

ProVerif, restrictions, equivalence... what could go wrong?

Université de Lorraine, Inria, CNRS, Nancy, France

Pesto seminar April 12th, 2024 - Nancy, France

01101100 0110111 01110010 01101001 0110000 01101100 01110010 **DI 10000101111**
11100100111 Laboratoire lorrain de recherche **'000010111 en informatique et ses applications** 200000

Alexandre Debant

1

Opening remarks

- ‣ this talk does not necessarily follow ProVerif notations
- ‣ what is written is not necessarily formally correct
- ‣ this talk is about ProVerif v2.05 (unless specific comment)

Modelling protocols

 $P, Q := 0$ | new n ; P $|$ in(c, x); P $|$ out $(c, u);$ P | let $u = v$ in P else Q | insert $tbl(u)$; P | get $tbl(x)$ suchthat ϕ in P else Q | (*P* | *Q*) | !*P* | event $e(u_1, ..., u_n)$; *P*

ProVerif before v2.02

Modelling protocols

 $P, Q := 0$ | new n ; P $|$ in(c, x); P $|$ out $(c, u);$ *P* | let $u = v$ in P else Q | insert $tbl(u)$; P | get $tbl(x)$ suchthat ϕ in P else Q $|(P \mid Q)|$ | !*P* event $e(u_1, ..., u_n)$; *P*

ProVerif before v2.02 ProVerif since v2.02

4

Evoting: ballot weeding

```
Server =
  ! (
     in(c, x);in(cell, x_{token});get BB(y) suchthat x = y in
       (cell, xtoken) (* ballot already accepted *)
     else
       insert BB(x);
       (cell, xtoken);
        . . .
    )
```
4

Evoting: ballot weeding

$$
Server =\n! (\nin(c, x);\nin(cell, xtoken);\nget BB(y) such that x = y in\nout(cell, xtoken) (* ballot already accepted *)\nelse\ninsert BB(x);\nout(cell, xtoken);
$$

You may have troubles with else branches and cells …

. . .

4

Evoting: ballot weeding

$$
Server =\n! (\nin(c, x);\nin(cell, xtoken);\nget BB(y) such that x = y in\nout(cell, xtoken) (* ballot already accepted *)\nelse\ninsert BB(x);\nout(cell, xtoken);
$$

You may have troubles with else branches and cells …

. . .

4

Evoting: ballot weeding

$$
Server =\n! (\nin(c, x);\nin(cell, xtoken);\nget BB(y) such that x = y in\nout(cell, xtoken) (* ballot already accepted *)\nelse\ninsert BB(x);\nout(cell, xtoken);
$$

You may have troubles with else branches and cells …

. . .

No cell, no else branch

Other examples

 $(Inserted(st_1, x))$ && event $(Inserted(st_2, x)) \Rightarrow st_1 = st_2$ $\text{event}(Use(k_1))$ && $\text{event}(Inserted(k_2))$ && $subterm(k_1, k_2) \Rightarrow false$ $\phi(b) \Rightarrow \phi(b)$

- ‣ Ballot weeding in evoting protocols
- ‣ Key updates / key revocations
- ‣ Model protocol assumptions (e.g., audits)
- ‣ Easily bound the number of executions
- ‣ Abstract e.g. arithmetic properties
- \blacktriangleright …

 $event(Iteration(n)) \Rightarrow n < 2$

See [Cortier et. al. - CCS'21]

How does it work? (simplified)

 $\mathbb{C} \cup \{R = H \wedge \psi\sigma \to C\}$

How does it work? (simplified)

If the clause is not instantiated enough (e.g. noselect) the restriction will not be applied!

Given the process $P := \mathsf{event}(E1)$; $\mathsf{event}(E2)$; $\mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E1) \Rightarrow \mathsf{event}(E2)$, is $\mathsf{event}(E3)$ reachable?

Given the process $P := \mathsf{event}(E1)$; $\mathsf{event}(E2)$; $\mathsf{event}(E3)$

and the restriction $\rho := \mathsf{event}(E1) \Rightarrow \mathsf{event}(E2)$, is $\mathsf{event}(E3)$ reachable?

