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Opening remarks

> this talk does not necessarily follow ProVerif notations
> what is written is not necessarily formally correct

> this talk is about ProVerif v2.05 (unless specific comment)



Modelling protocols

P,O:=0

new n; P

in(c,x); P

out(c,u); P

let u =v In P else O

insert tbl(u); P

get tbl(x) suchthat ¢ in P else O
(P | Q)

\P

event e(uy,...,u,); P

ProVerif before v2.02



Modelling protocols

P,O:=0

new n; P
in(c, x); P Restrictions:

out(c,u); P p=F&& .. F & => H

let u =v iIn P else O

insert tbl(u); P +

get tbl(x) suchthat ¢ in P else O = “Consider only traces that satisfy
p,ie trk=p”

(P | O) _ .
P
event e(uy,...,u,); P

ProVerif before v2.02 ProVerif since v2.02



Example

Evoting: ballot weeding

Server =
L (
In(c, X);
in(cell, x, .,..);
get BB(y) suchthat x =y In
out(cell, x,,,,) (*ballot already accepted *)

else
insert BB(x);
out(cell, x, . ,.);
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Example

Evoting: ballot weeding

Server =
Server =  (
| ( in(c, x);
in(c, x); new st; event Inserted(st, x);

in(cell, x, ;.,.);
get BB(y) suchthat x =y In

I insert BB(x);
out(cell, x,,,,) (*ballot already accepted *) )

else _|_

insert BB(x); Restriction:
out(cell, X, 10, event(Inserted(st,, x))
&& event(Inserted(st,, x)) = st; = st, .

You may have troubles with
else branches and cells ...




Example

Evoting: ballot weeding

Server =
Server =  (
| ( in(c, x);
in(c, x); new st; event Inserted(st, x);

in(cell, x, ;.,.);
get BB(y) suchthat x =y In

I insert BB(x);
out(cell, x,,,,) (*ballot already accepted *) )

else _|_

insert BB(x); Restriction:
out(cell, X, 10, event(Inserted(st,, x))
&& event(Inserted(st,, x)) = st; = st, .

You may have troubles with
>
else branches and cells ... @ No cell, no else branch




Other examples

> Ballot weeding in evoting protocols event(Inserted(st;, x)) && event(Inserted(st,, x)) = st; = st,

» Key updates / key revocations event(Use(k,)) && event(Inserted(k,)) && subterm(k,, k,) = false
> Model protocol assumptions (e.g., audits) event(PublishedOnBB(b)) = ¢(b)

» Easily bound the number of executions event(lteration(n)) > n < 2

» Abstract e.g. arithmetic properties See [Cortier et. al. - CCS’21]



How does it work?
(simplified)

CU{R=H- C} AN_F,>yp) €R Foralli, Fo € H

CU{R=HAwo — C}



How does it work?
(simplified)

CU{R=H- C} AN_F,>yp) €R Foralli, Fo € H

CU{R=HAwyo — C}

It is just a
matching!

If the clause is not instantiated enough (e.g. noselect)
the restriction will not be applied!
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and the restriction p := event(E1l) = event(£2), isevent(£3) reachable?
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Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1l) = event(£2), isevent(£3) reachable?

No!
A Restrictions have the same semantics as queries

Given the process P := (event(E1);event(£2)) | event(£3)
and the restriction p := event(E3) = event(E?2),
is ProVerif able to prove p’ := event(E3) = event(E1)?



adebant®macbook-pro-de—alexandre-2 proverif—-examples % proverif exampleé4.pv
Process O (that is, the initial process):
(
{1}event E1;
{2}event E2
y 1
{3}event E3
)

—— Restriction event(E3) ==> event(E2) in process 0.
—— Query event(E3) ==> event(E1l) in process 0.
Translating the process into Horn clauses...
Completing...

Starting query event(E3) ==> event(E1l)

goal reachable: b-event(E2) -=> event(E3)

Derivation:

1. Event E3 may be executed at {3}.
event(E3).

2. By 1, event(E3).
The goal is reached, represented in the following fact:
event (E3).

A more detailed output of the traces is available with
set traceDisplay = long.

event E3 at {3} (goal)

The event E3 1is executed at {3}.
A trace has been found.

