





#### The scenario

- Microphone array with an arbitrary topology.
- Single static desired speech source & (directional) stationary noise.
- Problem to be solved
- Estimate the relative transfer function (RTF) of the desired source. **Proposed method**
- Segmental power spectral density (PSD) matrix subtraction method.
- Reducing the stationary noise component and Preserving non-stationary speech component.

#### Applications

Sound source localization.

#### **Problem Formulation**

• Received signals in the short time Fourier transform (STFT) domain:

$$\mathbf{x}(l,\omega) = \mathbf{h}_s(\omega)s_s(l,\omega) + \mathbf{h}_i(\omega)s_i(l,\omega).$$

- $l = 1, \ldots, L$ ,  $\omega = 0, \ldots \Omega 1$  index of frame and frequency, respectively.
- $\mathbf{x}(l,\omega)$  M-channel microphone signals.
- $s_s(l, \omega)$  STFT spectrum of the desired speech source.
- $s_i(l, \omega)$  STFT spectrum of the noise source.
- $\mathbf{h}_s(\omega)$  (time-invariant) M-channel acoustic transfer functions (ATFs) of the desired source.
- $\mathbf{h}_i(\omega)$  (time-invariant) M-channel ATFs of the noise source.

#### **Segmental PSD Matrix Subtraction**

#### **Spectral Segment**

Segment as the concatenation of successive frames:

$$\mathbf{X}_{l'}(\omega) = [\mathbf{x}((l'-1)R+1,\omega),\ldots,\mathbf{x}((l'-1)R+W,\omega)].$$

- W frames.
- R segment increment.
- $l' = 1 \dots L'$  segment index.

#### **PSD** Matrix of Segment

PSD matrix:

 $\mathbf{\Phi}_{l'}(\omega) = \mathbf{X}_{l'}(\omega) \mathbf{X}_{l'}^{H}(\omega) \approx \mathbf{h}_{s}(\omega) \mathbf{h}_{s}^{H}(\omega) \Phi_{l'}^{s}(\omega) + \mathbf{h}_{i}(\omega) \mathbf{h}_{i}^{H}(\omega) \Phi_{l'}^{i}(\omega),$ 

where

$$\Phi_{l'}^{s}(\omega) = \sum_{l=(l'-1)R+1}^{(l'-1)R+W} |s_{s}(l,\omega)|^{2}$$

is the power summation of the desired source signal in the l'-th segment.

- The fluctuations of  $\Phi_{l'}^s(\omega)$  are large because of the non-stationarity and sparsity of speech signals.
- $\Phi_{l'}^i(\omega)$  power summation of the noise signal.
- $\Phi^i_{l'}(\omega)$  is the smoothed power spectrum using W frames, and has a small variance due to  $s_i(t)$  stationarity.

# Estimation of Relative Transfer Function in the presence of stationary noise based on segmental Power Spectral Density matrix subtraction

Xiaofei Li<sup>1</sup>, Laurent Girin<sup>1,2</sup>, Radu Horaud<sup>1</sup>, Sharon Gannot<sup>3</sup> INRIA Grenoble Rhône-Alpes  $^2$  GIPSA-Lab & Univ. Grenoble Alpes  $^3$  Bar-IIan University {xiaofei.li, radu.horaud}@inria.fr laurent.girin@gipsa-lab.grenoble-inp.fr sharon.gannot@biu.ac.il

# Segmental PSD Matrix Subtraction

PSD Matrix Subtraction:

$$\mathbf{\Phi}_{l_1'}(\omega) - \mathbf{\Phi}_{l_2'}(\omega)$$

$$= \mathbf{h}_{s}(\omega)\mathbf{h}_{s}^{H}(\omega)(\Phi_{l_{1}}^{s}(\omega) - \Phi_{l_{2}}^{s}(\omega)) + \mathbf{h}_{i}(\omega)\mathbf{h}_{i}^{H}(\omega)(\Phi_{l_{1}}^{i}(\omega) - \Phi_{l_{2}}^{i}(\omega)).$$

- $|\Phi_{l'_1}^i(\omega) \Phi_{l'_2}^i(\omega)| \ll |\Phi_{l'_1}^s(\omega) \Phi_{l'_2}^s(\omega)|.$
- The PSD difference matrix matches the matrix spanned by  $\mathbf{h}_s(\omega)$  well.

## **Segment Classification**

Large speech power spectrum difference  $|\Phi_{l'_1}^s(\omega) - \Phi_{l'_2}^s(\omega)|$  is guaranteed by classifying segments into two classes  $\mathbf{l}_1$  and  $\mathbf{l}_2$  with high speech power and low speech power, respectively.

#### **Power Spectrum Formulation**

• The trace of the PSD matrix  $\Phi_{l'}(\omega)$ :

$$\xi_{l'}(\omega) = \mathbf{h}_s^H(\omega)\mathbf{h}_s(\omega)\Phi_{l'}^s(\omega) + \mathbf{h}_i^H(\omega)\mathbf{h}_i(\omega)\Phi_{l'}^s(\omega)$$

• where, the power of the noise signal:

$$\xi_{l'}^{i}(\omega) = \mathbf{h}_{i}^{H}(\omega)\mathbf{h}_{i}(\omega)\sum_{l=(l'-1)R+1}^{(l'-1)R+W} |s_{i}(l,\omega)|$$

obeys the Erlang distribution with the shape parameter W. Denote the cdf F.