Restrictions have the same semantics as queries

Given the process $P := \mathsf{event}(E1)$; $\mathsf{event}(E2)$; $\mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E1) \Rightarrow \mathsf{event}(E2)$, is $\mathsf{event}(E3)$ reachable?

Given the process $P :=$ (event $(E1)$; event $(E2)) \, \mid \, \mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E3) \Rightarrow \mathsf{event}(E2)$, is ProVerif able to prove $\rho':= \mathsf{event}(E3) \Rightarrow \mathsf{event}(E1)$?

Restrictions have the same semantics as queries

```
Usual issues
Process \theta (that is, the initial process):
    \{1\}event E1;
\left.\begin{matrix} \{2\}\text{event E2}\end{matrix}\right\}<br>\left.\begin{matrix} \{3\}\text{event E3}\end{matrix}\right\}\mathcal{O}_\mathcal{A} and the restriction , is reachable. The restriction , is reachable? In the restriction , is reachable?
\left| \begin{array}{cc} - - & Query event(E3) ==> event(E1) in process 0.
Translating the process into Horn clauses...<br>Completing...<br>Starting query event(E3) ==> event(E1)
\vert Completing...
\vert goal reachable: b-event(E2) -> event(E3)
Derivation:
1. Event E3 may be executed at \{3\}.
|event(E3).
The goal is reached, represented in the following fact:<br>event(E3).
and the restriction of the restriction \mathcal{A} . The restriction of the restriction \mathcal{A}A more detailed output of the traces is available with
  set traceDisplay = long.
event E3 at \{3\} (goal)
The event E3 is executed at \{3\}.
A trace has been found.
The attack trace does not satisfy the following restriction, declared at File "example4.pv", line 16, characters 13–35:
|event(E3) == > event(E2)RESULT event (E3) == event (E1) cannot be proved.
```


Given the process $P := \mathsf{event}(E1)$; $\mathsf{event}(E2)$; $\mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E1) \Rightarrow \mathsf{event}(E2)$, is $\mathsf{event}(E3)$ reachable?

Given the process $P :=$ (event $(E1)$; event $(E2)) \, \mid \, \mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E3) \Rightarrow \mathsf{event}(E2)$, is ProVerif able to prove $\rho':= \mathsf{event}(E3) \Rightarrow \mathsf{event}(E1)$?

Restrictions have the same semantics as queries

$$
\bigwedge_{\bullet} \blacksquare \bullet \bullet \mathsf{event}(E3) \longrightarrow \mathsf{event}(E3)
$$

Given the process $P := \mathsf{event}(E1)$; $\mathsf{event}(E2)$; $\mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E1) \Rightarrow \mathsf{event}(E2)$, is $\mathsf{event}(E3)$ reachable?

Given the process $P :=$ (event $(E1)$; event $(E2)) \, \mid \, \mathsf{event}(E3)$ and the restriction $\rho := \mathsf{event}(E3) \Rightarrow \mathsf{event}(E2)$, is ProVerif able to prove $\rho':= \mathsf{event}(E3) \Rightarrow \mathsf{event}(E1)$?

Restrictions have the same semantics as queries

$$
\bigwedge_{i=1}^{\infty} \text{No...} \Rightarrow \text{event}(E3) \quad \xrightarrow{a}
$$

You can use the development branch improve-scope-lemma to make it prove

What about equivalence properties?

 $P[a_1, ..., a_n] \approx P[b_1, ..., b_n]$ $P[diff[a_1, b_1], \ldots, diff[a_n, b_n]] \uparrow \downarrow$

- ‣ ProVerif proves equivalence of processes that differ only by terms
- ‣ ProVerif internally proves diff-equivalence

Definition - "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P , the first and the second projections progress in the same way."

-
-

‣ ProVerif proves equivalence of processes that differ only by terms ‣ ProVerif internally proves diff-equivalence $P[a_1, ..., a_n] \approx P[b_1, ..., b_n]$ $P[diff[a_1, b_1], ..., diff[a_n, b_n]] \uparrow \downarrow$ **Definition -** "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P , the first and the second projections progress in the same way."

