖾𝗇𝗍(Inserted(st1, x)) && 𝖾𝗏𝖾𝗇𝗍(Inserted(st2, x)) ⇒ st1 = st2

𝖾𝗏𝖾𝗇𝗍(Use(k1)) && 𝖾𝗏𝖾𝗇𝗍(Inserted(k2)) && subterm(k1, k2) ⇒ false

𝖾𝗏𝖾𝗇𝗍(PublishedOnBB(b)) ⇒ ϕ(b)

𝖾𝗏𝖾𝗇𝗍(Iteration(n)) ⇒ n < 2

See [Cortier et. al. - CCS’21]

How does it work?
(simplified)

6

ℂ ∪ {R = H ∧ ψσ → C}

ℂ ∪ {R = H → C} (∧n
i=1Fi ⇒ ψ) ∈ ℛ For all i, Fiσ ∈ H

How does it work?
(simplified)

6

ℂ ∪ {R = H ∧ ψσ → C}

ℂ ∪ {R = H → C} (∧n
i=1Fi ⇒ ψ) ∈ ℛ For all i, Fiσ ∈ H

It is just a
matching!

If the clause is not instantiated enough (e.g. noselect)
the restriction will not be applied!

Usual issues

7

Given the process

and the restriction , is reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)

Usual issues

7

Given the process

and the restriction , is reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)

No!
Restrictions have the same semantics as queries

Usual issues

7

Given the process

and the restriction , is reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)

No!
Restrictions have the same semantics as queries

Given the process

and the restriction ,

is ProVerif able to prove ?

P := (𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2)) | 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2)

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E1)

Usual issues

7

Given the process

and the restriction , is reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)

No!
Restrictions have the same semantics as queries

Given the process

and the restriction ,

is ProVerif able to prove ?

P := (𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2)) | 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2)

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E1)

Usual issues

7

Given the process

and the restriction , is reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)

No!
Restrictions have the same semantics as queries

Given the process

and the restriction ,

is ProVerif able to prove ?

P := (𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2)) | 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2)

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E1)

No…
⇒ 𝖾𝗏𝖾𝗇𝗍(E3)

apply ρ
𝖾𝗏𝖾𝗇𝗍(E2) ⇒ 𝖾𝗏𝖾𝗇𝗍(E3)

Not enough to
conclude… 😢

Usual issues

7

Given the process

and the restriction , is reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)

No!
Restrictions have the same semantics as queries

Given the process

and the restriction ,

is ProVerif able to prove ?

P := (𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2)) | 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2)

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E3) ⇒ 𝖾𝗏𝖾𝗇𝗍(E1)

You can use the development branch to make it prove𝚒𝚖𝚙𝚛𝚘𝚟𝚎−𝚜𝚌𝚘𝚙𝚎−𝚕𝚎𝚖𝚖𝚊

No…
⇒ 𝖾𝗏𝖾𝗇𝗍(E3)

apply ρ
𝖾𝗏𝖾𝗇𝗍(E2) ⇒ 𝖾𝗏𝖾𝗇𝗍(E3)

Not enough to
conclude… 😢

What about
equivalence properties?

8

🤔

Reminder

9

‣ ProVerif proves equivalence of processes that differ only by terms

‣ ProVerif internally proves diff-equivalence

P[a1, …, an] ≈ P[b1, …, bn]

P[diff [a1, b1], …, diff [an, bn]] ↑↓
Definition - “A biprocess is in diff-equivalence if i.e., for all
traces of , the first and the second projections progress in the same way.”

P traces(P)↓↑
P

Reminder

9

‣ ProVerif proves equivalence of processes that differ only by terms

‣ ProVerif internally proves diff-equivalence

P[a1, …, an] ≈ P[b1, …, bn]

P[diff [a1, b1], …, diff [an, bn]] ↑↓
Definition - “A biprocess is in diff-equivalence if i.e., for all
traces of , the first and the second projections progress in the same way.”

P traces(P)↓↑
P

 if and (𝗅𝖾𝗍 x = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q) | 𝒫 ⟶ P{x ↦ diff [M𝖫, M𝖱] } | 𝒫 𝖿𝗌𝗍(v)⇓ = M𝖫 𝗌𝗇𝖽(v)⇓ = M𝖱

Reminder

9

‣ ProVerif proves equivalence of processes that differ only by terms

‣ ProVerif internally proves diff-equivalence

P[a1, …, an] ≈ P[b1, …, bn]

P[diff [a1, b1], …, diff [an, bn]] ↑↓
Definition - “A biprocess is in diff-equivalence if i.e., for all
traces of , the first and the second projections progress in the same way.”

