

ProVerif, restrictions, equivalence... what could go wrong?

Université de Lorraine, Inria, CNRS, Nancy, France

Pesto seminar April 12th, 2024 - Nancy, France

0110111 01110010 01101001 0110000 01101100 01110010 Laboratoire lorrain de recherche en informatique et ses applications

01101100

Alexandre Debant

Opening remarks

- this talk does not necessarily follow ProVerif notations
- what is written is not necessarily formally correct
- this talk is about ProVerif v2.05 (unless specific comment)

Modelling protocols

P, Q := 0 | new n; P | in(c, x); P | out(c, u); P | let u = v in P else Q | insert tbl(u); P $| get tbl(x) such that \phi in P else Q$ | (P | Q) | !P $| event e(u_1, ..., u_n); P$

ProVerif before v2.02

Modelling protocols

P, Q := 0 | new n; P | in(c, x); P | out(c, u); P | let u = v in P else Q | insert tbl(u); P $| get tbl(x) such that \phi in P else Q$ | (P | Q) | !P $| event e(u_1, ..., u_n); P$

ProVerif before v2.02

ProVerif since v2.02


```
Server =
   ! (
      in(c, x);
      in(cell, x<sub>token</sub>);
      get BB(y) such that x = y in
         out(cell, x<sub>token</sub>) (* ballot already accepted *)
      else
         insert BB(x);
         out(cell, x<sub>token</sub>);
          • • •
```

Example

$$Server = \\ ! (in(c, x);in(cell, xtoken);get BB(y) such that $x = y$ in
out(cell, x_{token}) (* ballot already accepted *)
else
insert BB(x);
out(cell, x_{token});$$

• • •

You may have troubles with else branches and cells ...

Example

$$Server = \\ ! (in(c, x);in(cell, xtoken);get BB(y) such that $x = y$ in
out(cell, x_{token}) (* ballot already accepted *)
else
insert BB(x);
out(cell, x_{token});$$

• • •

You may have troubles with else branches and cells ...

Example

$$Server = \\ ! (in(c, x);in(cell, xtoken);get BB(y) such that $x = y$ in
out(cell, x_{token}) (* ballot already accepted *)
else
insert BB(x);
out(cell, x_{token});$$

• • •

You may have troubles with else branches and cells ...

Example

No cell, no else branch

- Ballot weeding in evoting protocols
- Key updates / key revocations
- Model protocol assumptions (e.g., audits)
- Easily bound the number of executions
- Abstract e.g. arithmetic properties
- ▶ ...

Other examples

 $event(Inserted(st_1, x))$ && $event(Inserted(st_2, x)) \Rightarrow st_1 = st_2$ $event(Use(k_1))$ && $event(Inserted(k_2))$ && $subterm(k_1, k_2) \Rightarrow false$ $event(PublishedOnBB(b)) \Rightarrow \phi(b)$

 $event(Iteration(n)) \Rightarrow n < 2$

See [Cortier et. al. - CCS'21]

How does it work? (simplified)

$\mathbb{C} \cup \{R = H \to C\} \qquad (\wedge_{i=1}^{n} F_{i} \Rightarrow \psi) \in \mathscr{R}$

For all $i, F_i \sigma \in H$

 $\mathbb{C} \cup \{R = H \land \psi \sigma \to C\}$

How does it work? (simplified)

If the clause is not instantiated enough (e.g. noselect) the restriction will not be applied!

Given the process P := event(E1); event(E2); event(E3)and the restriction $\rho := event(E1) \Rightarrow event(E2)$, is event(E3) reachable?

Given the process P := event(E1); event(E2); event(E3)

and the restriction $\rho := event(E1) \Rightarrow event(E2)$, is event(E3) reachable?

Given the process P := event(E1); event(E2); event(E3)and the restriction $\rho := event(E1) \Rightarrow event(E2)$, is event(E3) reachable?

