SUPPLEMENTARY MATERIAL FOR THE IEEE WASPAA'17 SUBMISSION:

EXPLOITING THE INTERMITTENCY OF SPEECH FOR JOINT SEPARATION AND DIARISATION

Dionyssos Kounades-Bastian¹, Laurent Girin^{1,2}, Xavier Alameda-Pineda¹, Radu Horaud¹, Sharon Gannot³

¹ INRIA Grenoble Rhône-Alpes, France
 ² Univ. Grenoble Alpes, GIPSA-lab, France
 ³ Bar-Ilan University, Faculty of Engineering, Israel

1. INTRODUCTION

This report is supplementary material for submission [1]. In [1] we want to recover the STFT coefficients $\{\mathbf{y}_{j,f\ell} \in \mathbb{C}^I\}_{j=1}^J$ of the *J* source images $\forall f, \ell$. Let $\mathbf{y}_{f\ell} = \begin{bmatrix} \mathbf{y}_{1,f\ell}^\top \dots \mathbf{y}_{J,f\ell}^\top \end{bmatrix}^\top \in \mathbb{C}^{IJ}$ be the catenated vector of all *J* source images at time-frequency point f, ℓ .

1.0.1. Mixing Equation Revisited

Let the matrix $\mathbf{M}_n \in \mathbb{N}^{I \times IJ}$ be:

$$\mathbf{M}_n = \mathbf{d}_n^\top \otimes \mathbf{I}_I,\tag{1}$$

with \otimes the Kronecker product. The observation $\mathbf{x}_{f\ell}$ equals the sum of active source-images plus some noise $\mathbf{b}_{f\ell} \in \mathbb{C}^I$:

$$\mathbf{x}_{f\ell} = \sum_{i=1}^{J} d_{j,Z_{\ell}} \mathbf{y}_{j,f\ell} + \mathbf{b}_{f\ell} =$$
(2)

$$\mathbf{M}_{Z_{\ell}}\mathbf{y}_{f\ell} + \mathbf{b}_{f\ell}.$$
 (3)

Now let also $p(\mathbf{b}_{f\ell}) = \mathcal{N}_c(\mathbf{b}_{f\ell}; \mathbf{0}, o_f \mathbf{I}_I)$ and we obtain the observation model (eq. (4) in [1]): (parameters are omitted when denoting probabilities, that is $p(x; \theta)$ is simply denoted p(x)):

$$p\left(\mathbf{x}_{f\ell}\middle|Z_{\ell}=n,\mathbf{y}_{f\ell}\right)=\mathcal{N}_{c}\left(\mathbf{x}_{f\ell};\mathbf{M}_{n}\mathbf{y}_{f\ell},o_{f}\mathbf{I}_{I}\right).$$
 (4)

The symbol $\mathcal{N}_{c}()$ denotes the proper complex Gaussian distribution [2].¹

1.0.2. The Prior Distribution of Source Images

As all J source images are a priori independent we can calculate the prior distribution of the catenated image $\mathbf{y}_{f\ell}$ with:

$$p(\mathbf{y}_{f\ell}) = \prod_{j=1}^{J} p(\mathbf{y}_{j,f\ell}) =$$
(5)

$$\prod_{j=1}^{J} \mathcal{N}_c \left(\mathbf{y}_{j,f\ell}; \mathbf{0}, u_{j,f\ell} \mathbf{R}_{j,f} \right) =$$
(6)

$$\mathcal{N}_{c}\left(\mathbf{y}_{f\ell}; \mathbf{0}_{I}, \operatorname{diag}_{J}\left(u_{j, f\ell} \mathbf{R}_{j, f}\right)\right), \tag{7}$$

with diag_J(\mathbf{A}_j) the $IJ \times IJ$ block-diagonal matrix with *j*-th diagonal block \mathbf{A}_j .

2. EM ALGORITHM

Fig. 1 shows the dependencies between hidden random variables and observations for the probabilistic model of [1]. Let $\mathbf{x}_{1:F1:L}$ be a short-hand for a set, i.e. $\{\mathbf{x}_{f\ell}\}_{f,\ell=1}^{F,L}$.