The attack trace does not satisfy the following restriction, declared at File "example4.pv", line 16, characters 13-35:
event(E3) ==> event(E2)
RESULT event(E3) ==> event(E1l)
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Usual issues

Given the process P := event(£1); event(£2); event(£3)
and the restriction p := event(E1) = event(E£2), isevent(£3) reachable?

No!
A Restrictions have the same semantics as queries

Given the process P := (event(E1);event(£2)) | event(£3)
and the restriction p := event(E3) = event(E?2),
is ProVerif able to prove p’ := event(E3) = event(E1)?

No... apply p Not enough to
= event(£3) >  event(£2) = event(E3) conclude... &

 You can use the development branch improve —scope —1lemma to make it prove



What about
equivalence properties?




Reminder

Pla,,...,a, = Plby,...,b,]
> ProVerif proves equivalence of processes that differ only by terms

> ProVerif internally proves diff-equivalence l
Pldiffla,, by], ..., diffla,, b,]1 N
Definition - “A biprocess P is in diff-equivalence if traces(P) |l i.e., for all
traces of P, the first and the second projections progress in the same way.”
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Reminder

Pla,,...,a, = Plby,...,b,]
> ProVerif proves equivalence of processes that differ only by terms

> ProVerif internally proves diff-equivalence l
Pldiffla,, by], ..., diffla,, b,]1 N
Definition - “A biprocess P is in diff-equivalence if traces(P) |l i.e., for all
traces of P, the first and the second projections progress in the same way.”

(let x=vin Pelse Q) | # — P{x v diff (M- MR} | & iffst(v){ = M"and snd(v) |} = MR
(let x=vinPelse Q)| X— Q| &P iffst(v)| = fail and snd(v){ = fail

(in(c,x); P) | (out(c’,u); Q)| P — Plx—u} | Q| &L iffst(c) = fst(c’) and snd(c) = snd(c’)



Reminder

Theorem [Blanchet et. al. 2006]

Given a biprocess P, traces(P) |l = fst(P) ~ snd(P)

where &~ denotes the observational equivalence relation.

10



Reminder

Theorem [Blanchet et. al. 2006]

Given a biprocess P, traces(P) |l = fst(P) ~ snd(P)

where &~ denotes the observational equivalence relation.

adebant@macbook-pro-de—-alexandre-2 proverif-examples % proverif examplel.pv
Biprocess @ (that is, the initial process):
(
{1}new n: bitstring;
{2}new m: bitstring;
{3}out(cpriv, choiceln,m])
) |
{4}in(cpriv, x: bitstring);
{5}out(cpub, x)
)

—— Observational equivalence in biprocess 9.

Translating the process into Horn clauses...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -=> bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) => bad
Selecting ©

Completing...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) => bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) => bad
Selecting ©

RESULT Observational equivalence is true.

Verification summary:

Observational equivalence is true.




Equivalence with restrictions

> We can write restrictions, e.qg.

p = event(E(diff[x", xR], diff[y5, yR])) = x- = y- && xR = yR

171



Equivalence with restrictions

» We can write restrictions, e.g. p = event(E(diff[xL,xR], diff[y",yR])) = xt = y" && xR = yR

p' = event(E(x,y) > x=y#p *

N\

p':=event(E(x,y)) > x =y = event(E(diff[x, x],diff[y,y])) = x =y

171



Equivalence with restrictions

> We can write restrictions, e.qg.

p' = event(E(x,)_

N\

p = event(E(diff[x", xR], diff[y5, yR])) = x- = y- && xR = yR

{4y Mada

Always define restrictions with explicit
diff| - , - | operators!

A ‘ —
p = event(E(x,y}}—/./L—_y = SVGHIWLAULJ [As AUy ) LYs Y])) = X =V

171



Equivalence with restrictions

» We can write restrictions, e.g. p = event(E(diff[xL,xR], diff[y",yR])) = xt = y" && xR = yR

i el
p' = event(E(x,)_ L
- Always define restrictions with explicit
A diff| - , - | operators!
IO/ .= event(E(x,y]} — A — y = SVGHWLAUL [ [As AUl ) LYs Y])) = X =V

Definition - A biprocess P is in diff-equivalence for the restrictions A, if traces, 2(P)1T e,

for all traces fr of P that satisfy X, Vp € X, tr = p the first and the second projections
progress in the same way.

