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Opening remarks
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‣ this talk does not necessarily follow ProVerif notations


‣ what is written is not necessarily formally correct


‣ this talk is about ProVerif v2.05 (unless specific comment)
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P, Q := 0
| 𝗇𝖾𝗐 n; P
| 𝗂𝗇(c, x); P
| 𝗈𝗎𝗍(c, u); P
| 𝗅𝖾𝗍 u = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q
| 𝗂𝗇𝗌𝖾𝗋𝗍 tbl(u); P
| 𝗀𝖾𝗍 tbl(x) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 ϕ 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q
| (P | Q)
| !P
| 𝖾𝗏𝖾𝗇𝗍 e(u1, …, un); P

ProVerif before v2.02
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ProVerif before v2.02 ProVerif since v2.02

+
Restrictions:  

ρ := F1 && …Fn && ⇒ H

“Consider only traces that satisfy 
, i.e. ”ρ tr ⊢ ρ
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Evoting: ballot weeding 

 
 

 
 

 
 

 
 

 
 

Server =
! (

𝗂𝗇(c, x);
𝗂𝗇(cell, xtoken);
𝗀𝖾𝗍 BB(y) 𝗌𝗎𝖼𝗁𝗍𝗁𝖺𝗍 x = y 𝗂𝗇

𝗈𝗎𝗍(cell, xtoken) (* ballot already accepted *)
𝖾𝗅𝗌𝖾

𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
𝗈𝗎𝗍(cell, xtoken);
. . .

)
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You may have troubles with 
else branches and cells … 
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Server =
! (

𝗂𝗇(c, x);
𝗇𝖾𝗐 st; 𝖾𝗏𝖾𝗇𝗍 Inserted(st, x);
𝗂𝗇𝗌𝖾𝗋𝗍 BB(x);
. . .

)

Restriction:  
      
       

𝖾𝗏𝖾𝗇𝗍(Inserted(st1, x))
&& 𝖾𝗏𝖾𝗇𝗍(Inserted(st2, x)) ⇒ st1 = st2 .

+
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+

No cell, no else branch😇



Other examples

5

‣ Ballot weeding in evoting protocols


‣ Key updates / key revocations


‣ Model protocol assumptions (e.g., audits)


‣ Easily bound the number of executions 


‣ Abstract e.g. arithmetic properties


‣ …

𝖾𝗏𝖾𝗇𝗍(Inserted(st1, x)) && 𝖾𝗏𝖾𝗇𝗍(Inserted(st2, x)) ⇒ st1 = st2

𝖾𝗏𝖾𝗇𝗍(Use(k1)) && 𝖾𝗏𝖾𝗇𝗍(Inserted(k2)) && subterm(k1, k2) ⇒ false

𝖾𝗏𝖾𝗇𝗍(PublishedOnBB(b)) ⇒ ϕ(b)

𝖾𝗏𝖾𝗇𝗍(Iteration(n)) ⇒ n < 2

See [Cortier et. al. - CCS’21]



How does it work? 
(simplified)
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ℂ ∪ {R = H ∧ ψσ → C}

ℂ ∪ {R = H → C} (∧n
i=1Fi ⇒ ψ) ∈ ℛ For all i, Fiσ ∈ H



How does it work? 
(simplified)
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ℂ ∪ {R = H ∧ ψσ → C}

ℂ ∪ {R = H → C} (∧n
i=1Fi ⇒ ψ) ∈ ℛ For all i, Fiσ ∈ H

It is just a 
matching!

If the clause is not instantiated enough (e.g. noselect) 
the restriction will not be applied!



Usual issues
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Given the process  

and the restriction  ,   is  reachable?

P := 𝖾𝗏𝖾𝗇𝗍(E1); 𝖾𝗏𝖾𝗇𝗍(E2); 𝖾𝗏𝖾𝗇𝗍(E3)
ρ := 𝖾𝗏𝖾𝗇𝗍(E1) ⇒ 𝖾𝗏𝖾𝗇𝗍(E2) 𝖾𝗏𝖾𝗇𝗍(E3)
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What about  
equivalence properties?
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🤔



Reminder

9

‣ ProVerif proves equivalence of processes that differ only by terms


‣ ProVerif internally proves diff-equivalence

P[a1, …, an] ≈ P[b1, …, bn]

P[diff [a1, b1], …, diff [an, bn]] ↑↓
Definition - “A biprocess  is in diff-equivalence if  i.e., for all 
traces of , the first and the second projections progress in the same way.”

P traces(P)↓↑
P
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      if  and  (𝗅𝖾𝗍 x = v 𝗂𝗇 P 𝖾𝗅𝗌𝖾 Q) | 𝒫 ⟶ P{x ↦ diff [M𝖫, M𝖱] } | 𝒫 𝖿𝗌𝗍(v)⇓ = M𝖫 𝗌𝗇𝖽(v)⇓ = M𝖱
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    . . .
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Theorem [Blanchet et. al. 2006]  

Given a biprocess ,     


where  denotes the observational equivalence relation.

