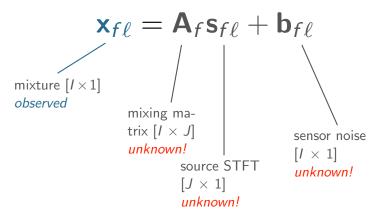
Joint Audio Source Separation and Diarization

J Source signals, reverberated and summed, are being recorded at l microphones.

- Separation: Recover the J orginal source signals!
- Diarization: Classify each source as active/inactive along time!

Standard Formulation in the STFT domain

- Separate a mixture of J sources with I microphones.
- In STFT domain the problem becomes:



• f=1:F frequency bins, ℓ =1:L time frames.

Modelling Diarization

- The Standard Model: $\mathbf{x}_{f\ell} = \mathbf{A}_f \mathbf{s}_{f\ell} + \mathbf{b}_{f\ell}$ has all sources active;
- Look between \mathbf{A}_f and $\mathbf{s}_{f\ell}$: You notice the identity matrix????

$$\mathbf{x}_{f\ell} = \mathbf{A}_f \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} s_{1,f\ell} \\ s_{2,f\ell} \\ s_{3,f\ell} \end{bmatrix} + \mathbf{b}_{f\ell}.$$

- This is a special case where the diagonal entries are fixed to 1.
- What if an entry was 0 instead, e.g.

$$\mathbf{x}_{f\ell} = \mathbf{A}_f egin{bmatrix} 1 & & \ & 1 & \ & & 0 \end{bmatrix} egin{bmatrix} s_{1,f\ell} \ s_{2,f\ell} \ s_{3,f\ell} \end{bmatrix} + \mathbf{b}_{f\ell} =$$

$$\mathbf{a}_{1,f} s_{1,f\ell} + \mathbf{a}_{2,f} s_{2,f\ell} + \mathbf{a}_{3,f} \mathbf{0} s_{3,f\ell},$$

• where $\mathbf{a}_{1,f}, ..., \mathbf{a}_{3,f} \in \mathbb{C}^{I}$ are the columns of \mathbf{A}_{f} .

The state variable

• For J = 3 sources there are N = 8 possible matrices:

$$\mathbf{D}_1 = \begin{bmatrix} \mathbf{0} & & \\ & \mathbf{0} & \\ & & \mathbf{0} \end{bmatrix}, \mathbf{D}_2 = \begin{bmatrix} \mathbf{0} & & \\ & \mathbf{0} & \\ & & \mathbf{1} \end{bmatrix}, \dots, \mathbf{D}_8 = \begin{bmatrix} \mathbf{1} & & \\ & \mathbf{1} & \\ & & \mathbf{1} \end{bmatrix}$$

- Let a categoric variable Z_ℓ = n, n ∈ [1, N] choose the D_n at time frame ℓ.
- The hidden variable Z_ℓ has a temporal model on $\ell = 1, .., L$

$$p(Z_{\ell} = n | Z_{\ell-1} = r) = T_{nr},$$

$$p(Z_{\ell} = n) = \lambda_n,$$

with λ_n , T_{nr} prior and transition parameters.

٠

Audio Mixture with Diarization

• We can compactify:

$$\mathbf{x}_{f\ell} = \mathbf{A}_f \mathbf{D}_{Z_\ell} \mathbf{s}_{f\ell} + \mathbf{b}_{f\ell},$$

• or probabilistically (white isotropic **b**_{fl}):

$$p(\mathbf{x}_{f\ell}|Z_{\ell}=n,\mathbf{s}_{f\ell})=\mathcal{N}_{c}\left(\mathbf{A}_{f}\mathbf{D}_{n}\mathbf{s}_{f\ell}, \mathbf{v}_{f}\mathbf{I}_{I}\right),$$

where $\mathbf{A}_f \in \mathbb{C}^{I \times J}$ mixing matrix, and $\mathbf{v}_f \in \mathbb{R}_+$ microphone noise variance, parameters to be estimated.

Modelling the Sources (NMF)

• The prior distribution for $\mathbf{s}_{f\ell} \in \mathbb{C}^J$ is

$$p(\mathbf{s}_{f\ell}) = \mathcal{N}_c \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} u_{1,f\ell} & & & \\ & \ddots & & \\ & & u_{j,f\ell} & & \\ & & & \ddots & \\ & & & & u_{J,f\ell} \end{bmatrix} \right),$$

- $u_{j,f\ell}$ are the source PSD (non-negative parameters).
- The F × L matrix {u_{j,fℓ}}^{F,L}_{f,ℓ=1} is factorised via Nonnegative Matrix Factorisation to reduce the number of parameters.