171



Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces

that satisfy restrictions @ ) and denoted (P-, #%) ~ (PR, %%

12



Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces

that satisfy restrictions @ ) and denoted (P-, #%) ~ (PR, %%

New-theorem?

Given a biprocess P, and a set of restrictions &%,

traces; 5(P) It = (fst(P), fst(R#)) ~ (snd(P), snd(X)).

12



Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces

that satisfy restrictions @ ) and denoted (P-, #%) ~ (PR, %%

New-theorem?

Given a biprocess P, and a set of restrictions &%,

traces; 5(P) It = (fst(P), fst(R#)) ~ (snd(P), snd(X)).

12



Relation with observational equivalence

Definition - Let P-, PR be two processes and &#-, %R be two sets of restrictions.
Observational equivalence is extended with restrictions as expected (i.e. considering only traces
that satisfy restrictions @ ) and denoted (P-, #%) ~ (PR, %%)

—

|

adebant@Pmacbook-pro-de-alexandre-2 proverif-examples % proverif examplel.pv
Biprocess @ (that is, the initial process):
(
{1}new n: bitstring;
{2}new m: bitstring;
{3}out(cpriv, choiceln,m])
B
{4}in(cpriv, x: bitstring);
{5}out(cpub, x)
)

—— Restriction not event(E(x_1)) encoded as not event2(E(x_1),E(x_1)) in biprocess 0.

—— Diff-equivalence in biprocess 0.

Translating the process into Horn clauses...

New_theorem’? Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) => bad
r Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) =-> bad

Selecting ©

. s Completing...

leen a b|proceSE Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) =-> bad

Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) =-> bad

l'rc Selecting @

RESULT Diff-equivalence is true.

Verification summary:

m Query(ies):
—

- Diff-equivalence is true.
Associated restriction(s):
— Restriction not event(E(x_1)) encoded as not event2(E(x_1),E(x_1)) in biprocess 0.




Why is it false?
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Why is it false?

Strange restrictions p = event(E(diff[x", xR]) = x- = xR

A bi-restriction impact both sides of the equivalence

P =
new n, new m;
out(cprivl,diff[n, n]);
out(cpriv,diff|n, m));
) | (
In(cprivl ,x);
In(cpriv, y);
event E(x,V);
out(cpub, ok)
)

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

X fst(p) is not properly defined!

13



Why is it false?

Strange restrictions p = event(E(diff[x", xX])) = xt = xR X fst(p) is not properly defined!

A bi-restriction impact both sides of the equivalence

P =
new n, new m, T =
out(cprivl,diff[n, n]);
out(cpriv2,diff[n, m]); out(cpub, ok)
) ( B
n(cprivl x): T € traces(fst(P)) and T - true = fst(p)
In(cpriv, y);
event E(x,y); But event(E(n, m)) cannot be executed in
out(cpub, ok) snd(P) while satisfying snd(p)
)

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

13



Why is it false?

Strange restrictions p = event(E(diff[x", xX])) = xt = xR X fst(p) is not properly defined!

A bi-restriction impact both sides of the equivalence

P =
new n, new m;
out(cprivl,diff[n, n]);
out(cpriv,diff|n, m));
) | (
In(cprivl ,x);
In(cpriv, y);
event E(x,V);
out(cpub, ok)
)

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

T .= out(cprivl,n) . in(cprivl,n).
out(cpriv2,n) . in(cprivi,n).