 $\mathcal{P}[x \mapsto \text{diff}[M^{\perp}, M^{\sf R}] \mid \mathcal{P}$ if $fst(v) \Downarrow M^{\perp}$ and $\text{snd}(v) \Downarrow M^{\sf R}$

- ‣ ProVerif proves equivalence of processes that differ only by terms
- ‣ ProVerif internally proves diff-equivalence

Definition - "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P , the first and the second projections progress in the same way."

$$
(\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P} \longrightarrow P\{x \mapsto \text{diff}[M^{\perp},
$$
\n
$$
(\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P}
$$

 $[M^R]$ } | \mathscr{P} if fst $(v)\Downarrow = M^L$ and $\text{snd}(v)\Downarrow = M^R$

(let $x = v$ in P else Q) $| \mathcal{P} \longrightarrow Q | \mathcal{P}$ if $fst(v) \Downarrow = \text{fail}$ and $snd(v) \Downarrow = \text{fail}$

- ‣ ProVerif proves equivalence of processes that differ only by terms
- ‣ ProVerif internally proves diff-equivalence

Definition - "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P , the first and the second projections progress in the same way."

 \bullet \bullet \bullet

$$
(\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P} \longrightarrow P\{x \mapsto \text{diff}[M^{\perp},
$$
\n
$$
(\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P} \longrightarrow
$$
\n
$$
(\text{in}(c, x); P) \mid (\text{out}(c', u); Q) \mid \mathcal{P} \longrightarrow P\{x \mapsto u\}
$$

Given a biprocess P , $trace(S(P) \downarrow \uparrow \Rightarrow \mathsf{fst}(P) \approx \mathsf{snd}(P)$

Theorem [Blanchet et. al. 2006]

where \approx denotes the observational equivalence relation.

Given a biprocess P , $trace(S(P) \downarrow \uparrow \Rightarrow \mathsf{fst}(P) \approx \mathsf{snd}(P)$

Theorem [Blanchet et. al. 2006]

where \approx denotes the observational equivalence relation.

```
adebant@macbook-pro-de-alexandre-2 proverif-examples % proverif example1.pv
Biprocess 0 (that is, the initial process):
    {1}new n: bitstring;
    {2}new m: bitstring;
    {3}out(cpriv, choice[n,m])
\rightarrow \rightarrow \rightarrow{4}in(cpriv, x: bitstring);
    \{5\}out(cpub, x)
\overline{)}-- Observational equivalence in biprocess 0.
Translating the process into Horn clauses...
Termination warning: v \neq v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting 0
Termination warning: v \neq v_1 && attacker2(v, v_2) && attacker2(v_1, v_2) -> bad
Selecting 0
Completing...Termination warning: v \neq v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting 0
Termination warning: v \neq v_1 && attacker2(v, v_2) && attacker2(v_1, v_2) -> bad
Selecting 0
RESULT Observational equivalence is true.
Verification summary:
Observational equivalence is true.
```
• We can write restrictions, e.g. $\rho := \text{event}(E(diff[x^L, x^R], diff[y^L, y^R])) \Rightarrow x^L = y^L \&& x^R = y^R$

11

11

$$
\rho' := \text{event}(E(x, y)) \Rightarrow x = y \not\equiv \rho
$$

$$
\rho' := \text{event}(E(x, y)) \Rightarrow x = y \equiv \epsilon
$$

• We can write restrictions, e.g. $\rho := \text{event}(E(diff[x^L, x^R], diff[y^L, y^R])) \Rightarrow x^L = y^L \&& x^R = y^R$

 $$

11

$$
\rho' := \text{event}(E(x, y))
$$

Always define

$$
\rho' := \text{event}(E(x, y)) \rightarrow x - y = c
$$

• We can write restrictions, e.g. $\rho := \text{event}(E(diff[x^L, x^R], diff[y^L, y^R])) \Rightarrow x^L = y^L \&& x^R = y^R$

• We can write restrictions, e.g. $\rho := \text{event}(E(diff[x^L, x^R], diff[y^L, y^R])) \Rightarrow x^L = y^L \&& x^R = y^R$

11

$$
\rho' := \text{event}(E(x, \cdot))
$$

Always define

$$
\rho' := \text{event}(E(x, y), \dots, \lambda - y) = 0
$$

 $\bm{\mathsf{Definition}}$ **-** A biprocess P is in diff-equivalence for the restrictions \mathscr{R} , if $traces_{|\mathscr{R}}(P)\downarrow\uparrow{}$ i.e., for all traces tr of P that satisfy $\mathscr{R},\ \forall \rho\in\mathscr{R}, tr\vdash\rho$ the first and the second projections progress in the same way.

