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1. INTRODUCTION

This report is supplementary material for submission [1]. In
[1] we want to recover the STFT coefficients

{
yj,f` ∈ CI

}J
j=1

of the J source images ∀f, `. Let yf` =
[
y>1,f` . . .y

>
J,f`

]>
∈

CIJ be the catenated vector of all J source images at time-
frequency point f, `.

1.0.1. Mixing Equation Revisited

Let the matrix Mn ∈ NI×IJ be:

Mn = d>n ⊗ II , (1)

with ⊗ the Kronecker product. The observation xf` equals
the sum of active source-images plus some noise bf` ∈ CI :

xf` =
J∑

j=1

dj,Z`
yj,f` + bf` = (2)

MZ`
yf` + bf`. (3)

Now let also p(bf`) = Nc (bf`;0, ofII) and we obtain the
observation model (eq. (4) in [1]): (parameters are omitted
when denoting probabilities, that is p(x; θ) is simply denoted
p(x)):

p
(
xf`

∣∣Z` = n,yf`

)
= Nc (xf`;Mnyf`, ofII) . (4)

The symbol Nc () denotes the proper complex Gaussian dis-
tribution [2].1

1The proper complex Gaussian distribution is defined asNc(x;µ,Σ) =
|πΣ|−1 exp

(
− [x−µ]HΣ−1[x−µ]

)
, with x,µ ∈ CI and Σ ∈ CI×I

being the argument, mean vector, and covariance matrix respectively.

1.0.2. The Prior Distribution of Source Images

As all J source images are a priori independent we can cal-
culate the prior distribution of the catenated image yf` with:

p(yf`) =

J∏
j=1

p(yj,f`) = (5)

J∏
j=1

Nc (yj,f`;0, uj,f`Rj,f ) = (6)

Nc (yf`;0I , diagJ (uj,f`Rj,f )) , (7)

with diagJ(Aj) the IJ×IJ block-diagonal matrix with j-th
diagonal block Aj .

2. EM ALGORITHM

Fig. 1 shows the dependencies between hidden random vari-
ables and observations for the probabilistic model of [1]. Let
x1:F1:L be a short-hand for a set, i.e. {xf`}F,L

f,`=1.

2.0.3. Complete Data Probability Distribution

The source images are assumed independent between all
f, `, j (as in [3, 4]), the observations xf` are also indepen-
dent over f, `. Therefore, the completed data (observed and
hidden variables) probability p(y1:F1:L, Z1:L,x1:F1:L) for
the model in [1] writes:

p(y1:F1:L, Z1:L,x1:F1:L; θ) =

p(Z1)

L∏
`=2

p(Z`|Z`−1)

F,L∏
f,`=1

p(yf`)p(xf`|yf`, Z`). (8)
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Figure 1: Associated graphical model: White circles denote
hidden variables. Shaded (blue) circles denote observed vari-
ables. Loops denote temporal dependencies. Rectangles de-
note parameters to be estimated.

2.0.4. Factorising the Posterior Distribution

In the EM we want to derive the posterior distribution
p(y1:F1:L, Z1:L|x1:F1:L). From the Bayes rule we have:

p(y1:F1:L, Z1:L|x1:F1:L) ∝ (9)
p(y1:F1:L, Z1:L,x1:F1:L) ∝ (10)

p(y1:F1:L|Z1:L,x1:F1:L)p(Z1:L|x1:F1:L). (11)

Therefore replacing (11) on (8) we obtain:

p(y1:F1:L|Z1:L,x1:F1:L)p(Z1:L|x1:F1:L) ∝

p(Z1)

L∏
`=2

p(Z`|Z`−1)

F,L∏
f,`=1

p(yf`)p(xf`|yf`, Z`). (12)

Therefore, isolating the terms from (12) that depend on yf`

yields its posterior p(yf`|x1:F1:L). Equivalently, isolating
the terms from (12) that contain Z` provides its posterior
p(Z`|x1:F1:L).

Now, in Sec. 2.1 we compute p(yf`|x1:F1:L), and in
Sec. 2.2 we compute p(Z`|x1:F1:L).

2.1. E step Source Separation

The posterior of a source image p(yf`|Z`,x1:F1:L) is found
with (8), by dropping all terms of (8) that are independent of
yf`. Then (8) writes:2

p(yf`|Z`,x1:F1:L) ∝ p(xf`|Z`,yf`)p(yf`) ∝ (13)
Nc (yf`; ŷf`Z`

,Σf`Z`
) . (14)

The posterior covariance matrix Σf`n ∈ CIJ×IJ and the
posterior mean vector ŷf`n ∈ CIJ are respectively computed
(for every Z` = n, n ∈ [1, N ]) with:

Σf`n =

[
diagJ (uj,f`Rj,f )

−1
+

M>
n Mn

of

]−1
, (15)

ŷf`n = Σf`nM>
n

xf`

of
, (16)

2We work in ∝ and therefore any term independent of yf` is a constant
for p(yf`|x1:F1:L) and can be dropped.