#### Maximum and Minimum Statistics

• Assuming adjacent segments are non-overlapping, the L' segments become independent and the pdfs of their minimum and maximum are:

$$f_{min}(\xi) = L' \cdot (1 - F(\xi))^{L'-1} \cdot f(\xi), \quad f_{max}(\xi) = L' \cdot (F(\xi))^{L'-1} \cdot f(\xi).$$

- If overlap exists,  $\xi_{l'}^i(\omega)$  becomes a correlated sequence.
- Simulations using a large dataset show that an approximate equivalent sequence length L' is:

$$\tilde{L}' = \frac{L'R}{W} \cdot \left(1 + \log\left(\frac{W}{R}\right)\right).$$

• Figure shows the cdf for W = 18, which demonstrates the applicability of the approximation.

**Segment Classification** 

• Two classification threshold factors: maximum and minimum ratios

$$r_1 = \xi_{F_{max}(\xi)=0.95}/\bar{\xi}_{min}, \quad r_2 = \xi_{F_{max}(\xi)=0.5}/$$

- $F_{max}(\xi)$  cdf of the maximum; and  $\xi_{min}$  expectation of the minimum.
- Classification into two classes:

$$\mathbf{l}_{1} = \{ l' \mid \xi_{l'}(\omega) > r_{1} \cdot \min\{\xi_{l'}(\omega)\} \}, \quad \mathbf{l}_{2} = \{ l' \mid \xi_{l'}(\omega) < r_{2} \cdot \min\{\xi_{l'}(\omega)\} \}.$$

# **RTF Estimation**

- The global noise-free PSD matrix:  $\hat{\Phi}(\omega) = \sum_{l'_1, l'_2 \in \mathbf{l}_1} (\Phi_{l'_1}(\omega) \Phi_{l'_2}(\omega)).$
- The principal eigenvector of  $\hat{\Phi}(\omega)$  is an unit-norm estimation of the RTF vector corresponding to  $\mathbf{h}_{s}(\omega)$ .

$$\Phi^i_{l'}(\omega),$$

$$\omega)|^2$$



$$ar{\xi}_{min}$$

# **Experiments: Application to Sound Source Localization**

## **Sound Source Localization Principle**

- Supervised "look-up table" approach.
- Feature vector:  $\mathbf{h} = [\mathbf{h}^T(0), \dots, \mathbf{h}^T(\Omega 1)]^T$ .
- In the test stage select the best fitting feature vector:

$$\hat{\mathbf{p}} = \mathbf{p}_{k_0}$$
 with  $k_0 = \mathbf{a}$ 

## The Dataset: Audio-Visual Alignment



- Four microphones: left/right and front/back.
- elevation) directions.
- Test data: 108 speech signals are emitted from 108 directions.
- separately emitted from different directions outside the camera field-of-view.

#### Results

- speech presence probability (SPP) method [Cohen, 2004].
- Performance metric: average absolute localization error (in degrees).

|         | WGN  |      |       | babble |      |       |
|---------|------|------|-------|--------|------|-------|
| SNR(dB) | NS   | SPP  | Prop. | NS     | SPP  | Prop. |
| 10      | 1.51 | 1.35 | 1.21  | 1.47   | 1.31 | 1.24  |
| 5       | 1.58 | 1.34 | 1.27  | 1.77   | 1.58 | 1.56  |
| 0       | 2.14 | 1.65 | 1.30  | 2.40   | 2.55 | 2.47  |
| -5      | 4.61 | 2.79 | 1.77  | -      | -    | _     |
| -10     | 9.20 | 6.64 | 2.62  | -      | -    | _     |

- Achieving the best performance for WGN.
- optimization criterion that considers all channels simultaneously.
- Performance degrade for babble noise due to its non-stationarity.

- based on maximum and minimum statistics.
- Can be extended to the case of multiple speakers (future work).

• A pre-trained dictionary  $\{\mathbf{h}_k, \mathbf{p}_k\}, k = 1, \dots, K$  of pairs of feature vectors and source directions, for a given room and a given microphone constellation.

 $\operatorname{argmin} \| \widetilde{\mathbf{h}} - \mathbf{h}_k \|.$ 

• Lookup table: 1s white-noise signal is emitted from  $24 \times 18$  (azimuth and

Directional noise: White Gaussian noise (WGN) and babble noise are

Comparison methods: non-stationarity (NS) method [Gannot et al., 2001],

• Advantages: 1) only the segments containing speech are selected; 2) the noise PSD matrix is accurately subtracted; 3) the eigenvalue decomposition is an

#### Summary

• A RTF identification method based on segmental PSD matrix subtraction. • A classification between speech and noise segments and noise-only-segment

• Outperforms commonly used methods when the noise is stationary.