Definition - Let $P^{\mathsf{L}}, P^{\mathsf{R}}$ be two processes and $\mathscr{R}^{\mathsf{L}}, \mathscr{R}^{\mathsf{R}}$ be two sets of restrictions. that satisfy restrictions \mathbf{C}) and denoted $(P^{\mathsf{L}}, \mathscr{R}^{\mathsf{L}}) \approx (P^{\mathsf{R}}, \mathscr{R}^{\mathsf{R}})$

Observational equivalence is extended with restrictions as expected (i.e. considering only traces

Definition - Let $P^{\mathsf{L}}, P^{\mathsf{R}}$ be two processes and $\mathscr{R}^{\mathsf{L}}, \mathscr{R}^{\mathsf{R}}$ be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions \mathbf{C}) and denoted $(P^{\mathsf{L}}, \mathscr{R}^{\mathsf{L}}) \approx (P^{\mathsf{R}}, \mathscr{R}^{\mathsf{R}})$

New-theorem?

Given a biprocess P , and a set of restrictions $\mathscr R,$

 $traces_{|\mathscr{R}}(P)\downarrow\uparrow\Rightarrow(\mathsf{fst}(P),\mathsf{fst}(\mathscr{R}))\approx(\mathsf{snd}(P),\mathsf{snd}(\mathscr{R})).$

Definition - Let $P^{\mathsf{L}}, P^{\mathsf{R}}$ be two processes and $\mathscr{R}^{\mathsf{L}}, \mathscr{R}^{\mathsf{R}}$ be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions \mathbf{C}) and denoted $(P^{\mathsf{L}}, \mathscr{R}^{\mathsf{L}}) \approx (P^{\mathsf{R}}, \mathscr{R}^{\mathsf{R}})$

New-theorem?

Given a biprocess P , and a set of restrictions $\mathscr R,$

 $traces_{|\mathscr{R}}(P)\downarrow\uparrow\Rightarrow(\mathsf{fst}(P),\mathsf{fst}(\mathscr{R}))\approx(\mathsf{snd}(P),\mathsf{snd}(\mathscr{R})).$

Definition - Let $P^{\mathsf{L}}, P^{\mathsf{R}}$ be two processes and $\mathscr{R}^{\mathsf{L}}, \mathscr{R}^{\mathsf{R}}$ be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions \mathbb{C}) and denoted $(P^{\mathsf{L}},\mathscr{R}^{\mathsf{L}})\approx (P^{\mathsf{R}},\mathscr{R}^{\mathsf{R}})$

-- Restriction not event($E(x_1)$) encoded as not event2($E(x_1)$, $E(x_1)$) in biprocess 0.

- Restriction not event($E(x_1)$) encoded as not event2($E(x_1)$, $E(x_1)$) in biprocess 0.

Why is it false?

Strange restrictions $\rho := \text{event}(E(diff[x^{\mathsf{L}}, x^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}$

Why is it false?

Strange restrictions $\rho := \text{event}(E(diff[x^L, x^R])) \Rightarrow x^L = x^R$ **X** fst(ρ) is not properly defined!

Why is it false?

Strange restrictions $\rho := \text{event}(E(diff[x^L, x^R])) \Rightarrow x^L = x^R$ **X** $\text{fst}(\rho)$ is not properly defined!

Why is it false?

