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Research Interests

• First-Order Logic wih Equality

• Automated reasoning, e.g., equational theorem proving

• Satisfiability Modulo Theories (SMT)

• Equational theories, e.g., intruder theories

• Constraint solving, e.g., (dis)unification/matching

• Decision procedures for equational reasoning, e.g., the
ones for the deduction and the static equivalence

• Rewriting techniques

• Declarative programming, e.g., rule-based programming
and constraint programming

• and last but not least ... Combination of
reasoners/solvers/procedures for unions of theories
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Combination Problem

A general issue: Given reasoners/solvers known for single
theories T1 and T2, how to build a reasoner/solver for the
union of theories T1 ∪ T2 ?

Why? Because a problem is usually expressed using several
theories

Theories are usually assumed to be signature-disjoint, the
equality being the only shared symbol

Well-known combination methods (disjoint case):

• Unification: Schmidt-Schauss

• Matching: Nipkow

• (Dis)unifiability: Baader-Schulz

• Satisfiability Modulo Theories: Nelson-Oppen

• Deduction and Static Equivalence: Cortier-Delaune
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Combination Method:
Disjoint Case

Satisfiability Modulo Theories [Nelson and Oppen, 1979]:

Nelson-Oppen combination method is sound but not always
complete. To get completeness, assuming stably infinite
theories is the usual way, but it is restrictive...

Research directions: go beyond stable infiniteness via politeness

• A polite theory is combinable with any disjoint theory

• A theory modeling a data structure should be
polite [Chocron et al., 2020, Sheng et al., 2021,
Sheng et al., 2022]

• Rewrite-based satisfiability procedures to show politeness

• Satisfiability procedures based on congruence closure
methods (with Laurent Vigneron)



Reasoning
Modulo

Christophe
Ringeissen

Reasoning and
Solving

Knowledge in
Subterm
Modulo

Knowledge in
Beyond
Subterm

Combination Method:
Non-Disjoint Case

Satisfiability Modulo Theories [Ghilardi, 2004]:

It provides a combination method à la Nelson-Oppen for which
completeness is based on a model-theoretical framework
introducing the notion of T0-compatibility.

An alternative to non-disjoint combination: consider shared
constructor symbols modulo an equational theory E , e.g.,

E = AC (+) = {(x + y) + z = x + (y + z), x + y = y + x}

Remark: AC (+) is an example of a permutative theory E , i.e.,
for any l = r ∈ E and any (variable/function) symbol s, the
number of occurrences of s in l is equal to the one in r
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E -Constructed Theories

A theory F is E -constructed if there exists a normalizing
mapping NF satisfying some properties including

s =F∪E t iff NF (s) =E NF (t)

and for any function symbol f in E ,

NF (f (t1, . . . , tn)) =E f (NF (t1), . . . ,NF (tn))

Consequence: F ∪ E -equality is decidable if NF is computable
and E -equality is decidable.

Remark: the definition of an E -constructed theory does not
require that NF is computable.

Result [Erbatur et al., 2022]: the class of E -constructed
theories is closed by union sharing only the symbols in E .
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E -Constructed Theories: Examples
• Pairing

RP =

{
fst(p(x , y)) → x
snd(p(x , y)) → y

}
(RP , ∅) is ∅-constructed, ∅ being the empty theory over the
binary symbol p

• Key Exchange

K = {keyex(x , pk(u), y , pk(v)) = keyex(u, pk(x), v , pk(y))}

K is ∅-constructed, ∅ being the empty theory over the unary
symbol pk

• Distributive Exponentiation

RE =

{
exp(exp(x , y), z) → exp(x , y ⊛ z)
exp(x ∗ y , z) → exp(x , z) ∗ exp(y , z)

}
RF = {enc(enc(x , y), z) → enc(x , y ⊛ z)}

(RE ,AC ) and (RF ,AC ) are AC -constructed
for AC = AC (⊛)
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Hierarchical Solvers

A hierarchical solver HE (U) for F ∪ E is given by:

1 some fixed combination rules, to transform the input into
a separate form Γ ∪ Γ0 such that

• Γ0 is built over symbols in E
• Γ is built over symbols not in E

2 a Solve algorithm to solve Γ0 modulo E ,

3 an additional inference system U to simplify Γ modulo
F ∪ E .

In

Combination rules
��

ΓU 99 ∪

if solved
��

Γ0 Solvehh

Out
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Syntactic Theories

A class of theories initially studied by Kirchner, Klay, Nipkow,
Jouannaud, Comon, ...