Given the process P := (event(E1); event(E2)) | event(E3)and the restriction $\rho := event(E3) \Rightarrow event(E2)$, is ProVerif able to prove $\rho' := event(E3) \Rightarrow event(E1)$?


```
adebant@macbook-pro-de-alexandre-2 proverif-examples % proverif example4.pv
Process 0 (that is, the initial process):
   {1}event E1;
   {2}event E2
) | (
   {3}event E3
-- Restriction event(E3) ==> event(E2) in process 0.
-- Query event(E3) ==> event(E1) in process 0.
Translating the process into Horn clauses...
Completing...
Starting query event(E3) ==> event(E1)
goal reachable: b-event(E2) -> event(E3)
Derivation:
1. Event E3 may be executed at {3}.
event(E3).
2. By 1, event(E3).
The goal is reached, represented in the following fact:
event(E3).
A more detailed output of the traces is available with
 set traceDisplay = long.
event E3 at {3} (goal)
The event E3 is executed at {3}.
A trace has been found.
The attack trace does not satisfy the following restriction, declared at File "example4.pv", line 16, characters 13-35:
event(E3) ==> event(E2)
RESULT event(E3) ==> event(E1) cannot be proved.
        _______
.......
```


Given the process P := event(E1); event(E2); event(E3)and the restriction $\rho := event(E1) \Rightarrow event(E2)$, is event(E3) reachable?

Given the process P := (event(E1); event(E2)) | event(E3)and the restriction $\rho := event(E3) \Rightarrow event(E2)$, is ProVerif able to prove $\rho' := event(E3) \Rightarrow event(E1)$?

No...
$$\Rightarrow event(E3)$$

Given the process P := event(E1); event(E2); event(E3)and the restriction $\rho := event(E1) \Rightarrow event(E2)$, is event(E3) reachable?

Given the process P := (event(E1); event(E2)) | event(E3)and the restriction $\rho := event(E3) \Rightarrow event(E2)$, is ProVerif able to prove $\rho' := event(E3) \Rightarrow event(E1)$?

No...
$$\Rightarrow event(E3)$$

You can use the development branch improve-scope-lemma to make it prove

What about equivalence properties?

- ProVerif proves equivalence of processes that differ only by terms
- ProVerif internally proves diff-equivalence

Definition - "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P, the first and the second projections progress in the same way."

Reminder

 $P[a_1, \dots, a_n] \approx P[b_1, \dots, b_n]$ $P[diff[a_1, b_1], \dots, diff[a_n, b_n]] \uparrow \downarrow$

 $P[a_1, \dots, a_n] \approx P[b_1, \dots, b_n]$ ProVerif proves equivalence of processes that differ only by terms ProVerif internally proves diff-equivalence $P[diff[a_1, b_1], \dots, diff[a_n, b_n]] \uparrow \downarrow$ **Definition -** "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P, the first and the second projections progress in the same way."

(let x = v in P else Q) $| \mathscr{P} \longrightarrow P\{x \mapsto diff[M^{L}, M^{R}]\} | \mathscr{P} = iff(v) \Downarrow = M^{L} and snd(v) \Downarrow = M^{R}$

Reminder

- ProVerif proves equivalence of processes that differ only by terms
- ProVerif internally proves diff-equivalence

Definition - "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P, the first and the second projections progress in the same way."

(let
$$x = v$$
 in P else Q) | $\mathscr{P} \longrightarrow P\{x \mapsto diff[M^{\mathsf{L}},$

Reminder

 $[M^{\mathsf{R}}] \} [\mathscr{P} \quad \text{if } \mathsf{fst}(v) \Downarrow = M^{\mathsf{L}} \text{ and } \mathsf{snd}(v) \Downarrow = M^{\mathsf{R}}$

(let x = v in P else Q) $| \mathscr{P} \longrightarrow Q | \mathscr{P}$ if $fst(v) \Downarrow = fail$ and $snd(v) \Downarrow = fail$

- ProVerif proves equivalence of processes that differ only by terms
- ProVerif internally proves diff-equivalence