A bi-restriction impact both sides of the equivalence

Why is it false?

$$
\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}
$$

A bi-restriction impact both sides of the equivalence

 $P = ($

new *n*; new *m*; (*cpriv*1,*diff*[*n*, *n*]); (*cpriv*2,*diff*[*n*, *m*]);) | ($incpriv1,x);$ $in(cpriv, y);$ event $E(x, y)$; (*cpub*, *ok*))

Restriction: $\rho := \text{event}(E(diff[x^{\mathsf{L}}, x^{\mathsf{R}}], diff[y^{\mathsf{L}}, y^{\mathsf{R}}])) =$

Strange restrictions $\rho := \text{event}(E(diff[x^L, x^R])) \Rightarrow x^L = x^R$ **x** $\text{fst}(\rho)$ is not properly defined!

Why is it false?

A bi-restriction impact both sides of the equivalence

 $P = ($

new *n*; new *m*; (*cpriv*1,*diff*[*n*, *n*]); (*cpriv*2,*diff*[*n*, *m*]);) | ($inc(priv1,x);$ $in(cpriv, y);$ event $E(x, y)$; (*cpub*, *ok*))

Restriction: $\rho := \text{event}(E(diff[x^{\perp}, x^{\mathsf{R}}], diff[y^{\perp}, y^{\mathsf{R}}]))$

$$
T := \text{out}(cpriv1,n) \cdot \text{in}(cpriv1,n) \cdot \\ \text{out}(cpriv2,n) \cdot \text{in}(cpriv2,n) \cdot \\ \text{event}(E(n,n)) \cdot \text{out}(cpub,ok)
$$

 $T \in \mathit{traces}(\mathsf{fst}(P))$ and $T \vdash \mathit{true} = \mathsf{fst}(\rho)$

But $event(E(n, m))$ cannot be executed in (P) while satisfying snd (ρ)

$$
\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}
$$

Why is it false?

$$
f[x^{\mathsf{L}}, x^{\mathsf{R}}]) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}
$$

A bi-restriction impact both sides of the equivalence

 $P = ($

new *n*; new *m*; (*cpriv*1,*diff*[*n*, *n*]); (*cpriv*2,*diff*[*n*, *m*]);) | ($incpriv1,x);$ $in(cpriv, y);$ event $E(x, y)$; (*cpub*, *ok*))

Restriction: $\rho := \text{event}(E(diff[x^{\mathsf{L}}, x^{\mathsf{R}}], diff[y^{\mathsf{L}}, y^{\mathsf{R}}]))$

$$
T := out(cpriv1, n) . in(cpriv1, n) .
$$

out(cpriv2, n) . in(cpriv2, n) .

$$
T \in t \quad (\text{fst}(P), \emptyset) \; \text{at (end(P), \text{snd}(\rho))
$$

But $event(E(n, m))$ cannot be executed in (P) while satisfying snd (ρ)

$$
\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}
$$

Restriction: $\rho := \text{event}(E(diff[x^{\mathsf{L}}, x^{\mathsf{R}}], diff[y^{\mathsf{L}}, y^{\mathsf{R}}]))$

$$
\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}
$$

What can I do now…? I don't know what I'm proving…

14

Trust yourself

It's the most often used technique...

Do a paper proof to justify each restriction…

Let ProVerif do the proof for you

Let ProVerif prove that: for all $tr \in traces(P)$, $tr \vdash \mathsf{fst}(\rho)$ implies $tr \vdash \mathsf{snd}(\rho)$ and conversely.

Let ProVerif do the proof for you

Methodology - Given a biprocess P , and a restriction $\rho := F_1$ && … && $F_n \Rightarrow H^\mathsf{L}$ && H^K such that: *uars*(*H*^L) ⊆ *vars*(fst(*ρ*)) and *vars*(*H*^R) ⊆ *vars*(snd(*ρ*))

-
- $vars(fst(\rho)) \cap vars(snd(\rho)) = \emptyset$

Methodology - Given a biprocess P , and a restriction $\rho := F_1$ && … && $F_n \Rightarrow H^\mathsf{L}$ && H^K such that:

Let ProVerif prove that: for all $tr \in traces(P)$, $tr \vdash \mathsf{fst}(\rho)$ implies $tr \vdash \mathsf{snd}(\rho)$ and conversely.