2.0.3. Complete Data Probability Distribution

The source images are assumed independent between all f, ℓ, j (as in [3, 4]), the observations $\mathbf{x}_{f\ell}$ are also independent over f, ℓ . Therefore, the completed data (observed and hidden variables) probability $p(\mathbf{y}_{1:F1:L}, Z_{1:L}, \mathbf{x}_{1:F1:L})$ for the model in [1] writes:

$$p(\mathbf{y}_{1:F1:L}, Z_{1:L}, \mathbf{x}_{1:F1:L}; \theta) =$$

$$p(Z_1) \prod_{\ell=2}^{L} p(Z_{\ell} | Z_{\ell-1}) \prod_{f,\ell=1}^{F,L} p(\mathbf{y}_{f\ell}) p(\mathbf{x}_{f\ell} | \mathbf{y}_{f\ell}, Z_{\ell}).$$
(8)

¹The proper complex Gaussian distribution is defined as $\mathcal{N}_c(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = |\pi \boldsymbol{\Sigma}|^{-1} \exp \left(- [\mathbf{x} - \boldsymbol{\mu}]^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} [\mathbf{x} - \boldsymbol{\mu}] \right)$, with $\mathbf{x}, \boldsymbol{\mu} \in \mathbb{C}^I$ and $\boldsymbol{\Sigma} \in \mathbb{C}^{I \times I}$ being the argument, mean vector, and covariance matrix respectively.

Figure 1: Associated graphical model: White circles denote hidden variables. Shaded (blue) circles denote observed variables. Loops denote temporal dependencies. Rectangles denote parameters to be estimated.

2.0.4. Factorising the Posterior Distribution

In the EM we want to derive the posterior distribution $p(\mathbf{y}_{1:F1:L}, Z_{1:L} | \mathbf{x}_{1:F1:L})$. From the Bayes rule we have:

$$p(\mathbf{y}_{1:F1:L}, Z_{1:L} | \mathbf{x}_{1:F1:L}) \propto$$
(9)

$$p(\mathbf{y}_{1:F1:L}, Z_{1:L}, \mathbf{x}_{1:F1:L}) \propto \qquad (10)$$

$$p(\mathbf{y}_{1:F1:L}|Z_{1:L}, \mathbf{x}_{1:F1:L})p(Z_{1:L}|\mathbf{x}_{1:F1:L}).$$
(11)

Therefore replacing (11) on (8) we obtain:

$$p(\mathbf{y}_{1:F1:L}|Z_{1:L}, \mathbf{x}_{1:F1:L})p(Z_{1:L}|\mathbf{x}_{1:F1:L}) \propto p(Z_1) \prod_{\ell=2}^{L} p(Z_{\ell}|Z_{\ell-1}) \prod_{f,\ell=1}^{F,L} p(\mathbf{y}_{f\ell})p(\mathbf{x}_{f\ell}|\mathbf{y}_{f\ell}, Z_{\ell}).$$
(12)

Therefore, isolating the terms from (12) that depend on $\mathbf{y}_{f\ell}$ yields its posterior $p(\mathbf{y}_{f\ell}|\mathbf{x}_{1:F1:L})$. Equivalently, isolating the terms from (12) that contain Z_{ℓ} provides its posterior $p(Z_{\ell}|\mathbf{x}_{1:F1:L})$.

Now, in Sec. 2.1 we compute $p(\mathbf{y}_{f\ell}|\mathbf{x}_{1:F1:L})$, and in Sec. 2.2 we compute $p(Z_{\ell}|\mathbf{x}_{1:F1:L})$.

2.1. E step Source Separation

The posterior of a source image $p(\mathbf{y}_{f\ell}|Z_{\ell}, \mathbf{x}_{1:F1:L})$ is found with (8), by dropping all terms of (8) that are independent of $\mathbf{y}_{f\ell}$. Then (8) writes:²

$$p(\mathbf{y}_{f\ell}|Z_{\ell}, \mathbf{x}_{1:F1:L}) \propto p(\mathbf{x}_{f\ell}|Z_{\ell}, \mathbf{y}_{f\ell})p(\mathbf{y}_{f\ell}) \propto (13)$$

$$\mathcal{N}_{c}\left(\mathbf{y}_{f\ell}; \hat{\mathbf{y}}_{f\ell Z_{\ell}}, \boldsymbol{\Sigma}_{f\ell Z_{\ell}}\right).$$
(14)