Definition - "A biprocess P is in diff-equivalence if $traces(P) \downarrow \uparrow$ i.e., for all traces of P, the first and the second projections progress in the same way."

$$(\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathscr{P} \longrightarrow P\{x \mapsto diff[M^{\mathsf{L}}, \\ (\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathscr{P} \rightarrow \\ (\text{in}(c, x); P) \mid (\text{out}(c', u); Q) \mid \mathscr{P} \longrightarrow P\{x \mapsto u\}$$

Reminder

• • •

Theorem [Blanchet et. al. 2006]

Reminder

- Given a biprocess P, $traces(P) \downarrow \uparrow \Rightarrow fst(P) \approx snd(P)$
- where \approx denotes the observational equivalence relation.

Theorem [Blanchet et. al. 2006]

where \approx denotes the observational equivalence relation.

```
adebant@macbook-pro-de-alexandre-2 proverif-examples % proverif example1.pv
Biprocess 0 (that is, the initial process):
    {1}new n: bitstring;
    {2}new m: bitstring;
    {3}out(cpriv, choice[n,m])
) | (
    {4}in(cpriv, x: bitstring);
    {5}out(cpub, x)
)
-- Observational equivalence in biprocess 0.
Translating the process into Horn clauses...
Termination warning: v \neq v_1 && attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
Selecting 0
Termination warning: v \neq v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -> bad
Selecting 0
Completing...
Termination warning: v \neq v_1 && attacker2(v_2, v) && attacker2(v_2, v_1) -> bad
Selecting 0
Termination warning: v \neq v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -> bad
Selecting 0
RESULT Observational equivalence is true.
Verification summary:
Observational equivalence is true.
```

Reminder

Given a biprocess *P*, $traces(P) \downarrow \uparrow \Rightarrow fst(P) \approx snd(P)$

• We can write restrictions, e.g. ρ

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}], \operatorname{diff}[y^{\mathsf{L}}, y^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = y^{\mathsf{L}} \&\& x^{\mathsf{R}} = y^{\mathsf{R}}$

• We can write restrictions, e.g. $\rho := e$

$$\rho' := \operatorname{event}(E(x, y)) \Rightarrow x = y \not\equiv \rho$$
$$\rho' := \operatorname{event}(E(x, y)) \Rightarrow x = y \equiv e$$

$\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}], \operatorname{diff}[y^{\mathsf{L}}, y^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = y^{\mathsf{L}} \&\& x^{\mathsf{R}} = y^{\mathsf{R}}$

 $event(E(diff[x, x], diff[y, y])) \Rightarrow x = y$

• We can write restrictions, e.g. $\rho := e^{i\theta}$

$$\rho' := \operatorname{event}(E(x, y))$$
Always define
$$diff[$$

$$\rho' := \operatorname{event}(E(x, y)) \rightarrow x - y = 0$$

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}], \operatorname{diff}[y^{\mathsf{L}}, y^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = y^{\mathsf{L}} \&\& x^{\mathsf{R}} = y^{\mathsf{R}}$

► We can write restrictions, e.g. $\rho := \text{event}(E(diff[x^{L}, x^{R}], diff[y^{L}, y^{R}])) \Rightarrow x^{L} = y^{L} \&\& x^{R} = y^{R}$

$$\rho' := \operatorname{event}(E(x, y))$$
Always define
$$diff[$$

$$\rho' := \operatorname{event}(E(x, y)) \to x - y = x$$

Definition - A biprocess *P* is in diff-equivalence for the restrictions \mathscr{R} , if $traces_{|\mathscr{R}}(P)\downarrow\uparrow$ i.e., for all traces *tr* of *P* that satisfy \mathscr{R} , $\forall \rho \in \mathscr{R}$, $tr \vdash \rho$ the first and the second projections progress in the same way.