P traces(P)↓↑ ⇒ 𝖿𝗌𝗍(P) ≈ 𝗌𝗇𝖽(P)
≈
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‣ We can write restrictions, e.g. ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱
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Definition - A biprocess  is in diff-equivalence for the restrictions , if  i.e., 
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progress in the same way.
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Definition - Let ,  be two processes and ,  be two sets of restrictions. 

Observational equivalence is extended with restrictions as expected (i.e. considering only traces 
that satisfy restrictions 😇 ) and denoted 

P𝖫 P𝖱 ℛ𝖫 ℛ𝖱

(P𝖫, ℛ𝖫) ≈ (P𝖱, ℛ𝖱)
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Definition - Let ,  be two processes and ,  be two sets of restrictions. 

Observational equivalence is extended with restrictions as expected (i.e. considering only traces 
that satisfy restrictions 😇 ) and denoted 

P𝖫 P𝖱 ℛ𝖫 ℛ𝖱

(P𝖫, ℛ𝖫) ≈ (P𝖱, ℛ𝖱)
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😕
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Trust yourself 🤞
It’s the most often used technique… 🙈
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Do a paper proof to  
justify each restriction… 
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Let ProVerif do the proof for you 

Methodology - Given a biprocess , and a restriction  such that: 


-  and 


- 


Let ProVerif prove that: for all ,  implies  and conversely.

P ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱
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vars(𝖿𝗌𝗍(ρ)) ∩ vars(𝗌𝗇𝖽(ρ)) = ∅

tr ∈ traces(P) tr ⊢ 𝖿𝗌𝗍(ρ) tr ⊢ 𝗌𝗇𝖽(ρ)

Add  each time it is necessary 
with fresh variables on the right side

diff [ ⋅ , ⋅ ]

Example:   

 

ρ := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x𝖱], diff [y𝖫, y𝖱])) ⇒ x𝖫 = y𝖫 && x𝖱 = y𝖱

𝖿𝗌𝗍(ρ) := 𝖾𝗏𝖾𝗇𝗍(E(diff [x𝖫, x1], diff [y𝖫, x2])) ⇒ x𝖫 = y𝖫

𝗌𝗇𝖽(ρ) := 𝖾𝗏𝖾𝗇𝗍(E(diff [x1, x𝖱], diff [x2, y𝖱])) ⇒ x𝖱 = y𝖱
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Problem: the key  appears in many entries in , 

 diff-equivalence does not hold…  

k DB( ⋅ )
⇒

Solution: add a restriction to read the “good” entry when it exists

       The previous lemma does not hold for traces 

            using the “bad” entries
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2. adapt ProVerif procedure to make it sound w.r.t. this new definition  
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

1. Reinforce diff-equivalence 

Given a trace  and a well-formed restriction ,  if  and for all  we have:  

 if and only if 

T ρ T↓↑ρ T↓↑ T P

(T P) ⊢ 𝖿𝗌𝗍(ρ) (T P) ⊢ 𝗌𝗇𝖽(ρ)
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2. Adapt ProVerif procedure - translation in “Horn” clauses 

Given a process , we note  the initial set of clauses generated by ProVerif. 


Given a well-formed restriction , we define: 


-  


-  


We define  

P 𝒞(P)
ρ := F1 && … && Fn ⇒ H𝖫 && H𝖱

C𝖫
ρ = F1 && … && Fn && H𝖫 && ¬H𝖱 ⇒ 𝖻𝖺𝖽

C𝖱
ρ = F1 && … && Fn && H𝖱 && ¬H𝖫 ⇒ 𝖻𝖺𝖽

𝒞ℛ = {C𝖷
ρ | ρ ∈ ℛ, 𝖷 ∈ {𝖫, 𝖱}}
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Lemma [soundness of the set of initial clauses] 

Given a process  and a set of well-formed restrictions  , if then  is derivable 

from .

P ℛ ¬P↓↑ℛ 𝖻𝖺𝖽
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ρ | ρ ∈ ℛ, 𝖷 ∈ {𝖫, 𝖱}}

Lemma [soundness of the set of initial clauses] 

Given a process  and a set of well-formed restrictions  , if then  is derivable 

from .

P ℛ ¬P↓↑ℛ 𝖻𝖺𝖽

𝒞(P) ∪ 𝒞ℛ

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too 😉
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3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks 

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition: 
- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are 

unnecessary to prove session equivalence 

➡ Vincent&Itsaka extension will remove the newly reachable 


- they are safe and  should not be reachable
𝖻𝖺𝖽
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3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks 

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

TODO 

- adapt Vincent&Itsaka extension (i.e. adapt all the proofs…)


- extend ProVerif (or find tricks) to support  in premise of a clause for any fact ¬H𝖷 H𝖷

Intuition: 
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😈 It is not possible to think a bi-restriction as a restriction on the left side and a 

restriction on the right side

😇
The manual of ProVerif and the long version of S&P’21 paper describe all the theory
Everything is well-documented. Do not hesitate to open them when you’re not sure 
about what you’re proving. 

The  branch brings many new features𝚒𝚖𝚙𝚛𝚘𝚟𝚎−𝚜𝚌𝚘𝚙𝚎−𝚕𝚎𝚖𝚖𝚊
But part of them are under-documented…