P traces(P)↓↑
P

 if and (𝗅𝖾𝗍 x = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q) | 𝒫 ⟶ P{x ↦ diff [M𝖫, M𝖱] } | 𝒫 𝖿𝗌𝗍(v)⇓ = M𝖫 𝗌𝗇𝖽(v)⇓ = M𝖱

 if and (𝗅𝖾𝗍 x = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q) | 𝒫 ⟶ Q | 𝒫 𝖿𝗌𝗍(v)⇓ = fail 𝗌𝗇𝖽(v)⇓ = fail

Reminder

9

‣ ProVerif proves equivalence of processes that differ only by terms

‣ ProVerif internally proves diff-equivalence

P[a1, …, an] ≈ P[b1, …, bn]

P[diff [a1, b1], …, diff [an, bn]] ↑↓
Definition - “A biprocess is in diff-equivalence if i.e., for all
traces of , the first and the second projections progress in the same way.”

P traces(P)↓↑
P

 if and (𝗅𝖾𝗍 x = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q) | 𝒫 ⟶ P{x ↦ diff [M𝖫, M𝖱] } | 𝒫 𝖿𝗌𝗍(v)⇓ = M𝖫 𝗌𝗇𝖽(v)⇓ = M𝖱

 if and (𝗅𝖾𝗍 x = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q) | 𝒫 ⟶ Q | 𝒫 𝖿𝗌𝗍(v)⇓ = fail 𝗌𝗇𝖽(v)⇓ = fail

 if and (𝗂𝗇(c, x); P) | (𝗈𝗎𝗍(c′ , u); Q) | 𝒫 ⟶ P{x ↦ u} | Q | 𝒫 𝖿𝗌𝗍(c) = 𝖿𝗌𝗍(c′) 𝗌𝗇𝖽(c) = 𝗌𝗇𝖽(c′)

 . . .

Reminder

10

Theorem [Blanchet et. al. 2006]

Given a biprocess ,

where denotes the observational equivalence relation.

P traces(P)↓↑ ⇒ 𝖿𝗌𝗍(P) ≈ 𝗌𝗇𝖽(P)
≈

Reminder

10

Theorem [Blanchet et. al. 2006]

Given a biprocess ,

where denotes the observational equivalence relation.

P traces(P)↓↑ ⇒ 𝖿𝗌𝗍(P) ≈ 𝗌𝗇𝖽(P)
≈

Equivalence with restrictions

11

‣ We can write restrictions, e.g. ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱

Equivalence with restrictions

11

‣ We can write restrictions, e.g. ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E(x, y)) ⇒ x = y ≢ ρ

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E(x, y)) ⇒ x = y ≡ 𝖾𝗏𝖾𝗇𝗍(E(diff [x, x], diff [y, y])) ⇒ x = y

Equivalence with restrictions

11

‣ We can write restrictions, e.g. ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E(x, y)) ⇒ x = y ≢ ρ

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E(x, y)) ⇒ x = y ≡ 𝖾𝗏𝖾𝗇𝗍(E(diff [x, x], diff [y, y])) ⇒ x = y

Always define restrictions with explicit
 operators!diff [⋅ , ⋅]

Equivalence with restrictions

11

‣ We can write restrictions, e.g. ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E(x, y)) ⇒ x = y ≢ ρ

ρ′ := 𝖾𝗏𝖾𝗇𝗍(E(x, y)) ⇒ x = y ≡ 𝖾𝗏𝖾𝗇𝗍(E(diff [x, x], diff [y, y])) ⇒ x = y

Always define restrictions with explicit
 operators!diff [⋅ , ⋅]

Definition - A biprocess is in diff-equivalence for the restrictions , if i.e.,
for all traces of that satisfy , the first and the second projections
progress in the same way.

P ℛ traces|ℛ(P)↓↑
tr P ℛ ∀ρ ∈ ℛ, tr ⊢ ρ

Relation with observational equivalence

12

Definition - Let , be two processes and , be two sets of restrictions.