Definition - Let P^{L} , P^{R} be two processes and \mathscr{R}^{L} , \mathscr{R}^{R} be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions $\overline{\bigcirc}$) and denoted (P^{L} , \mathscr{R}^{L}) \approx (P^{R} , \mathscr{R}^{R})

Definition - Let P^{L} , P^{R} be two processes and \mathscr{R}^{L} , \mathscr{R}^{R} be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions $\overline{\bigcirc}$) and denoted (P^{L} , \mathscr{R}^{L}) \approx (P^{R} , \mathscr{R}^{R})

New-theorem?

Given a biprocess P, and a set of restrictions \mathscr{R} ,

 $traces_{|\mathscr{R}}(P)\downarrow\uparrow \Rightarrow (fst(P), fst(\mathscr{R})) \approx (snd(P), snd(\mathscr{R})).$

Definition - Let P^{L} , P^{R} be two processes and \mathscr{R}^{L} , \mathscr{R}^{R} be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions $\overline{\bigcirc}$) and denoted $(P^{L}, \mathscr{R}^{L}) \approx (P^{R}, \mathscr{R}^{R})$

New-theorem?

Given a biprocess P, and a set of restrictions \mathscr{R} ,

 $traces_{|\mathscr{R}}(P)\downarrow\uparrow \Rightarrow (\mathsf{fst}(P),\mathsf{fst}(\mathscr{R})) \approx (\mathsf{snd}(P),\mathsf{snd}(\mathscr{R})).$

Definition - Let P^{L} , P^{R} be two processes and \mathscr{R}^{L} , \mathscr{R}^{R} be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions $\overline{\bigcirc}$) and denoted $(P^{L}, \mathscr{R}^{L}) \approx (P^{R}, \mathscr{R}^{R})$

-- Restriction not event($E(x_1)$) encoded as not event2($E(x_1), E(x_1)$) in biprocess 0.

- Restriction not event($E(x_1)$) encoded as not event2($E(x_1), E(x_1)$) in biprocess 0.

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}$

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}$

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}$

A bi-restriction impact both sides of the equivalence

A bi-restriction impact both sides of the equivalence

P = (

new n; new m; out(*cpriv*1,*diff*[*n*,*n*]); out(*cpriv2*,*diff*[*n*,*m*]);) | (in(*cpriv*1,*x*); in(*cpriv*, y); event E(x, y); out(*cpub*, *ok*)

Restriction: $\rho := \text{event}(E(diff[x^{L}, x^{R}], diff[y^{L}, y^{R}])) =$

Why is it false?

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}$

$$\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}$$

 $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}])) \Rightarrow x^{\mathsf{L}} = x^{\mathsf{R}}$

A bi-restriction impact both sides of the equivalence

P = (

new n; new m; out(cpriv1,diff[n,n]); out(*cpriv2*,*diff*[*n*,*m*]);) | (in(*cpriv*1,*x*); in(*cpriv*, y); event E(x, y); out(*cpub*, *ok*)

Restriction: $\rho := \text{event}(E(diff[x^{L}, x^{R}], diff[y^{L}, y^{R}]))$

Why is it false?

$$T := \operatorname{out}(cpriv1,n) . \operatorname{in}(cpriv1,n) .$$

$$\operatorname{out}(cpriv2,n) . \operatorname{in}(cpriv2,n) .$$

$$\operatorname{event}(E(n,n)) . \operatorname{out}(cpub,ok)$$

 $T \in traces(fst(P))$ and $T \vdash true = fst(\rho)$

But event(E(n, m)) cannot be executed in snd(P) while satisfying $snd(\rho)$

$$\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}$$

 $\rho := \operatorname{event}(E(\operatorname{diff}))$

A bi-restriction impact both sides of the equivalence

P = (

new n; new m; out(cpriv1,diff[n,n]); out(cpriv2,diff[n,m]);) | (in(*cpriv*1,*x*); in(*cpriv*, y); event E(x, y); out(*cpub*, *ok*)

Restriction: $\rho := \text{event}(E(diff[x^{L}, x^{R}], diff[y^{L}, y^{R}]))$

Why is it false?