In a syntactic theory, there exists a finite set U of mutation
rules such that U plus the classical syntactic decomposition
rule is sound and complete to simplify equations.

Example: Commutativity (+)
x + y = u + v ⊢ (x = u, y = v) ∨ (x = v , y = u)

Other Examples:

• Shallow theories (any variable occurs at depth at most 1 in
any axiom)

• Associativity-Commutativity

• Distributive exponentiation

• Theories with the Finite Variant Property, including
subterm convergent Term Rewrite Systems (TRSs)
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Combined Hierarchical Unification

Individual theory: if F ∪ E is syntactic and F is E -constructed,
then F ∪ E admits a hierarchical unification procedure HE (U)

Union of theories: Given a hierarchical unification procedure
HE (Ui ) for Fi ∪ E and any i = 1, 2, under which conditions do
we have that HE (U1 ∪ U2) is a hierarchical unification
procedure for F1 ∪ F2 ∪ E ?

Problem considered in several recent papers:

• Terminating hierarchical unification
procedures [Erbatur et al., 2020b]

• Hierarchical unification for theories closed by equational
paramodulation [Erbatur et al., 2021]

• Hierarchical matching [Erbatur et al., 2022]
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Reasoning and Solving Tools

• UNIF: a solver implementing several equational unification
algorithms, developed by M. Adi (1989-), with a focus on
AC -unification

• ELAN: a rewrite engine for efficient equational rewriting,
developed in the Protheo group (1992-), with a focus on
AC -rewriting and similar to Maude

• TOM: a matching engine embedded into an imperative
programming language (C/Java), developed in the
follow-up of Protheo (1999-)

• haRVey: a SMT solver implementing rewrite-based
satisfiability procedures, developed by S. Ranise and
D. Déharbe (2002-)
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Two Notions of Knowledge

Two decision problems used to express the knowledge modulo
an equational theory

1 Deduction: given a sequence of messages S and a message
M, can we deduce/compute M from S?

➼ Example: a secret m can be deduced from the
messages X = enc(m, k) and Y = k by considering
dec(X ,Y ) and the axiom dec(enc(V ,K ),K ) = V .

2 Static Equivalence: given two sequences of messages S1
and S2, can we distinguish an instance of a protocol
running S1 from one running S2?

➼ important for voting protocols.

Both problems are static: only messages are considered,
without taking into account the processes that generate them.



Reasoning
Modulo

Christophe
Ringeissen

Reasoning and
Solving

Knowledge in
Subterm
Modulo

Knowledge in
Beyond
Subterm

Proof System for the Deduction

Remark: The following inference system generates all the terms
deducible from ϕ, but it does not provide a decision procedure...

νñ.σ ⊢E M
if ∃x ∈ Dom(σ) s.t. xσ = M

νñ.σ ⊢E s
if s ̸∈ ñ

ϕ ⊢E M1, . . . , ϕ ⊢E Mk

ϕ ⊢E f (M1, . . . , Mk)
if f ∈ Σ

ϕ ⊢E M

ϕ ⊢E M ′ if M =E M ′

Figure: Deduction Axioms
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Knowledge Decidability

Undecidable in general, but critical to the analysis of security
protocols. However, decision procedures are known for
particular theories
[Abadi and Cortier, 2006, Comon-Lundh and Treinen, 2003,
Ştefan Ciobâcă et al., 2012]

• Subterm convergent theories

• Theories of Homomorphism

• Blind signatures

• Trap-door commitments

• Malleable encryption

• and more
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Computing Knowledge in
Combined Theories

Decision procedures have already been developed for the two
notions of knowledge in combined theories F ∪ E

• F and E are signature disjoint [Cortier and Delaune, 2010]

• F and E share only constructors
modulo the empty theory [Erbatur et al., 2017]

• some particular theories F ∪ E where E is the empty
theory or AC [Abadi and Cortier, 2006]

• F is given by a subterm E -convergent TRS where E is
syntactic permutative [Erbatur et al., 2020a]
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Subterm Equational Convergent
TRS

Definition: A subterm E -convergent TRS is a TRS such that
→R,E is convergent modulo E and for any l → r in R, r is a
strict subterm of l or a ground constant.