Associated Graphical Model

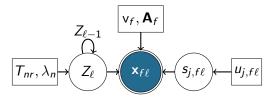


Figure: Joint Audio Source Separation and Diarization.

Associated EM algorithm

• Hidden variables:

$$\mathcal{H} = \{\mathbf{s}_{f\ell}, Z_\ell\}_{f,\ell=1}^{F,L}.$$

Observed data:

$$\mathcal{X} = \{\mathbf{x}_{f\ell}\}_{f,\ell=1}^{F,L}.$$

$$p(\mathbf{s}_{1:F1:L}, Z_{1:L}|\mathcal{X}) \propto p(\mathbf{s}_{1:F1:L}|Z_{1:L}, \mathcal{X})p(Z_{1:L}|\mathcal{X}).$$

• Parameters to be estimated (e.g. J = 3, N = 8):

$$\theta = \left\{ \mathbf{A}_{f}, \mathsf{v}_{f}, \mathsf{u}_{j, f\ell}, \mathsf{T}_{nr}, \lambda_{n} \right\}_{f, \ell, j, n, r=1}^{F, L, J, N, N}$$

E-Step Outline 1/2

• E-step of **Sources Diarization**: For every value of $Z_{\ell} = n$:

$$p(\mathbf{s}_{f\ell}|Z_\ell=n)=\mathcal{N}_c\left(\boldsymbol{\mu}_{f\ell n}^s,\boldsymbol{\Sigma}_{f\ell n}^s\right).$$

· Closed form expressions

$$\begin{split} \boldsymbol{\Sigma}_{f\ell n}^{s} &= \left[\mathsf{diag}_{J} \left(\frac{1}{u_{j,f\ell}} \right) + \mathbf{D}_{n} \frac{\mathbf{A}_{f}^{\mathrm{H}} \mathbf{A}_{f}}{\mathsf{v}_{f}} \mathbf{D}_{n} \right]^{-1}, \\ \boldsymbol{\mu}_{f\ell n}^{s} &= \boldsymbol{\Sigma}_{f\ell n}^{s} \mathbf{D}_{n} \mathbf{A}_{f}^{\mathrm{H}} \frac{\mathbf{x}_{f\ell}}{\mathsf{v}_{f}}. \end{split}$$

E-Step Outline 2/2

- E Step of **Diarization:** Estimate the Responsibilities of Z_{ℓ} :
- $\eta_{\ell,n} = p(Z_{\ell} = n | \mathcal{X})$ is found by solving a HMM with emission probability

$$p(\mathcal{X}|Z_{\ell}=n) \propto \exp\left(\sum_{f=1}^{F} \left(\log|\boldsymbol{\Sigma}_{f\ell n}^{s}| + \frac{\mathbf{x}_{f\ell}^{\mathrm{H}}}{\mathsf{v}_{f}} \mathbf{A}_{f} \mathbf{D}_{n} \boldsymbol{\mu}_{f\ell n}^{s}\right)\right),$$

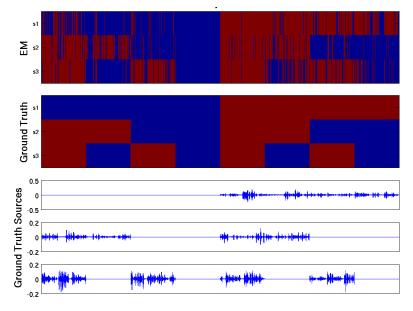
transition T_{nr} , and beginning-of-time probabilities λ_n .

• Closed form solution via the forward-backward algorithm.

M-step Outline

- The parameters **A**_f, v_f updated in closed form: Typical rules for the Gaussian.
- T_{nr} , λ_n updated in closed form: provided for free by the forward-backward algorithm.
- *u_{j,fℓ}* is composed by two sets of parameters {*w_{fk}*}_{*f,k*}, {*h_{kℓ}*}_{*k,ℓ*}: Typical (closed form, alternating) updates for the NMF.

Estimated Activity on a Mix of J = 3 Sources via EM



Some Quantitative (Continiously active)

Comparisson of Separation performance (dB) on a 2×3 mix of continously emmiting sources:

	Proposed			Ozerov & Févotte '10		
	SDR	SIR	SAR	SDR	SIR	SAR
<i>s</i> 1	9.2	13.4	13.6	9.3	13.8	14.0
<i>s</i> 2	7.1	15.2	13.4	7.1	14.5	14.1
<i>s</i> 3	9.6	14.0	13.9	9.6	13.4	14.6

Thank you !