The posterior covariance matrix $\Sigma_{f\ell n} \in \mathbb{C}^{IJ \times IJ}$ and the posterior mean vector $\hat{\mathbf{y}}_{f\ell n} \in \mathbb{C}^{IJ}$ are respectively computed (for every $Z_{\ell} = n, n \in [1, N]$) with:

$$\boldsymbol{\Sigma}_{f\ell n} = \left[\operatorname{diag}_{J} \left(u_{j,f\ell} \mathbf{R}_{j,f} \right)^{-1} + \frac{\mathbf{M}_{n}^{\top} \mathbf{M}_{n}}{o_{f}} \right]^{-1}, \quad (15)$$

$$\hat{\mathbf{y}}_{f\ell n} = \boldsymbol{\Sigma}_{f\ell n} \mathbf{M}_n^{\top} \frac{\mathbf{x}_{f\ell}}{o_f},\tag{16}$$

2.1.1. Woodbury on the Posterior Covariance $\Sigma_{j,f\ell n}$

Applying Eq. (156) from [5] on (15) we have:

$$\Sigma_{f\ell n} = \operatorname{diag}_{J}\left(u_{j,f\ell}\mathbf{R}_{j,f}\right) - \operatorname{diag}_{J}\left(u_{j,f\ell}\mathbf{R}_{j,f}\right) \times \mathbf{M}_{n}\mathbf{V}_{f\ell n}^{-1}\mathbf{M}_{n}^{\mathsf{T}}\operatorname{diag}_{J}\left(u_{j,f\ell}\mathbf{R}_{j,f}\right), \quad (17)$$

with $\mathbf{V}_{f\ell n} \in \mathbb{C}^{I imes I}$ defined as

$$\mathbf{V}_{f\ell n} = \mathbf{M}_n^{\top} \operatorname{diag}_J\left(u_{j,f\ell} \mathbf{R}_{j,f}\right) \mathbf{M}_n =$$
(18)

$$\sum_{j=1}^{J} d_{j,n} u_{j,f\ell} \mathbf{R}_{j,f}.$$
 (19)

2.1.2. The Block Structure of $\Sigma_{f\ell n}$

From (17) we can now partition $\Sigma_{f\ell n}$ in J^2 , $I \times I$ blocks: $\{\Sigma_{jr,f\ell n} \in \mathbb{C}^{I \times I}\}_{j,r=1}^{J,J}$. We are interested on the covariance matrix $\Sigma_{j,f\ell n} \in \mathbb{C}^{I \times I}$ of a specific source image $\mathbf{y}_{j,f\ell}$. that is the *j*-th, $I \times I$ diagonal block $\Sigma_{jj,f\ell n}$:

$$\Sigma_{jj,f\ell n} = u_{j,f\ell} \mathbf{R}_{j,f} - d_{j,n} u_{j,f\ell} \mathbf{R}_{j,f} \mathbf{V}_{f\ell n}^{-1} d_{j,n} u_{j,f\ell} \mathbf{R}_{j,f}, \quad (20)$$

Eq. (20) corresponds to (10) in [1].

We will also need the non-diagonal blocks $\Sigma_{jr,f\ell n}, j \neq r$ that are expressible with:

$$\Sigma_{jr,f\ell n} = -d_{j,n}u_{j,f\ell}\mathbf{R}_{j,f}\mathbf{V}_{f\ell n}^{-1}d_{r,n}u_{r,f\ell}\mathbf{R}_{r,f}.$$
 (21)

2.1.3. The Posterior Mean $\hat{\mathbf{y}}_{j,f\ell n}$ of a Source Image

We are interested on the posterior mean $\hat{\mathbf{y}}_{j,f\ell n} \in \mathbb{C}^{I}$ of a specific source image $\mathbf{y}_{j,f\ell}$, obtained from the respective part of the long vector $\hat{\mathbf{y}}_{f\ell n}$ that has been computed with (16).

We can simplify (16) by applying (158) from [5]:

$$\hat{\mathbf{y}}_{f\ell n} = \operatorname{diag}_{J}\left(u_{j,f\ell}\mathbf{R}_{j,f}\right)\mathbf{M}_{n}^{\top}\mathbf{V}_{f\ell n}^{-1}\mathbf{x}_{f\ell}.$$
 (22)

Or simply for a specific $\hat{\mathbf{y}}_{j,f\ell} \in \mathbb{C}^I$:

$$\hat{\mathbf{y}}_{j,f\ell n} = u_{j,f\ell} \mathbf{R}_{j,f} d_{j,n} \mathbf{V}_{f\ell n}^{-1} \mathbf{x}_{f\ell}.$$
(23)

Clearly, (23) is equivalent with (9) in [1].

²We work in \propto and therefore any term independent of $\mathbf{y}_{f\ell}$ is a constant for $p(\mathbf{y}_{f\ell}|\mathbf{x}_{1:F1:L})$ and can be dropped.