$$f[x^{L}, x^{R}])) \Rightarrow x^{L} = x^{R}$$

$$T := \operatorname{out}(cpriv1,n) \cdot \operatorname{in}(cpriv1,n) \cdot \\ \operatorname{out}(cpriv2,n) \cdot \operatorname{in}(cpriv2,n) \cdot \\ \operatorname{out}(F(n,n)) \cdot \operatorname{out}(cpriv2,n) \cdot \\ (\operatorname{fst}(P), \emptyset) \not\approx (\operatorname{snd}(P), \operatorname{snd}(\rho))$$

But event(E(n, m)) cannot be executed in snd(P) while satisfying $snd(\rho)$

$$\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}$$


```
[adebant@macbook-pro-de-alexandre-2 proverif-examples % proverif example3.pv
               Biprocess 0 (that is, the initial process):
                   {1}new n: bitstring;
                   {2}new m: bitstring;
                   {3}out(cpriv1, n);
    Strang
                   {4}out(cpriv2, choice[n,m])
                ) | (
                   {5}in(cpriv1, x: bitstring);
                   {6}in(cpriv2, y: bitstring);
                   {7}event E(x,y);
                   {8}out(cpub, choice[ok,ko])
    A bi-r( -- Diff-equivalence in biprocess 0.
               Translating the process into Horn clauses...
               Termination warning: v \neq v_1 && attacker2(v_2, v) && attacker2(v_2, v_1) -> bad
               Selecting 0
P = 0
               Termination warning: v \neq v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -> bad
               Selecting 0
       new
               Completing...
               Termination warning: v \neq v_1 \&\& attacker2(v_2,v) && attacker2(v_2,v_1) -> bad
       OUt( | Selecting 0
               Termination warning: v \neq v_1 && attacker2(v,v_2) && attacker2(v_1,v_2) -> bad
       OUt(( Selecting 0
               RESULT Diff-equivalence is true.
       )
               Verification summary:
      in(cp
               Query(ies):
       in(cp
                - Diff-equivalence is true.
               Associated restriction(s):
       even
       out(
```

Restriction: $\rho := \text{event}(E(diff[x^{L}, x^{R}], diff[y^{L}, y^{R}]))$

$$\Rightarrow x^{\mathsf{R}} = y^{\mathsf{R}}$$

What can I do now...? I don't know what I'm proving...

Trust yourself

It's the most often used technique...

Solution 1

Do a paper proof to justify each restriction...

Solution 2

Solution 3

Methodology - Given a biprocess P, and a restriction $\rho := F_1 \&\& \dots \&\& F_n \Rightarrow H^{\mathsf{L}} \&\& H^{\mathsf{R}}$ such that: - $vars(H^{L}) \subseteq vars(fst(\rho))$ and $vars(H^{R}) \subseteq vars(snd(\rho))$

- $vars(fst(\rho)) \cap vars(snd(\rho)) = \emptyset$

Solution 3

Let ProVerif prove that: for all $tr \in traces(P)$, $tr \vdash \overline{fst(\rho)}$ implies $tr \vdash \overline{snd(\rho)}$ and conversely.

- $vars(H^{L}) \subseteq vars(fst(\rho))$ and $vars(H^{R}) \subseteq vars(snd(\rho))$
- $vars(fst(\rho)) \cap vars(snd(\rho)) = \emptyset$

Add $diff[\cdot, \cdot]$ each time it is necessary with fresh variables on the right side

Solution 3

Methodology - Given a biprocess P, and a restriction $\rho := F_1 \&\& \dots \&\& F_n \Rightarrow H^{\mathsf{L}} \&\& H^{\mathsf{R}}$ such that:

Let ProVerif prove that: for all $tr \in traces(P)$, $tr \vdash \overline{fst(\rho)}$ implies $tr \vdash \overline{snd(\rho)}$ and conversely.