F\ ’A“+/ D/1A 1/‘\\ ~ 1 l"'/n1/\1"/\ /\]T\

7 (fst(P), D) % (snd(P),snd(p))

But event(E(n, m)) cannot be executed in
snd(P) while satisfying snd(p)

13



Strang

A bi-r¢

P =
new
out(¢
out(¢

) | (
In(cp
In(cp
even
out(¢

)

A ie it falea?

adebant®macbook-pro-de—alexandre-2 proverif-examples % proverif example3.pv
Biprocess @ (that is, the initial process):
(

{1}new n: bitstring;

{2new m: bitstring;

{3toutlcprivi,; n): ]
{4Yout(cpriv2, choiceln,ml) rly defined!
) 1«

{5rin(cprivl, x: bitstring);

t6rinlepriv2, v: bitstring):

{7}event E(x,y);

{8}out(cpub, choicelok, kol)
)

—— Restriction event(E(choicelxL,xR]1,choicel[yL,yR])) ==> xR = yR encoded as event2(E(xL,yL),E(xR,yR)) ==> xR = yR in biprocess 0.
—— Diff-equivalence in biprocess 0.

Translating the process into Horn clauses...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -> bad
Selecting ©

Completing...

Termination warning: v # v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting ©

Termination warning: v # v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -=> bad

Selecting © k
RESULT Diff-equivalence is true.
----------------------------------------------------- d(p))
Verification summary:
. P
Query(ies):
— Diff-equivalence is true.
Associated restriction(s): | .
suted In

— Restriction event(E(choicelxL,xR],choicel[yL,yR])) ==> xR = yR encoded as event2(E(xL,yL),E(xR,yR)) ==> xR = yR in biprocess 0.

Restriction: p := event(E(diff [xh, xR, diff [yL,yR])) = xR = yR

13



What can | do now...?

| don’t know what I’m proving...

14



Solution 1

Trust yourself &

It’'s the most often used technique...

19



Solution 2

Do a paper proof to
justify each restriction...

©

1&

16



Solution 3

Let ProVerif do the proof for you

&

W\

l

&
NN
%‘

&

17



Solution 3

O O

Let ProVerif do the proof for you I ®

-

Methodology - Given a biprocess P, and a restriction p := F;, && ... && F, = H"“ && H® such that;

- vars(HY) C vars(fst(p)) and vars(H®) C vars(snd(p))
- vars(fst(p)) Nvars(snd(p)) = B

Let ProVerif prove that: for all tr € traces(P), tr = fst(p) implies tr = snd(p) and conversely.

17



Solution 3

Let ProVerif do the proof for you

Methodology - Given a biprocess P, and a restriction p := F;, && ... && F, = H"“ && H® such that;

- vars(HY) C vars(fst(p)) and vars(H®) C vars(snd(p))
- vars(fst(p)) Nvars(snd(p)) = B

Let ProVerif prove that: for all tr € traces(P), tr = fst(p) implies tr = snd(p) and conversely.

Add diff] - , - ] each time it is necessary

with fresh variables on the right side
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Solution 3

(>,.X>

W

Let ProVerif do the proof for you I

g

Methodology - Given a biprocess P, and a restriction p := F;, && ... && F, = H"“ && H® such that;

- vars(HY) C vars(fst(p)) and vars(H®) C vars(snd(p))
- vars(fst(p)) Nvars(snd(p)) = B

Let ProVerif prove that: for all tr € traces(P), tr = fst(p) implies tr = snd(p) and conversely.

Add diff][ - , - ] each time it is necessary

with fresh variables on the right side

Example: p := event(E(diff[x", xX], diff[y", yR]) = xb =y && xR =R

fst(p) := event(E(diff [xh, x,1, diff [y", X)) = xt = y -
snd(p) := event(E(diff[x;, x\], diff[x,, yX])) = xR = yR

17



Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the
first side of a trace with the second side of another trace

18



Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[ N~
o O
bd first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Tag

r<k

new nr
get r as kr

{(nT,h(kr,nr))

Reader
k e DB

input (1, z2)

if 3kp 4 DB, 75 = h(kg, 1)

<€

ok

<€

error

Basic Hash protocol

18



Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[ N~
o 0
bd first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Problem: the key k appears in many entries in DB( - ),
= diff-equivalence does not hold...

Tag

Reader

r—k ke DB
new nr
get r as kr
(nr,h(kr,nr))
input (z1,22)
if 3kr ¢ DB, x4 = h(kRaxl)J
ok
<€
elseJ
error
<
I I

Basic Hash protocol

18



Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[ N~
o 0
b\?j first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Problem: the key k appears in many entries in DB( - ),
= diff-equivalence does not hold...