2.2. E step Source Diarisation

We compute $p(Z_{1:L}|\mathbf{x}_{1:F1:L})$ from (8), by marginalising out all source images:

$$p(Z_{1:L}|\mathbf{x}_{1:F,1:L}) = p(Z_1) \prod_{\ell=2}^{L} p(Z_\ell | Z_{\ell-1}) \times$$
$$\prod_{f,\ell=1}^{F,L} \int_{\mathbf{y}_{f\ell}} p(\mathbf{x}_{f\ell} | Z_\ell, \mathbf{y}_{f\ell}) p(\mathbf{y}_{f\ell}) d\mathbf{y}_{f\ell} = \qquad (24)$$
$$p(Z_1) \prod_{\ell=1}^{L} p(Z_\ell | Z_{\ell-1}) \times$$

$$\prod_{f,\ell=1}^{F,L} \mathcal{N}_c\left(\mathbf{x}_{f\ell}; \mathbf{0}, \mathbf{V}_{f\ell Z_\ell}\right).$$
(25)

where (for each $Z_{\ell} = n$) $\mathbf{V}_{f\ell n}$ is calculated with (19). As for the integral is calculated with Eq.(2.115) from [6].

2.2.1. Forward-Backward Algorithm for HMM

Eq. (25) is the joint distribution of an HMM with hidden state Z_{ℓ} along $\ell \in [1, L]$ (see Eq. (13.10) in [6]). and some emission probabilities $\iota_{\ell Z_{\ell}}$ defined:

$$\iota_{\ell Z_{\ell}} = \prod_{f=1}^{F} \mathcal{N}_{c} \left(\mathbf{x}_{f\ell}; \mathbf{0}, \mathbf{V}_{f\ell Z_{\ell}} \right).$$
(26)

The posterior probability $\eta_{\ell n} = p(Z_{\ell} = n | \mathbf{x}_{1:F1:L})$ of each hidden state is hence computed using the forward-backward algorithm: provided in equations (13.36), (13.38) of [6].

2.3. M step

In the M step, the parameters θ are updated by maximising the Expected Complete Data Log-likelihood (ECDLL) function (see Eq. (9.30) in [6]) with respect to the parameters θ .

2.3.1.
$$M$$
- T_{nr} , λ_n

The update rules for the diarisation parameters T_{nr} , λ_n are the ML updates for HMM parameters: Equations (13.19), (13.18) of [6].

2.3.2.
$$M$$
- $w_{i,fk}, h_{i,k\ell}, \mathbf{R}_{i,f}$

The source image parameters $w_{j,fk}, h_{j,k\ell}, \mathbf{R}_{j,f} \forall f, \ell, j$ are updated as in [4]. To apply the rules derived in [4] one needs the second order posterior moment of a source image $\mathbf{y}_{j,f\ell}$

that is found with:

$$\mathbf{Q}_{j,f\ell} = \sum_{n=1}^{N} \eta_{\ell n} \int_{\mathbf{y}_{f\ell}} p(\mathbf{y}_{f\ell} | Z_{\ell} = n, \mathbf{x}_{1:F1:L}) \times \mathbf{y}_{j,f\ell} \mathbf{y}_{j,f\ell}^{\mathrm{H}} \mathrm{d}\mathbf{y}_{f\ell} = \qquad (27)$$

$$\sum_{n=1} \eta_{\ell n} \left(\boldsymbol{\Sigma}_{jj, f\ell n} + \hat{\mathbf{y}}_{j, f\ell n} \hat{\mathbf{y}}_{j, f\ell n}^{\mathrm{H}} \right).$$
(28)

2.3.3. M-of

The ECDLL $\mathcal{L}(o_f)$ regarding o_f writes:

$$\mathcal{L}(o_f) = \sum_{n=1}^{N} \eta_{\ell n} \int_{\mathbf{y}_{f\ell}} p(\mathbf{y}_{f\ell} | Z_{\ell} = n, \mathbf{x}_{1:F1:L}) \times \log \mathcal{N}_c \left(\mathbf{x}_{f\ell}; \mathbf{M}_n \mathbf{y}_{f\ell}, o_f \mathbf{I}_I \right) \mathrm{d} \mathbf{y}_{f\ell}.$$
 (29)