Let ProVerif do the proof for you

- *uars*(*H*^L) ⊆ *vars*(fst(*ρ*)) and *vars*(*H*^R) ⊆ *vars*(snd(*ρ*))
- $vars(fst(\rho)) \cap vars(snd(\rho)) = \emptyset$

Add $\it diff$ [$\cdot \, , \cdot$] each time it is necessarywith fresh variables on the right side

Methodology - Given a biprocess P , and a restriction $\rho := F_1$ && … && $F_n \Rightarrow H^\mathsf{L}$ && H^K such that:

$$
x^{L}, y^{R}(x) \Rightarrow x^{L} = y^{L} \&& x^{R} = y^{R}
$$

\n
$$
x^{L} = y^{L}
$$

\n
$$
y^{R} = y^{R}
$$

\n
$$
y^{R} = y^{R}
$$

Let ProVerif do the proof for you

- *uars*(*H*^L) ⊆ *vars*(fst(*ρ*)) and *vars*(*H*^R) ⊆ *vars*(snd(*ρ*))
- $vars(fst(\rho)) \cap vars(snd(\rho)) = \varnothing$

Let ProVerif prove that: for all $tr \in traces(P)$, $tr \vdash \mathsf{fst}(\rho)$ implies $tr \vdash \mathsf{snd}(\rho)$ and conversely.

Add $\it diff$ [$\cdot \, , \cdot$] each time it is necessarywith fresh variables on the right side

Example: $\rho := \text{event}(E(diff[x^L, x^R], diff[y])$ $fst(\rho) := \text{event}(E(dff[x^L, x_1], diff[y^L, x_2]))$ $\overline{\text{snd}(\rho)} := \text{event}(E(diff[x_1, x^R], diff[x_2, y^R])$

 The lemma talks about ^a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

 The lemma talks about ^a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

P := !*Reader* | !new *k*; !new *kk*; insert $DB(diff[k, kk])$; $Tag(diff[k, kk])$

Basic Hash protocol

 The lemma talks about ^a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

P := !*Reader* | !new *k*; !new *kk*; insert $DB(diff[k, kk])$; $Tag(diff[k, kk])$

Problem: the key k appears in many entries in $DB(\cdot),$ ⇒ diff-equivalence does not hold...

Basic Hash protocol

 The lemma talks about ^a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

P := !*Reader* | !new *k*; !new *kk*; insert $DB(diff[k, kk])$; $Tag(diff[k, kk])$

Problem: the key k appears in many entries in $DB(\cdot),$ ⇒ diff-equivalence does not hold...

Basic Hash protocol

Solution: add a restriction to read the "good" entry when it exists

 The lemma talks about ^a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

P := !*Reader* | !new *k*; !new *kk*; insert $DB(diff[k, kk])$; $Tag(diff[k, kk])$

Problem: the key k appears in many entries in $DB(\cdot),$ ⇒ diff-equivalence does not hold...

Solution: add a restriction to read the "good" entry when it exists

 The previous lemma does not hold for traces using the "bad" entries

Methodology

- **1.** reinforce diff-equivalence to make it even stronger
-
-

2. adapt ProVerif procedure to make it sound w.r.t. this new definition **3.** build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

Methodology

-
-
- **1.** reinforce diff-equivalence to make it even stronger **2.** adapt ProVerif procedure to make it sound w.r.t. this new definition **3.** build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

1. Reinforce diff-equivalence

$$
(T \to P) \vdash \overline{\mathsf{fst}(\rho)}
$$

Given a trace T and a well-formed restriction $\rho, \,\, T \downarrow \uparrow_{\rho}$ if $\,\, T \downarrow \uparrow$ and for all $T \to P$ we have: $(T \to P) \vdash \mathsf{fst}(\rho)$ if and only if $(T \to P) \vdash \mathsf{snd}(\rho)$