Solution: add a restriction to read the “good” entry when it exists

Tag

r<k

new nr
get r as kr

{(nT,h(kr,nr))

Reader
k e DB

inPUt <$1, $2>

if 3kp 4 DB, 75 = h(kg, 1)

<€

ok

<€

error

Basic Hash protocol
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Solution 3...
IS not always possible...

The lemma talks about a unique trace.... iIn many cases you want to match the

[ N~
o 0
b\?j first side of a trace with the second side of another trace

P := !Reader | 'new k; !'new kk; insert DB(diff|k, kk]); Tag(diff|k, kk])

Problem: the key k appears in many entries in DB( - ),
= diff-equivalence does not hold...

Solution: add a restriction to read the “good” entry when it exists

The previous lemma does not hold for traces
using the “bad” entries

Tag

r<k

new nr
get r as kr

{(nT,h(kr,nr))

Reader
k e DB

inPUt <$1, $2>

if 3kp 4 DB, 75 = h(kg, 1)

<€

ok

<€

error

Basic Hash protocol
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Solution 4
(ongoing work with Vincent and ltsaka)

Methodology
1. reinforce diff-equivalence to make it even stronger

2. adapt ProVerif procedure to make it sound w.r.t. this new definition
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

19



Solution 4
(ongoing work with Vincent and ltsaka)

(> Q Methodology
| ’.\ & 1. reinforce diff-equivalence to make it even stronger

2. adapt ProVerif procedure to make it sound w.r.t. this new definition

.L 3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

1. Reinforce diff-equivalence

Given a trace 1 and a well-formed restriction p, 1| ) if T [T and for all T — P we have:

(T'—= P) I fst(p) if and only if (T'— P) F snd(p)

19



Solution 4
(ongoing work with Vincent and ltsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note €' (P) the initial set of clauses generated by ProVerif.

Given a well-formed restriction p := F; && ... && F, = H" && HR, we define:
- C;=F && ... & F, && H" &% —H" = bad

- CY=F && ... & F, && H" && —~H" = bad

We define €4 = {C) | p € #,X € {L,R}}

20



Solution 4
(ongoing work with Vincent and ltsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note €' (P) the initial set of clauses generated by ProVerif.

Given a well-formed restriction p := F; && ... && F, = H" && HR, we define:
- C;=F && ... & F, && H" &% —H" = bad

- CY=F && ... & F, && H" && —~H" = bad

We define €4 = {C) | p € #,X € {L,R}}

Lemma [soundness of the set of initial clauses]

Given a process P and a set of well-formed restrictions &£ , if =P |1 4 then bad is derivable

from G (P) U € 4.
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2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note €' (P) the initial set of clauses generated by ProVerif.

Given a well-formed restriction p := F; && ... && F, = H" && HR, we define:
- C;=F && ... & F, && H" &% —H" = bad

- CY=F && ... & F, && H" && —~H" = bad

We define €4 = {C) | p € #,X € {L,R}}

Lemma [soundness of the set of initial clauses]

Given a process P and a set of well-formed restrictions &£ , if =P |1 4 then bad is derivable

from G (P) U € 4.

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too @
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Solution 4
(ongoing work with Vincent and ltsaka)

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:

- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are
unnecessary to prove session equivalence

= \/incent&ltsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable
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Solution 4
(ongoing work with Vincent and ltsaka)

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:

- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are
unnecessary to prove session equivalence

= \/incent&ltsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

TODO

- adapt Vincent&ltsaka extension (i.e. adapt all the proofs...)

- extend ProVerif (or find tricks) to support = H X in premise of a clause for any fact H A
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Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a
restriction on the right side
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Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a
restriction on the right side

The manual of ProVerif and the long version of S&P’21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you’re not sure
about what you’re proving.
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Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a
restriction on the right side

The manual of ProVerif and the long version of S&P’21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you’re not sure
about what you’re proving.

The improve—scope—lemma branch brings many new features

But part of them are under-documented...
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