

State Transformations

Fig1: Changes in object states over time for action recognition. Two sample sequences from the EPIC kitchen dataset.

State-Changing Actions

- State of objects are *more apparent* from still images than verbs.
- Actions can change:
- Object's appearance,
- Object's shape,
- Object's position.

State Transition

 $V_i : S_{before} \rightarrow S_{after}$; where $V_i \in verbs, S_i \in states$.

Recognizing Manipulation Actions from State-Transformations Nachwa ABOUBAKR, James L. CROWLEY, Rémi RONFARD Univ. Grenoble Alpes, INRIA, Grenoble INP, CNRS, Laboratoire LIG, LJK

Our Model:

Experiement on EPIC-Kitchens Dataset

- We defined 49 state transitions from 31 states.
- a. Action Recognition Challenge.

Verbs Results

	Seen kitchens subset (S1)				
	Acc T1	Acc T5	Precision	Recall	
Our model(RGB)	47.41	81.33	31.20	20.43	
2SCNN[2](RGB)	40.44	83.04	33.74	15.9	
TSN[3](RGB)	45.68	85.56	61.64	23.81	
	Unsee	n kitche	ns subset	(S2)	
Our model(RGB)	34.35	69.24	15.09	11.00	
2SCNN[2](RGB)	33.12	73.23	16.06	9.44	
TSN[3](RGB)	34.89	74.56	19.48	11.22	

Table 1: Comparison of our method and baseline methods reported by [1].

Precision (%) 56.7 59.3 Recall (%) 48.2 45.0

Table 2: Our model performance on validation set on state-changing verbs.

take -	48.2	20.0	7.2	8.7	5.6	6.5	5.4	7.0	6.0	0.0	16.1	
put -	19.8	45.0	9.8	7.8	5.3	6.1	11.8	9.3	16.0	0.0	10.7	
open -	6.6	6.4	62.9	8.4	3.3	1.9	0.5	10.1	20.0	0.0	5.4	2
close -	6.9	5.5	8.4	57.1	3.0	0.0	0.5	5.4	14.0	0.0	5.4	1
wash -	3.1	3.8	2.6	4.5	67.6	0.9	0.0	1.6	4.0	0.0	1.8	
cut -	0.7	1.2	0.2	0.6	0.0	60.7	0.5	2.3	0.0	0.0	7.1	
mix -	1.0	1.1	0.0	0.0	0.1	1.4	50.2	9.3	0.0	0.0	0.0	
pour -	1.5	2.0	0.9	0.0	0.5	1.4	5.0	40.3	0.0	0.0	1.8	
throw -	0.5	1.3	1.2	1.8	0.1	1.9	0.5	0.8	30.0	0.0	3.6	
move -	2.2	3.8	0.0	0.6	0.8	1.4	3.6	0.8	2.0	0.0	0.0	
emove -	1.2	1.0	0.2	0.9	0.8	5.1	0.9	2.3	0.0	0.0	28.6	
dry -	1.4	0.9	1.8	4.8	0.4	0.5	0.0	0.8	0.0	0.0	0.0	6
urn-on -	1.3	1.6	0.9	0.3	2.6	0.0	0.0	0.8	2.0	0.0	0.0	
turn -	0.7	0.5	0.5	0.3	1.2	0.0	6.3	0.8	0.0	0.0	0.0	
shake -	0.2	0.9	0.5	0.3	0.5	0.0	0.9	0.0	0.0	0.0	0.0	
urn-off -	1.0	0.6	0.5	1.5	3.1	0.0	0.5	0.0	0.0	0.0	0.0	
peel -	0.3	0.1	0.2	0.0	0.1	9.3	0.0	0.0	0.0	0.0	17.9	

Fig 3: Confusion Matrix on Validation set.

References

- Vision (ECCV), 2018.
- systems, pages 568–576, 2014.
- Springer, 2016.

LONG BEACH **CALIFORNIA** June 16-20, 2019

b. Results on state-changing verbs on validation set.

open open	close	ysen	2nr	nit	Dour	peel	Avg
58.8	39.8	80.1	74.7	68.9	39.1	37.7	57.23
62.9	57.1	67.7	60.7	50.2	40.3	53.5	53.96

[1] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray. Scaling egocentric vision: The epic-kitchens dataset. In European Conference on Computer

[2] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In Advances in neural information processing

[3] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment networks: Towards good practices for deep action recognition. In European conference on computer vision, pages 20–36.