Observational equivalence is extended with restrictions as expected (i.e. considering only traces
that satisfy restrictions 😇) and denoted

P𝖫 P𝖱 ℛ𝖫 ℛ𝖱

(P𝖫, ℛ𝖫) ≈ (P𝖱, ℛ𝖱)

Relation with observational equivalence

12

New-theorem?

Given a biprocess , and a set of restrictions ,

 .

P ℛ

traces|ℛ(P)↓↑ ⇒ (𝖿𝗌𝗍(P), 𝖿𝗌𝗍(ℛ)) ≈ (𝗌𝗇𝖽(P), 𝗌𝗇𝖽(ℛ))

Definition - Let , be two processes and , be two sets of restrictions.

Observational equivalence is extended with restrictions as expected (i.e. considering only traces
that satisfy restrictions 😇) and denoted

P𝖫 P𝖱 ℛ𝖫 ℛ𝖱

(P𝖫, ℛ𝖫) ≈ (P𝖱, ℛ𝖱)

Relation with observational equivalence

12

New-theorem?

Given a biprocess , and a set of restrictions ,

 .

P ℛ

traces|ℛ(P)↓↑ ⇒ (𝖿𝗌𝗍(P), 𝖿𝗌𝗍(ℛ)) ≈ (𝗌𝗇𝖽(P), 𝗌𝗇𝖽(ℛ))

Definition - Let , be two processes and , be two sets of restrictions.

Observational equivalence is extended with restrictions as expected (i.e. considering only traces
that satisfy restrictions 😇) and denoted

P𝖫 P𝖱 ℛ𝖫 ℛ𝖱

(P𝖫, ℛ𝖫) ≈ (P𝖱, ℛ𝖱)

Relation with observational equivalence

12

New-theorem?

Given a biprocess , and a set of restrictions ,

 .

P ℛ

traces|ℛ(P)↓↑ ⇒ (𝖿𝗌𝗍(P), 𝖿𝗌𝗍(ℛ)) ≈ (𝗌𝗇𝖽(P), 𝗌𝗇𝖽(ℛ))

Definition - Let , be two processes and , be two sets of restrictions.

Observational equivalence is extended with restrictions as expected (i.e. considering only traces
that satisfy restrictions 😇) and denoted

P𝖫 P𝖱 ℛ𝖫 ℛ𝖱

(P𝖫, ℛ𝖫) ≈ (P𝖱, ℛ𝖱)

Why is it false?

13

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱 is not properly defined!𝖿𝗌𝗍(ρ)

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱 is not properly defined!𝖿𝗌𝗍(ρ)

A bi-restriction impact both sides of the equivalence

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱 is not properly defined!𝖿𝗌𝗍(ρ)

A bi-restriction impact both sides of the equivalence

P = (
𝗇𝖾𝗐 n; 𝗇𝖾𝗐 m;
𝗈𝗎𝗍(cpriv1,diff [n, n]);
𝗈𝗎𝗍(cpriv2,diff [n, m]);
) | (
𝗂𝗇(cpriv1,x);
𝗂𝗇(cpriv, y);
𝖾𝗏𝖾𝗇𝗍 E(x, y);
𝗈𝗎𝗍(cpub, ok)
)

Restriction: ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖱 = y𝖱

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱 is not properly defined!𝖿𝗌𝗍(ρ)

A bi-restriction impact both sides of the equivalence

P = (
𝗇𝖾𝗐 n; 𝗇𝖾𝗐 m;
𝗈𝗎𝗍(cpriv1,diff [n, n]);
𝗈𝗎𝗍(cpriv2,diff [n, m]);
) | (
𝗂𝗇(cpriv1,x);
𝗂𝗇(cpriv, y);
𝖾𝗏𝖾𝗇𝗍 E(x, y);
𝗈𝗎𝗍(cpub, ok)
)

Restriction: ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖱 = y𝖱

 and

T := 𝗈𝗎𝗍(cpriv1,n) . 𝗂𝗇(cpriv1,n) .
𝗈𝗎𝗍(cpriv2,n) . 𝗂𝗇(cpriv2,n) .
𝖾𝗏𝖾𝗇𝗍(E(n, n)) . 𝗈𝗎𝗍(cpub, ok)

T ∈ traces(𝖿𝗌𝗍(P)) T ⊢ true = 𝖿𝗌𝗍(ρ)