Example: Abelian Pre Group

APG =


x ∗ e → x
x ∗ i(x) → e
i(i(x)) → x
i(e) → e

 ∪ {x ∗ y = y ∗ x}

APG -unification successfully studied in [Yang et al., 2014]
using a variant-based approach.
What about the deduction and static equivalence in APG?
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Knowledge in Subterm Modulo
Shallow Permutative Theories

Decision procedures for the two notions of knowledge in
combined theories RE = R ∪ E , where

• R is a subterm E -convergent TRS

• E is shallow permutative, e.g., C (Commutativity)

via Reduction Lemmas to the empty theory. These reductions
hold since E is shallow.

See [Erbatur et al., 2020a] for more details
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Knowledge in Subterm Modulo
Syntactic Permutative Theories

Decision procedures for the two notions of knowledge in
combined theories RE = R ∪ E , where

• R is a subterm E -convergent TRS

• E is syntactic permutative and the size of R modulo E is
computable

via Reduction Lemmas to E instead of the empty theory used
for the shallow permutative case

See [Erbatur et al., 2020a] for more details
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Beyond Subterm

The procedures developed for the knowledge problems have
been proven to work for the class of subterm convergent
theories.

Many of these same procedures also work for theories that are
beyond subterm.

However, since these examples don’t fit into a known class of
theories for which soundness and completeness proofs already
exist, they must be proven on an individual basis.
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Beyond Subterm: Example

For example, the procedures
of [Abadi and Cortier, 2006, Ştefan Ciobâcă et al., 2012] are
shown to work on the theory of blind signatures:

Subterm:

checksign(sign(x , y), pk(y)) → x ,

unblind(blind(x , y), y) → x ,

Non-subterm:

unblind(sign(blind(x , y), z), y) → sign(x , z)
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Goal

Can we develop a, hopefully simple, definition that extends the
subterm convergent definition and encompasses the “beyond
subterm” examples?

Joint work with Saraid Dwyer Satterfield (UMW), Serdar
Erbatur (UT Dallas), Andrew Marshall (UMW), presented at
the UNIF 2022 workshop
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Graph-embedding

We define, →∗
Rgemb

, to be the reduction relation induced by the
set of rewrite rules created after instantiating the following rule
schema, Rgemb, with Σ:

For any f ∈ Σ
(1) f (x1, . . . , xn) → xi

(2) f (x1, . . . , xi−1, xi , xi+1 . . . , xn) → f (x1, . . . , xi−1, xi+1, . . . , xn)

For any f , g ∈ Σ
(3) f (x1, . . . , xi−1, g(z̄), xi+1, . . . , xm) → g(x1, . . . , xi−1, z̄ , xi+1, . . . , xm)

(4) f (x1, . . . , xi−1, g(z̄), xi+1, . . . , xm) → f (x1, . . . , xi−1, z̄ , xi+1, . . . , xm)
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Graph-embedded Systems

We say a term t ′ is graph embedded in a term t, denoted
t ′ ≽gemb t, if t ′ is a well-formed term and t →∗

Rgemb
s ≈ t ′ for

some well-formed term s.

• s ≈ t ′ represent equivalence modulo an appropriate form
of permutation (extending leaf permutation)

A TRS R is graph-embedded if for any l → r ∈ R, r ≽gemb l .
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Example: Malleable Encryption

Theory of malleable encryption is defined by Rmal :

dec(enc(x , y), y) → x

mal(enc(x , y), z) → enc(z , y)

Simple toy example used as a test case for several procedures.
For the final rule:

mal(enc(x , y), z) →Rgemb
enc(x , y , z)

→Rgemb
enc(y , z) ≈ enc(z , y)

Notice that enc(x , y , z) is not well formed since it violates the
arity of enc(). However, the final term is well formed, as
required.
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Example: Trap-Door Commitment

Theory of trap-door commitment, Rtdc ,
from [Ştefan Ciobâcă et al., 2012], is also graph-embedded:

open(td(x , y , z), y) → x

open(td(x , y , z), f (x1, y , z , x2)) → x2

td(x2, f (x1, y , z , x2), z) → td(x1, y , z)

f (x2, f (x1, y , z , x2), z , x3) → f (x1, y , z , x3)
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Example: Blind Signatures

The theory of blind signatures is also a graph-embedded TRS.
All but the final rule are subterm. For the final rule:

unblind(sign(blind(x , y), z), y) →Rgemb sign(blind(x , y), z) via rule (1)

sign(blind(x , y), z) →Rgemb sign(x , y , z) via rule (3)

sign(x , y , z) →Rgemb sign(x , z) ≈ sign(x , z) via rule (2)
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Local Stability

[Abadi and Cortier, 2006]:

• A convergent TRS, R
• For every frame ϕ = νñ.{M1/x1, . . . ,Mk/xk}, there exists

a finite set sat(ϕ) such that:
• each Mi is in sat(ϕ),
• any subterm of ϕ that can be formed from elements of

sat(ϕ) by application of function symbols is also in sat(ϕ),
• and it is closed under the application of small context.