- $vars(H^{\mathsf{L}}) \subseteq vars(\mathsf{fst}(\rho))$ and $vars(H^{\mathsf{R}}) \subseteq vars(\mathsf{snd}(\rho))$
- $vars(fst(\rho)) \cap vars(snd(\rho)) = \emptyset$

Let ProVerif prove that: for all $tr \in traces(P)$, $tr \vdash fst(\rho)$ implies $tr \vdash snd(\rho)$ and conversely.

Add $diff[\cdot, \cdot]$ each time it is necessary with fresh variables on the right side

Example: $\rho := \operatorname{event}(E(\operatorname{diff}[x^{\mathsf{L}}, x^{\mathsf{R}}], \operatorname{diff}[y])$ $\overline{\mathsf{fst}(\rho)} := \mathsf{event}(E(diff[x^{\mathsf{L}}, x_1], diff[y^{\mathsf{L}}, x_2]))$ $\overline{\text{snd}(\rho)} := \text{event}(E(diff[x_1, x^R], diff[x_2, y^R]))$

Solution 3

Methodology - Given a biprocess P, and a restriction $\rho := F_1 \&\& \dots \&\& F_n \Rightarrow H^{\mathsf{L}} \&\& H^{\mathsf{R}}$ such that:

$$y^{L}, y^{R}])) \Rightarrow x^{L} = y^{L} \&\& x^{R} = y^{R}$$
$$) \Rightarrow x^{L} = y^{L}$$
$$)) \Rightarrow x^{R} = y^{R}$$

The lemma talks about a unique trace.... in many cases you want to match the first side of a trace with the second side of another trace

The lemma talks about a unique trace.... in many cases you want to match the first side of a trace with the second side of another trace

 $P := !Reader \mid !new k; !new kk; insert DB(diff[k, kk]); Tag(diff[k, kk])$

Basic Hash protocol

The lemma talks about a unique trace.... in many cases you want to match the first side of a trace with the second side of another trace

 $P := !Reader \mid !new k; !new kk; insert DB(diff[k, kk]); Tag(diff[k, kk])$

Problem: the key k appears in many entries in $DB(\cdot)$, \Rightarrow diff-equivalence does not hold...

Basic Hash protocol

The lemma talks about a unique trace.... in many cases you want to match the first side of a trace with the second side of another trace

 $P := !Reader \mid !new k; !new kk; insert DB(diff[k, kk]); Tag(diff[k, kk])$

Problem: the key *k* appears in many entries in $DB(\cdot)$, \Rightarrow diff-equivalence does not hold...

Solution: add a restriction to read the "good" entry when it exists

Basic Hash protocol

The lemma talks about a unique trace.... in many cases you want to match the first side of a trace with the second side of another trace

 $P := !Reader \mid !new k; !new kk; insert DB(diff[k, kk]); Tag(diff[k, kk])$

Problem: the key *k* appears in many entries in $DB(\cdot)$, \Rightarrow diff-equivalence does not hold...

Solution: add a restriction to read the "good" entry when it exists

The previous lemma does not hold for traces using the "bad" entries

Methodology

- **1.** reinforce diff-equivalence to make it even stronger

2. adapt ProVerif procedure to make it sound w.r.t. this new definition **3.** build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

Methodology

- **1.** reinforce diff-equivalence to make it even stronger
- **2.** adapt ProVerif procedure to make it sound w.r.t. this new definition **3.** build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

1. Reinforce diff-equivalence

$$(T \rightarrow P) \vdash \overline{\mathsf{fst}(\rho)}$$

Given a trace T and a well-formed restriction ρ , $T\downarrow\uparrow_{\rho}$ if $T\downarrow\uparrow$ and for all $T \rightarrow P$ we have: \overline{p} if and only if $(T \rightarrow P) \vdash \overline{\text{snd}(\rho)}$