2. Adapt ProVerif procedure - translation in "Horn" clauses Given a process P , we note $\mathscr{C}(P)$ the initial set of clauses generated by ProVerif. Given a well-formed restriction $\rho := F_1$ && ... && $F_n \Rightarrow H^{\mathsf{L}}$ && H^{R} , we define: $-C_{\rho}^{\mathsf{L}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{L}} \&\& \neg H^{\mathsf{R}} \Rightarrow$ $-C_{\rho}^{R} = F_1 \&\& \dots \&\& F_n \&\& H^R \&\& H^L \Rightarrow$ We define $\mathscr{C}_{\mathscr{R}} = \{ C_{\rho}^{\mathsf{X}} \mid \rho \in \mathscr{R}, \mathsf{X} \in \{\mathsf{L},\mathsf{R}\} \}$

2. Adapt ProVerif procedure - translation in "Horn" clauses Given a process P , we note $\mathscr{C}(P)$ the initial set of clauses generated by ProVerif. Given a well-formed restriction $\rho := F_1$ && ... && $F_n \Rightarrow H^{\mathsf{L}}$ && H^{R} , we define: $-C_{\rho}^{\mathsf{L}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{L}} \&\& \neg H^{\mathsf{R}} \Rightarrow$ $-C_{\rho}^{R} = F_1 \&\& \dots \&\& F_n \&\& H^R \&\& H^L \Rightarrow$ We define $\mathscr{C}_{\mathscr{R}} = \{ C_{\rho}^{\mathsf{X}} \mid \rho \in \mathscr{R}, \mathsf{X} \in \{\mathsf{L},\mathsf{R}\} \}$

Lemma [soundness of the set of initial clauses] Given a process P and a set of well-formed restrictions ${\mathscr R}$, if $\neg P \mathbin{\downarrow} \uparrow_{\mathscr R}$ then <code>bad</code> is derivable from $\mathscr{C}(P) \cup {\mathscr{C}}_{\mathscr{R}}.$

2. Adapt ProVerif procedure - translation in "Horn" clauses Given a process P , we note $\mathscr{C}(P)$ the initial set of clauses generated by ProVerif. Given a well-formed restriction $\rho := F_1$ && ... && $F_n \Rightarrow H^{\mathsf{L}}$ && H^{R} , we define: $-C_{\rho}^{\mathsf{L}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{L}} \&\& \neg H^{\mathsf{R}} \Rightarrow$ $-C_{\rho}^{R} = F_1 \&\& \dots \&\& F_n \&\& H^R \&\& H^L \Rightarrow$ We define $\mathscr{C}_{\mathscr{R}} = \{ C_{\rho}^{\mathsf{X}} \mid \rho \in \mathscr{R}, \mathsf{X} \in \{\mathsf{L},\mathsf{R}\} \}$

Lemma [soundness of the set of initial clauses] Given a process P and a set of well-formed restrictions ${\mathscr R}$, if $\neg P \mathbin{\downarrow} \uparrow_{\mathscr R}$ then <code>bad</code> is derivable from $\mathscr{C}(P) \cup {\mathscr{C}}_{\mathscr{R}}.$

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too \odot

&... &
$$
\&R
$$
 $F_n \Rightarrow H^{\mathsf{L}} \&R H^{\mathsf{R}}$, we define:

$$
\& \neg H^{\mathsf{L}} \Rightarrow \mathsf{bad}
$$

$$
,\mathsf{R}\}\}
$$

3. Build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are unnecessary to prove session equivalence
	- Vincent&Itsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

[Cheval & Rakotonirina - CSF'23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:

3. Build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

[Cheval & Rakotonirina - CSF'23] ==> ProVerif extension to (almost) prove session equivalence

TODO

- adapt Vincent&Itsaka extension (i.e. adapt all the proofs...)
- extend ProVerif (or find tricks) to support $\neg H^\mathsf{X}$ in premise of a clause for any fact H^X

Intuition:

- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are unnecessary to prove session equivalence
	- Vincent&Itsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

Conclusion

22

Be careful when you are using restrictions with equivalence queries…

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

Conclusion

Be careful when you are using restrictions with equivalence queries…

 It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

The manual of ProVerif and the long version of S&P'21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you're not sure about what you're proving.

Conclusion

Be careful when you are using restrictions with equivalence queries…

 It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

The manual of ProVerif and the long version of S&P'21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you're not sure about what you're proving.

The improve − scope − 1emma branch brings many new features

But part of them are under-documented…