But cannot be executed in
 while satisfying

event(E(n, m))
𝗌𝗇𝖽(P) 𝗌𝗇𝖽(ρ)

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱 is not properly defined!𝖿𝗌𝗍(ρ)

A bi-restriction impact both sides of the equivalence

P = (
𝗇𝖾𝗐 n; 𝗇𝖾𝗐 m;
𝗈𝗎𝗍(cpriv1,diff [n, n]);
𝗈𝗎𝗍(cpriv2,diff [n, m]);
) | (
𝗂𝗇(cpriv1,x);
𝗂𝗇(cpriv, y);
𝖾𝗏𝖾𝗇𝗍 E(x, y);
𝗈𝗎𝗍(cpub, ok)
)

Restriction: ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖱 = y𝖱

 and

T := 𝗈𝗎𝗍(cpriv1,n) . 𝗂𝗇(cpriv1,n) .
𝗈𝗎𝗍(cpriv2,n) . 𝗂𝗇(cpriv2,n) .
𝖾𝗏𝖾𝗇𝗍(E(n, n)) . 𝗈𝗎𝗍(cpub, ok)

T ∈ traces(𝖿𝗌𝗍(P)) T ⊢ true = 𝖿𝗌𝗍(ρ)(𝖿𝗌𝗍(P), ∅) ≉ (𝗌𝗇𝖽(P), 𝗌𝗇𝖽(ρ))

But cannot be executed in
 while satisfying

event(E(n, m))
𝗌𝗇𝖽(P) 𝗌𝗇𝖽(ρ)

Why is it false?

13

Strange restrictions ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱])) ⇒ x𝖫 = x𝖱 is not properly defined!𝖿𝗌𝗍(ρ)

A bi-restriction impact both sides of the equivalence

P = (
𝗇𝖾𝗐 n; 𝗇𝖾𝗐 m;
𝗈𝗎𝗍(cpriv1,diff [n, n]);
𝗈𝗎𝗍(cpriv2,diff [n, m]);
) | (
𝗂𝗇(cpriv1,x);
𝗂𝗇(cpriv, y);
𝖾𝗏𝖾𝗇𝗍 E(x, y);
𝗈𝗎𝗍(cpub, ok)
)

Restriction: ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖱 = y𝖱

 and

T := 𝗈𝗎𝗍(cpriv1,n) . 𝗂𝗇(cpriv1,n) .
𝗈𝗎𝗍(cpriv2,n) . 𝗂𝗇(cpriv2,n) .
𝖾𝗏𝖾𝗇𝗍(E(n, n)) . 𝗈𝗎𝗍(cpub, ok)

T ∈ traces(𝖿𝗌𝗍(P)) T ⊢ true = 𝖿𝗌𝗍(ρ)(𝖿𝗌𝗍(P), ∅) ≉ (𝗌𝗇𝖽(P), 𝗌𝗇𝖽(ρ))

But cannot be executed in
 while satisfying

event(E(n, m))
𝗌𝗇𝖽(P) 𝗌𝗇𝖽(ρ)

😱

What can I do now…?
I don’t know what I’m proving…

14

😕

Solution 1

15

Trust yourself 🤞
It’s the most often used technique… 🙈

Solution 2

16

Do a paper proof to
justify each restriction…

Solution 3

17

Let ProVerif do the proof for you

Solution 3

17

Let ProVerif do the proof for you

Methodology - Given a biprocess , and a restriction such that:

- and

-

Let ProVerif prove that: for all , implies and conversely.

P ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

vars(H𝖫) ⊆ vars(𝖿𝗌𝗍(ρ)) vars(H𝖱) ⊆ vars(𝗌𝗇𝖽(ρ))
vars(𝖿𝗌𝗍(ρ)) ∩ vars(𝗌𝗇𝖽(ρ)) = ∅

tr ∈ traces(P) tr ⊢ 𝖿𝗌𝗍(ρ) tr ⊢ 𝗌𝗇𝖽(ρ)

Solution 3

17

Let ProVerif do the proof for you

Methodology - Given a biprocess , and a restriction such that:

- and

-

Let ProVerif prove that: for all , implies and conversely.

P ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

vars(H𝖫) ⊆ vars(𝖿𝗌𝗍(ρ)) vars(H𝖱) ⊆ vars(𝗌𝗇𝖽(ρ))
vars(𝖿𝗌𝗍(ρ)) ∩ vars(𝗌𝗇𝖽(ρ)) = ∅

tr ∈ traces(P) tr ⊢ 𝖿𝗌𝗍(ρ) tr ⊢ 𝗌𝗇𝖽(ρ)

Add each time it is necessary
with fresh variables on the right side

diff [⋅ , ⋅]

Solution 3

17

Let ProVerif do the proof for you

Methodology - Given a biprocess , and a restriction such that:

- and

-

Let ProVerif prove that: for all , implies and conversely.

P ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

vars(H𝖫) ⊆ vars(𝖿𝗌𝗍(ρ)) vars(H𝖱) ⊆ vars(𝗌𝗇𝖽(ρ))
vars(𝖿𝗌𝗍(ρ)) ∩ vars(𝗌𝗇𝖽(ρ)) = ∅

tr ∈ traces(P) tr ⊢ 𝖿𝗌𝗍(ρ) tr ⊢ 𝗌𝗇𝖽(ρ)

Add each time it is necessary
with fresh variables on the right side

diff [⋅ , ⋅]

Example:

ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱

𝖿𝗌𝗍(ρ) := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x1], diff [y𝖫, x2])) ⇒ x𝖫 = y𝖫

𝗌𝗇𝖽(ρ) := 𝖾𝗏𝖾𝗇𝗍(E(diff [x1, x𝖱], diff [x2, y𝖱])) ⇒ x𝖱 = y𝖱

Solution 3…
is not always possible…

18

😥 The lemma talks about a unique trace…. in many cases you want to match the
first side of a trace with the second side of another trace

Solution 3…
is not always possible…

18

😥 The lemma talks about a unique trace…. in many cases you want to match the
first side of a trace with the second side of another trace

Basic Hash protocol

P := !Reader | !𝗇𝖾𝗐 k; !𝗇𝖾𝗐 kk; 𝗂𝗇𝗌𝖾𝗋𝗍 DB(diff [k, kk]); Tag(diff [k, kk])

Solution 3…
is not always possible…

18

😥 The lemma talks about a unique trace…. in many cases you want to match the
first side of a trace with the second side of another trace

Basic Hash protocol

P := !Reader | !𝗇𝖾𝗐 k; !𝗇𝖾𝗐 kk; 𝗂𝗇𝗌𝖾𝗋𝗍 DB(diff [k, kk]); Tag(diff [k, kk])

Problem: the key appears in many entries in ,

 diff-equivalence does not hold…

k DB(⋅)
⇒

Solution 3…
is not always possible…

18

😥 The lemma talks about a unique trace…. in many cases you want to match the
first side of a trace with the second side of another trace

Basic Hash protocol

P := !Reader | !𝗇𝖾𝗐 k; !𝗇𝖾𝗐 kk; 𝗂𝗇𝗌𝖾𝗋𝗍 DB(diff [k, kk]); Tag(diff [k, kk])

Problem: the key appears in many entries in ,

 diff-equivalence does not hold…

k DB(⋅)
⇒

Solution: add a restriction to read the “good” entry when it exists

Solution 3…
is not always possible…

18

😥 The lemma talks about a unique trace…. in many cases you want to match the
first side of a trace with the second side of another trace

Basic Hash protocol

P := !Reader | !𝗇𝖾𝗐 k; !𝗇𝖾𝗐 kk; 𝗂𝗇𝗌𝖾𝗋𝗍 DB(diff [k, kk]); Tag(diff [k, kk])

Problem: the key appears in many entries in ,

 diff-equivalence does not hold…

k DB(⋅)
⇒

Solution: add a restriction to read the “good” entry when it exists

 The previous lemma does not hold for traces

 using the “bad” entries

Solution 4
(ongoing work with Vincent and Itsaka)

19

Methodology
1. reinforce diff-equivalence to make it even stronger
2. adapt ProVerif procedure to make it sound w.r.t. this new definition
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

Solution 4
(ongoing work with Vincent and Itsaka)

19

Methodology
1. reinforce diff-equivalence to make it even stronger
2. adapt ProVerif procedure to make it sound w.r.t. this new definition
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

1. Reinforce diff-equivalence

Given a trace and a well-formed restriction , if and for all we have:

 if and only if

T ρ T↓↑ρ T↓↑ T P

(T P) ⊢ 𝖿𝗌𝗍(ρ) (T P) ⊢ 𝗌𝗇𝖽(ρ)

Solution 4
(ongoing work with Vincent and Itsaka)

20

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process , we note the initial set of clauses generated by ProVerif.