2. Adapt ProVerif procedure - translation in "Horn" clauses Given a process P, we note $\mathscr{C}(P)$ the initial set of clauses generated by ProVerif. Given a well-formed restriction $\rho := F_1 \&\& \dots \&\& F_n \Rightarrow H^{\mathsf{L}} \&\& H^{\mathsf{R}}$, we define: $- C_{\rho}^{\mathsf{L}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{L}} \&\& \neg H^{\mathsf{R}} \Rightarrow \mathsf{bad}$ $- C_{\rho}^{\mathsf{R}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{R}} \&\& \neg H^{\mathsf{L}} \Rightarrow \mathsf{bad}$ We define $\mathscr{C}_{\mathscr{R}} = \{C_{\rho}^{\mathsf{X}} \mid \rho \in \mathscr{R}, \mathsf{X} \in \{\mathsf{L},\mathsf{R}\}\}$

2. Adapt ProVerif procedure - translation in "Horn" clauses Given a process P, we note $\mathscr{C}(P)$ the initial set of clauses generated by ProVerif. Given a well-formed restriction $\rho := F_1 \&\& \dots \&\& F_n \Rightarrow H^{\mathsf{L}} \&\& H^{\mathsf{R}}$, we define: $- C_o^{\mathsf{L}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{L}} \&\& \neg H^{\mathsf{R}} \Rightarrow \mathsf{bad}$ $- C_{\rho}^{\mathsf{R}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{R}} \&\& \neg H^{\mathsf{L}} \Rightarrow \mathsf{bad}$ We define $\mathscr{C}_{\mathscr{R}} = \{C_{\rho}^{\mathsf{X}} \mid \rho \in \mathscr{R}, \mathsf{X} \in \{\mathsf{L},\mathsf{R}\}\}$

Lemma [soundness of the set of initial clauses] Given a process P and a set of well-formed restrictions \mathscr{R} , if $\neg P \downarrow \uparrow_{\mathscr{R}}$ then bad is derivable from $\mathscr{C}(P) \cup \mathscr{C}_{\mathscr{R}}$.

2. Adapt ProVerif procedure - translation in "Horn" clauses Given a process P, we note $\mathscr{C}(P)$ the initial set of clauses generated by ProVerif. Given a well-formed restriction $\rho := F_1 \& q$ $- C_{\rho}^{\mathsf{L}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{L}} \&\& \neg H^{\mathsf{R}} \Rightarrow \mathsf{bad}$ $- C_{\rho}^{\mathsf{R}} = F_1 \&\& \dots \&\& F_n \&\& H^{\mathsf{R}} \&\&$ We define $\mathscr{C}_{\mathscr{R}} = \{C_{\rho}^{\mathsf{X}} \mid \rho \in \mathscr{R}, \mathsf{X} \in \{\mathsf{L}, \mathsf{X}\}$

Lemma [soundness of the set of initial clauses] Given a process P and a set of well-formed restrictions \mathscr{R} , if $\neg P \downarrow \uparrow_{\mathscr{R}}$ then bad is derivable from $\mathscr{C}(P) \cup \mathscr{C}_{\mathscr{P}}$.

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too 😏

& ... &&
$$F_n \Rightarrow H^{\mathsf{L}}$$
 && H^{R} , we define:

$$\& \neg H^{\mathsf{L}} \Rightarrow \mathsf{bad}$$

$$,\mathsf{R}\}$$

3. Build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

Intuition:

- unnecessary to prove session equivalence
 - Vincent&Itsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

[Cheval & Rakotonirina - CSF'23] ==> ProVerif extension to (almost) prove session equivalence

either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are

3. Build upon Vincent and Itsaka's approach [CSF'23] to discard false attacks

Intuition:

- unnecessary to prove session equivalence
 - Vincent&Itsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

TODO

- adapt Vincent&Itsaka extension (i.e. adapt all the proofs...)

[Cheval & Rakotonirina - CSF'23] ==> ProVerif extension to (almost) prove session equivalence

either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are

extend ProVerif (or find tricks) to support $\neg H^X$ in premise of a clause for any fact H^X

Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

22

Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

The manual of ProVerif and the long version of S&P'21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you're not sure about what you're proving.

Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

The manual of ProVerif and the long version of S&P'21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you're not sure about what you're proving.

But part of them are under-documented...

The improve-scope-lemma branch brings many new features