2.1.1. Woodbury on the Posterior Covariance Σj,f`n

Applying Eq. (156) from [5] on (15) we have:

Σf`n = diagJ (uj,f`Rj,f )− diagJ (uj,f`Rj,f )×

MnV−1f`nM>
n diagJ (uj,f`Rj,f ) , (17)

with Vf`n ∈ CI×I defined as

Vf`n = M>
n diagJ (uj,f`Rj,f )Mn = (18)

J∑
j=1

dj,nuj,f`Rj,f . (19)

2.1.2. The Block Structure of Σf`n

From (17) we can now partition Σf`n in J2, I × I blocks:
{Σjr,f`n ∈ CI×I}J,Jj,r=1. We are interested on the covariance
matrix Σj,f`n ∈ CI×I of a specific source image yj,f`. that
is the j-th, I × I diagonal block Σjj,f`n:

Σjj,f`n = uj,f`Rj,f−
dj,nuj,f`Rj,fV−1f`ndj,nuj,f`Rj,f , (20)

Eq. (20) corresponds to (10) in [1].

We will also need the non-diagonal blocks Σjr,f`n, j 6= r
that are expressible with:

Σjr,f`n = −dj,nuj,f`Rj,fV−1f`ndr,nur,f`Rr,f . (21)

2.1.3. The Posterior Mean ŷj,f`n of a Source Image

We are interested on the posterior mean ŷj,f`n ∈ CI of a
specific source image yj,f`, obtained from the respective part
of the long vector ŷf`n that has been computed with (16).

We can simplify (16) by applying (158) from [5]:

ŷf`n = diagJ (uj,f`Rj,f )M>
n V−1f`nxf`. (22)

Or simply for a specific ŷj,f` ∈ CI :

ŷj,f`n = uj,f`Rj,fdj,nV−1f`nxf`. (23)

Clearly, (23) is equivalent with (9) in [1].
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2.2. E step Source Diarisation

We compute p(Z1:L|x1:F1:L) from (8), by marginalising out
all source images:

p(Z1:L|x1:F,1:L) = p(Z1)

L∏
`=2

p(Z`|Z`−1)×

F,L∏
f,`=1

∫
yf`

p(xf`|Z`,yf`)p(yf`)dyf` = (24)

p(Z1)

L∏
`=2

p(Z`|Z`−1)×

F,L∏
f,`=1

Nc (xf`;0,Vf`Z`
) . (25)

where (for each Z` = n) Vf`n is calculated with (19). As
for the integral is calculated with Eq.(2.115) from [6].

2.2.1. Forward-Backward Algorithm for HMM

Eq. (25) is the joint distribution of an HMM with hidden
state Z` along ` ∈ [1, L] (see Eq. (13.10) in [6]). and some
emission probabilities ι`Z`

defined:

ι`Z`
=

F∏
f=1

Nc (xf`;0,Vf`Z`
) . (26)

The posterior probability η`n = p(Z` = n|x1:F1:L) of each
hidden state is hence computed using the forward-backward
algorithm: provided in equations (13.36), (13.38) of [6].

2.3. M step

In the M step, the parameters θ are updated by maximising
the Expected Complete Data Log-likelihood (ECDLL) func-
tion (see Eq. (9.30) in [6]) with respect to the parameters
θ.

2.3.1. M-Tnr, λn

The update rules for the diarisation parameters Tnr, λn are
the ML updates for HMM parameters: Equations (13.19),
(13.18) of [6].

2.3.2. M-wj,fk, hj,k`,Rj,f

The source image parameters wj,fk, hj,k`,Rj,f∀f, `, j are
updated as in [4]. To apply the rules derived in [4] one needs
the second order posterior moment of a source image yj,f`

that is found with:

Qj,f` =

N∑
n=1

η`n

∫
yf`

p(yf`|Z` = n,x1:F1:L)×

yj,f`y
H
j,f`dyf` = (27)

N∑
n=1

η`n
(
Σjj,f`n + ŷj,f`nŷH

j,f`n

)
. (28)

2.3.3. M-of

The ECDLL L(of ) regarding of writes:

L(of ) =
N∑

n=1

η`n

∫
yf`

p(yf`|Z` = n,x1:F1:L)×

logNc (xf`;Mnyf`, ofII) dyf`. (29)

Differentiating L(of ) w.r.t. of and setting the result to zero
yields the update rule for of :

of =
1

LI

L∑
`=1

(
xH
f`xf`−

(
N∑

n=1

η`nx̂f`n

)H

xf` − xH
f`

(
N∑

n=1

η`nx̂f`n

)
+

N∑
n=1

η`ntr
{

Mn

(
Σf`n + ŷf`nŷH

f`n

)
M>

n

})
. (30)

with x̂f`n defined as:

x̂f`n = Mnŷf`n =

J∑
j=1

�
�dj,nŷj,f`n. (31)

Notice that dj,n is already applied on (23) and it does not
need to be re-applied as it is binary.

2.3.4. SImplification of the Quadratic Term

Now let’s work with the quadratic term in (30):

tr
{

Mn

(
Σf`n + ŷf`nŷH

f`n

)
M>

n

}
= (32)

tr
{

MnΣf`nM>
n

}
+ x̂H

f`nx̂f`n. (33)

Now let us define the variance part of the above as δf`n,
which is practically the sum of all J2 blocks of the source
covariance that due to Mn are multiplied with the diarisa-
tion:

δf`n = tr
{

MnΣf`nM>
n

}
= (34)

tr
{ J∑

j=1

J∑
r=1

dj,ndr,nΣjr,f`n

}
= (35)

tr
{

Pf`n −Pf`nV−1f`nPf`n

}
. (36)
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