Differentiating $\mathcal{L}(o_f)$ w.r.t. o_f and setting the result to zero yields the update rule for o_f :

$$o_{f} = \frac{1}{LI} \sum_{\ell=1}^{L} \left(\mathbf{x}_{f\ell}^{\mathsf{H}} \mathbf{x}_{f\ell} - \left(\sum_{n=1}^{N} \eta_{\ell n} \hat{\mathbf{x}}_{f\ell n} \right)^{\mathsf{H}} \mathbf{x}_{f\ell} - \mathbf{x}_{f\ell}^{\mathsf{H}} \left(\sum_{n=1}^{N} \eta_{\ell n} \hat{\mathbf{x}}_{f\ell n} \right) + \sum_{n=1}^{N} \eta_{\ell n} \operatorname{tr} \left\{ \mathbf{M}_{n} \left(\mathbf{\Sigma}_{f\ell n} + \hat{\mathbf{y}}_{f\ell n} \hat{\mathbf{y}}_{f\ell n}^{\mathsf{H}} \right) \mathbf{M}_{n}^{\mathsf{T}} \right\} \right).$$
(30)

with $\hat{\mathbf{x}}_{f\ell n}$ defined as:

$$\hat{\mathbf{x}}_{f\ell n} = \mathbf{M}_n \hat{\mathbf{y}}_{f\ell n} = \sum_{j=1}^J d_{j,n} \hat{\mathbf{y}}_{j,f\ell n}.$$
(31)

Notice that $d_{j,n}$ is already applied on (23) and it does not need to be re-applied as it is binary.

2.3.4. SImplification of the Quadratic Term

Now let's work with the quadratic term in (30):

$$\operatorname{tr}\left\{\mathbf{M}_{n}\left(\mathbf{\Sigma}_{f\ell n}+\hat{\mathbf{y}}_{f\ell n}\hat{\mathbf{y}}_{f\ell n}^{\mathsf{H}}\right)\mathbf{M}_{n}^{\mathsf{T}}\right\}=\tag{32}$$

$$\operatorname{tr}\left\{\mathbf{M}_{n}\boldsymbol{\Sigma}_{f\ell n}\mathbf{M}_{n}^{\mathsf{T}}\right\} + \hat{\mathbf{x}}_{f\ell n}^{\mathsf{H}}\hat{\mathbf{x}}_{f\ell n}.$$
(33)

Now let us define the variance part of the above as $\delta_{f\ell n}$, which is practically the sum of all J^2 blocks of the source covariance that due to \mathbf{M}_n are multiplied with the diarisation:

$$\delta_{f\ell n} = \operatorname{tr}\left\{\mathbf{M}_{n}\boldsymbol{\Sigma}_{f\ell n}\mathbf{M}_{n}^{\mathsf{T}}\right\} =$$
(34)

$$\operatorname{tr}\left\{\sum_{j=1}^{J}\sum_{r=1}^{J}d_{j,n}d_{r,n}\boldsymbol{\Sigma}_{jr,f\ell n}\right\} =$$
(35)

$$\operatorname{tr}\left\{\mathbf{P}_{f\ell n}-\mathbf{P}_{f\ell n}\mathbf{V}_{f\ell n}^{-1}\mathbf{P}_{f\ell n}\right\}.$$
(36)

3. REFERENCES

- [1] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, and R. Horaud, "Exploiting the intermittency of speech for joint separation and diarisation of speech signals," in *Submitted to IEEE Workshop Applicat. Signal Process. to Audio and Acoust. (WASPAA)*, New Paltz, NY, 2017.
- [2] F. Neeser and J. Massey, "Proper complex random processes with applications to information theory," *IEEE Trans. Info. Theory*, vol. 39, no. 4, pp. 1293–1302, 1993.
- [3] N. Duong, E. Vincent, and R. Gribonval, "Underdetermined reverberant audio source separation using a full-rank spatial covariance model," *IEEE Trans. Audio, Speech, Lang. Process.*, vol. 18, no. 7, pp. 1830–1840, 2010.
- [4] S. Arberet, A. Ozerov, N. Q. K. Duong, E. Vincent, R. Gribonval, F. Bimbot, and P. Vandergheynst, "Nonnegative matrix factorization and spatial covariance model for under-determined reverberant audio source separation," in *IEEE Int. Conf. Info. Sciences, Signal Process., Applicat.*, Kuala Lumpur, Malaysia, 2010.
- [5] K. B. Petersen and M. S. Pedersen, *The matrix cookbook*. Version. Nov 15, 2012.
- [6] C. Bishop, *Pattern Recognition and Machine Learning*. Springer, 2006.