Given a well-formed restriction , we define:

-

-

We define

P 𝒞(P)
ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

C𝖫
ρ = F1 && … && Fn && H𝖫 && ¬H𝖱 ⇒ 𝖻𝖺𝖽

C𝖱
ρ = F1 && … && Fn && H𝖱 && ¬H𝖫 ⇒ 𝖻𝖺𝖽

𝒞ℛ = {C𝖷
ρ | ρ ∈ ℛ, 𝖷 ∈ {𝖫, 𝖱}}

Solution 4
(ongoing work with Vincent and Itsaka)

20

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process , we note the initial set of clauses generated by ProVerif.

Given a well-formed restriction , we define:

-

-

We define

P 𝒞(P)
ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

C𝖫
ρ = F1 && … && Fn && H𝖫 && ¬H𝖱 ⇒ 𝖻𝖺𝖽

C𝖱
ρ = F1 && … && Fn && H𝖱 && ¬H𝖫 ⇒ 𝖻𝖺𝖽

𝒞ℛ = {C𝖷
ρ | ρ ∈ ℛ, 𝖷 ∈ {𝖫, 𝖱}}

Lemma [soundness of the set of initial clauses]

Given a process and a set of well-formed restrictions , if then is derivable

from .

P ℛ ¬P↓↑ℛ 𝖻𝖺𝖽

𝒞(P) ∪ 𝒞ℛ

Solution 4
(ongoing work with Vincent and Itsaka)

20

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process , we note the initial set of clauses generated by ProVerif.

Given a well-formed restriction , we define:

-

-

We define

P 𝒞(P)
ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

C𝖫
ρ = F1 && … && Fn && H𝖫 && ¬H𝖱 ⇒ 𝖻𝖺𝖽

C𝖱
ρ = F1 && … && Fn && H𝖱 && ¬H𝖫 ⇒ 𝖻𝖺𝖽

𝒞ℛ = {C𝖷
ρ | ρ ∈ ℛ, 𝖷 ∈ {𝖫, 𝖱}}

Lemma [soundness of the set of initial clauses]

Given a process and a set of well-formed restrictions , if then is derivable

from .

P ℛ ¬P↓↑ℛ 𝖻𝖺𝖽

𝒞(P) ∪ 𝒞ℛ

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too 😉

Solution 4
(ongoing work with Vincent and Itsaka)

21

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:
- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are

unnecessary to prove session equivalence

➡ Vincent&Itsaka extension will remove the newly reachable

- they are safe and should not be reachable
𝖻𝖺𝖽

𝖻𝖺𝖽

Solution 4
(ongoing work with Vincent and Itsaka)

21

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

TODO

- adapt Vincent&Itsaka extension (i.e. adapt all the proofs…)

- extend ProVerif (or find tricks) to support in premise of a clause for any fact ¬H𝖷 H𝖷

Intuition:
- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are

unnecessary to prove session equivalence

➡ Vincent&Itsaka extension will remove the newly reachable

- they are safe and should not be reachable
𝖻𝖺𝖽

𝖻𝖺𝖽

Conclusion

22

Be careful when you are using restrictions with equivalence queries…
😈 It is not possible to think a bi-restriction as a restriction on the left side and a

restriction on the right side

Conclusion

22

Be careful when you are using restrictions with equivalence queries…
😈 It is not possible to think a bi-restriction as a restriction on the left side and a

restriction on the right side

😇
The manual of ProVerif and the long version of S&P’21 paper describe all the theory
Everything is well-documented. Do not hesitate to open them when you’re not sure
about what you’re proving.

Conclusion

22

Be careful when you are using restrictions with equivalence queries…
😈 It is not possible to think a bi-restriction as a restriction on the left side and a

restriction on the right side

😇
The manual of ProVerif and the long version of S&P’21 paper describe all the theory
Everything is well-documented. Do not hesitate to open them when you’re not sure
about what you’re proving.

The branch brings many new features𝚒𝚖𝚙𝚛𝚘𝚟𝚎−𝚜𝚌𝚘𝚙𝚎−𝚕𝚎𝚖𝚖𝚊
But part of them are under-documented…