Basically, it represents the intruder’s knowledge based on what
they can see as the protocol runs
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Local Stability: Examples

Subterm Convergent Theories are locally
stable [Abadi and Cortier, 2006].

The procedure of [Abadi and Cortier, 2006] also works for many
other examples but local stability must be proven individually:

• blind signatures

• theory of addition

• theory of prefix with pairing

• and more
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Contracting Convergent Systems

Possibility to identify a “large” subclass of graph-embedded
convergent systems, called contracting convergent systems,
for which any system in that subclass is locally stable.

A (tentative) definition:

• Rule (3) is forbidden.

• When rule (1) f (x̄) → xi is applied below the root
position, only a variable instance applies, and there exists
a rule l ′[f (x̄)] → xi if xi is not removed later.

• When rule (4) f (. . . , g(z̄), . . . ) → f (. . . , z̄ , . . . ) is applied,
only a variable instance applies, and there exists a rule
l ′i [g(z̄)] → zi for each zi not removed later.

• ≈ corresponds to the permutation of the direct subterms
of the root term plus the permutation of leaves. If this is a
way to get a rule l [C [x ]] → r where x occurs in r without
its cap C , then there exists a rule l ′[C [x ]] → x .
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Main Results (Work in Progress)

Theorem (decidability result): Any contracting convergent
TRS R is locally stable. Consequently, both deduction and
static equivalence are decidable for R.

Theorem (undecidability result): There exists a
graph-embedded convergent TRS, say PE , for which deduction
modulo PE is undecidable.

Proof: an encoding of the (modified) PCP (Post
Correspondence Problem) à la [Anantharaman et al., 2012]
used initially to get undecidability of unification.
[New] The same TRS as in [Anantharaman et al., 2012] can be
applied to deduction as well, considering PCP.
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Future Work

• A conference submission on beyond subterm

• Constructors defined via normalizing mappings vs.
constructors defined via reduction orderings

• A journal submission on hierarchical unification

• Knowledge problems in unions of theories sharing only
constructors modulo E

• Hierarchical approach applied to disunification?
And to the knowledge problems?

• Congruence closure methods and syntactic theories
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UNIF 2023 Call for Papers

————–
Call for Papers
UNIF 2023

The 37th International Workshop on Unification
Rome, Italy, July 2, 2023

A satellite workshop of CADE/FSCD, affiliated with FSCD
https://project.inria.fr/unif2023

————–

UNIF 2023 is the 37th event in a series of international
meetings devoted to unification theory and its applications.

Submissions on applications of unification to security protocols
are very welcome!

Submission deadline: April 21, 2023

https://project.inria.fr/unif2023
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Deduction Problem: Reduction
Lemma

ϕ ⊢RE t iff ϕ∗ ⊢ t
where ϕ∗ is a new frame defined as the completion of ϕ

Fortunately, ϕ∗ is computable thanks to a fixpoint
computation enumerating the finitely many subterms occurring
in ϕ
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Static Equivalence: Reduction
Lemma

ϕ ≈RE ψ iff ψ |= Eq(ϕ) and ϕ |= Eq(ψ)
where

• ψ |= Eq(ϕ) denotes the fact that for any
s = t ∈ Eq(ϕ), (s =RE t)ψ

• ζϕ is the recipe substitution associated to ϕ∗
• Eq(ϕ) contains only finitely many equalities sζϕ = tζϕ

such that (sζϕ =RE tζϕ)ϕ and s, t are bounded “public”
terms
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Lifting of Two Technical Lemmas

Soundness and completeness are proven using two technical
lemmas:

Equational step Assume ψ |= Eq(ϕ). If sϕ∗ =E tϕ∗, then
(sζϕ)ψ =RE (tζϕ)ψ

Rewrite step Assume ψ |= Eq(ϕ). If sϕ∗ →R t, then there
exists a term u satisfying the name restriction
such that t = uϕ∗ and (sζϕ)ψ =RE (uζϕ)ψ
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