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The scenario
• Microphone array with an arbitrary topology.
• Single static desired speech source & (directional) stationary noise.
Problem to be solved
• Estimate the relative transfer function (RTF) of the desired source.
Proposed method
• Segmental power spectral density (PSD) matrix subtraction method.
• Reducing the stationary noise component and Preserving non-stationary
speech component.

Applications
• Sound source localization.

Problem Formulation

• Received signals in the short time Fourier transform (STFT) domain:

x(l, ω) = hs(ω)ss(l, ω) + hi(ω)si(l, ω).
• l = 1, . . . , L, ω = 0, . . .Ω− 1 - index of frame and frequency, respectively.
• x(l, ω) - M -channel microphone signals.
• ss(l, ω) - STFT spectrum of the desired speech source.
• si(l, ω) - STFT spectrum of the noise source.
• hs(ω) - (time-invariant) M -channel acoustic transfer functions (ATFs) of the
desired source.

• hi(ω) - (time-invariant) M -channel ATFs of the noise source.

Segmental PSD Matrix Subtraction

Spectral Segment
• Segment as the concatenation of successive frames:

Xl′(ω) = [x((l′ − 1)R + 1, ω), . . . ,x((l′ − 1)R + W,ω)].
•W frames.
•R - segment increment.
• l′ = 1 . . . L′ - segment index.
PSD Matrix of Segment
• PSD matrix:

Φl′(ω) = Xl′(ω)XH
l′ (ω) ≈ hs(ω)hHs (ω)Φs

l′(ω) + hi(ω)hHi (ω)Φi
l′(ω),

• where
Φs
l′(ω) =

∑(l′−1)R+W
l=(l′−1)R+1 |ss(l, ω)|2

is the power summation of the desired source signal in the l′-th segment.
• The fluctuations of Φs

l′(ω) are large because of the non-stationarity and sparsity
of speech signals.

• Φi
l′(ω) - power summation of the noise signal.

• Φi
l′(ω) is the smoothed power spectrum usingW frames, and has a small variance

due to si(t) stationarity.

Segmental PSD Matrix Subtraction
• PSD Matrix Subtraction:

Φl′1
(ω)−Φl′2

(ω)
= hs(ω)hHs (ω)(Φs

l′1
(ω)− Φs

l′2
(ω)) + hi(ω)hHi (ω)(Φi

l′1
(ω)− Φi

l′2
(ω)).

• |Φi
l′1
(ω)− Φi

l′2
(ω)| � |Φs

l′1
(ω)− Φs

l′2
(ω)|.

• The PSD difference matrix matches the matrix spanned by hs(ω) well.

Segment Classification

Large speech power spectrum difference |Φs
l′1
(ω)−Φs

l′2
(ω)| is guaranteed by classi-

fying segments into two classes l1 and l2 with high speech power and low speech
power, respectively.
Power Spectrum Formulation
• The trace of the PSD matrix Φl′(ω):

ξl′(ω) = hHs (ω)hs(ω)Φs
l′(ω) + hHi (ω)hi(ω)Φi

l′(ω),
• where, the power of the noise signal:

ξil′(ω) = hHi (ω)hi(ω)
∑(l′−1)R+W

l=(l′−1)R+1 |si(l, ω)|2

obeys the Erlang distribution with the shape parameter W . Denote the cdf F .
Maximum and Minimum Statistics
• Assuming adjacent segments are non-overlapping, the L′ segments become in-
dependent and the pdfs of their minimum and maximum are:

fmin(ξ) = L′ · (1− F (ξ))L′−1 · f (ξ), fmax(ξ) = L′ · (F (ξ))L′−1 · f (ξ).

• If overlap exists, ξil′(ω) becomes a correlated
sequence.

• Simulations using a large dataset show that
an approximate equivalent sequence length
L̃′ is:

L̃′ = L′R

W
·
(

1 + log
(
W

R

))
.

• Figure shows the cdf for W = 18, which
demonstrates the applicability of the
approximation.
Segment Classification
• Two classification threshold factors: maximum and minimum ratios

r1 = ξFmax(ξ)=0.95/ξ̄min, r2 = ξFmax(ξ)=0.5/ξ̄min

•Fmax(ξ) - cdf of the maximum; and ξ̄min - expectation of the minimum.
• Classification into two classes:

l1 = {l′ | ξl′(ω) > r1 ·min{ξl′(ω)}}, l2 = {l′ | ξl′(ω) < r2 ·min{ξl′(ω)}}.

RTF Estimation

• The global noise-free PSD matrix: Φ̂(ω) = ∑
l′1,l
′
2∈l1(Φl′1

(ω)−Φl′2
(ω)).

• The principal eigenvector of Φ̂(ω) is an unit-norm estimation of the RTF vector
corresponding to hs(ω).

Experiments: Application to Sound Source Localization

Sound Source Localization Principle
• Supervised “look-up table” approach.
• Feature vector: h = [hT (0), . . . ,hT (Ω− 1)]T .
• A pre-trained dictionary {hk,pk}, k = 1, . . . , K of pairs of feature vectors and
source directions, for a given room and a given microphone constellation.

• In the test stage select the best fitting feature vector:
p̂ = pk0 with k0 = argmin

k∈[1,K]
‖ h̃− hk ‖ .

The Dataset: Audio-Visual Alignment

• Four microphones: left/right and front/back.
• Lookup table: 1s white-noise signal is emitted from 24×18 (azimuth and
elevation) directions.

• Test data: 108 speech signals are emitted from 108 directions.
• Directional noise: White Gaussian noise (WGN) and babble noise are
separately emitted from different directions outside the camera field-of-view.

Results
• Comparison methods: non-stationarity (NS) method [Gannot et al., 2001],
speech presence probability (SPP) method [Cohen, 2004].

• Performance metric: average absolute localization error (in degrees).
WGN babble

SNR(dB) NS SPP Prop. NS SPP Prop.
10 1.51 1.35 1.21 1.47 1.31 1.24
5 1.58 1.34 1.27 1.77 1.58 1.56
0 2.14 1.65 1.30 2.40 2.55 2.47
-5 4.61 2.79 1.77 - - -
-10 9.20 6.64 2.62 - - -

• Achieving the best performance for WGN.
• Advantages: 1) only the segments containing speech are selected; 2) the noise
PSD matrix is accurately subtracted; 3) the eigenvalue decomposition is an
optimization criterion that considers all channels simultaneously.

• Performance degrade for babble noise due to its non-stationarity.

Summary

• A RTF identification method based on segmental PSD matrix subtraction.
• A classification between speech and noise segments and noise-only-segment
based on maximum and minimum statistics.

• Outperforms commonly used methods when the noise is stationary.
• Can be extended to the case of multiple speakers (future work).


