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Source Separation from Convolutive Mixtures

e Problem: J Source signals, mixed with filters and summed,
are recorded at / microphones: Recover the original sources!

e Existing approaches mainly deal with static setups, e.g.,
[Ozerov & Févotte 2010], [Duong et al. 2010], [Ozerov et al.
2012].

e We want to address dynamic setups, for example:

® moving sources, or
e moving microphones, or
e changes in the environment.

e Existing techniques consider either block-wise adaptation of
static models, e.g., [Simon & Vincent 2012], or DOA-based
discrete temporal models, e.g. [Higuchi et al. 2014].

e We propose a continuous temporal formulation based on
linear dynamical systems (LDS)
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Formulation of Static Mixtures

e Separate a mixture of J sources with / microphones.
e In STFT domain the problem becomes:

xfe = Arsee + by

/

mixture [/ x 1]

observed .
mixing ma-
trix [/ x J] sensor noise
unknown! [l x 1]
source STFT unknown!
[J x 1]
unknown!

o f =11, F]: frequency bins, £ = [1,L]: time frames.
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Proposed Dynamic Mixture Formulation (I)

e The mixture signal at a microphone:
Xife=...+ A,_‘j,ij’fg =+ ...

¢ In [Ozerov & Févotte 2010] the entries (Ajj r) of Ar are
parameters

e Our approach:
Ay replaced with Asq, ..., A, ... Apn.

The mixing becomes:

Xre = AgrSre + byy.

e The entries of As; are modeled as random latent variables.
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Proposed Dynamic Mixture Formulation

e The mixing matrix Afy is a random variable:

— Flexibility on the source-microphone path model.
— Estimate is a distribution instead of a single value.

e The mixing matrix Agy is complex-Gaussian:

— Provides compact parametrization.
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Proposed Dynamic Mixture Formulation (111)

Ari,...,Afp, ..., Aq are complex-Gaussian r.v's with LDS:
— A1 ~ Nc (vec(Ar1); p?, X37) (1 frame prior).

— AfglAfg_l ~ N¢ (VEC(Afg); vec(Afg_l), Z?) (evolution).
vec(Afy): vectorization for computational simplicity.
32 € CY*¥ encodes temporal correlation between filters.

Limited number of parameters to be estimated, /J is small!
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The NMF Source Model

e Same as in [Ozerov & Févotte 2010]:
K;
e Each source: sum of elementary components s; sy = > cx fe
k=1
o Each component follows ¢ ¢y ~ Nc (ck re; 0, wachie).

e Benefits:

e Reduces the number of parameters to be estimated!
e Provides very simple update rules for both wg, hye.
e Avoids permutation of sources between frequencies!

7/18



Associated Graphical Model

Wrk, Die
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Inference & EM Algorithm

e Probabilistic inference of:
L . F,L
A={Aptey .S ={srtr,y given X = {xp}f ).

o Gaussian sensor noise: p(X|A,S) = Nc(xfe; Aresre, vely).
e Standard EM alternates between:

o Inference of p(A,S|X).
' . a FvLy(Z)'le I<J)
e Estimation of § = {vf, Wik, hkl’v“fa"zf}fe k=1 .

¢ Inference of p(A,S|X) is intractable in our case.
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Variational EM

e Variational approximation: p(A,S|X) ~ p(A|X)p(S|X),
o E-step split into two steps:

e Sources E-step: Estimate p(S|X) given p(A|X)

o Filters E-step: Estimate p(.A|X) given p(S|X).

e M-step: parameter estimation via maximization of the
complete-data expected log-likelihood.
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Expectation Steps

e Sources E-step:

p(S|X) o p(S) exp (Ep(aix) log p(X]A, S)])

This expression results:
p(sre| X) = Ne(sre; 870, X7;).-
e Filters E-step:

p(A|X) o< p(A) exp (Ep(six) [log p(X] A, S)]) -

This expression, solved with a Kalman smoother, yields:
p(AseX) = N- (vec(Afg); vec(Ag), zjz;) .
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Maximization Step

The parameter set 6 estimated by maximizing the complete
data expected log-likelihood:

Ep(s1x)pAlx) [log p(X, A, S)] .-

Closed-form updates for: {Z?,u‘;,vf}’f::l.

Closed-from alternating updates for the source-spectra

F.L(37 K))
parameters: {Wfk,hke},,—,&k:lj v

The detailed derivations are in
http://arxiv.org/abs/1510.04595
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http://arxiv.org/abs/1510.04595

Experimental Setup

e Time-varying convolutive stereo mixtures containing 4 speech
signals from TIMIT (length = 2s),

e Source motions simulated using BRIRs
[Hummersone et al. 2013].

e Comparison with block-wise implementation of
[Ozerov & Févotte 2010]

e Blind initialization of filter parameters (A¢, entries set to 1).

e Initialization of NMF using true source spectra, corrupted by
the other sources, with SNR of: 20dB, 10dB, 0dB.

e Performance evaluation using SDR (higher the better)
[Vincent et al. 2007].
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Quantitative Results

Average SDR (dB) scores (10 sets of speakers):

Proposed [Ozerov & Févotte 2010]
SNR s s s3 s s1 S 53 S

20dB 7.0 6.6 7.6 9.2 38 39 49 5.8
10dB 6.1 6.0 69 8.2 3.7 39 46 5.4
0dB 18 17 34 38 0.7 10 1.7 2.3

SDR measured at the input: The mix-signal is the estimate!

S1 S2 S3 sS4
SDR(dB) -78 -76 -53 -41
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Effect of Circular !peed of !ource
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Example of Separation Results

e J =4 sources, | = 2 microphones
e Sources move, forward and backward, along circular
trajectories

e Sources #3 and #4 move twice faster than
sources #1 and #2
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Conclusions and Future Work

e We addressed separation of moving acoustic sources;

e We proposed a generalization of the successful time-invariant
convolutive model of [Ozerov & Févotte 2010];

e We devised a variational EM (VEM) inference procedure;

e Results obtained with 4 sources and 2 microphones
(underdetermined mixtures) are quite encouraging;

e VEM is well known to be sensitive to initialization and less
efficient than EM;

e We plan to thoroughly investigate initialization strategies and
to improve the algorithm's speed of convergence;

e We also plan to combine diarization and separation.
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Thank you !



