High dimensional regression with Gaussian mixtures and partially latent response variables

Antoine Deleforge, Florence Forbes, and Radu Horaud

Perception and Mistis teams INRIA Grenoble Rhone-Alpes first.last@inria.fr

Statistics and Computing, Springer, 2014 team.inria.fr/perception/research/high-dim-regression/

Dealing with high dimensional data

Find f between $\boldsymbol{y} \in \mathbb{R}^D$ and $\boldsymbol{x} \in \mathbb{R}^L$ with D >> L

$$f: \quad oldsymbol{y} \in \mathbb{R}^D \quad \longrightarrow \quad oldsymbol{x} \in \mathbb{R}^L$$

from a learning sample $\{(\boldsymbol{y}_n, \boldsymbol{x}_n), n=1, \ldots N\}$

Difficulty : D large \implies curse of dimensionality

Solutions : via dimensionality reduction

- Reduce dimension of y before regression: eg. PCA on the y_n's first
 Risk: poor prediction of x
- Take *x* into account: PLS [Rosipal et al 06], SIR [Li 91], Kernel SIR [Wu 08], PC based methods [Cook 07, Adragani & Cook 09], etc.
- \implies two steps approaches not expressed as a single optimization problem

Proposed: Inverse regression then forward prediction

Standard regression setting: Fully Observed Input and Output Variables

Proposed Method: An inverse regression strategy

- $oldsymbol{X} \in \mathcal{X} \subset \mathbb{R}^L$ low-dimensional space,
- $Y \in \mathcal{Y} \subset \mathbb{R}^D$ high-dimensional space,
- $(\boldsymbol{y}, \boldsymbol{x})$ realization of $(\boldsymbol{Y}, \boldsymbol{X}) \sim p(\boldsymbol{Y}, \boldsymbol{X}; \boldsymbol{\theta})$, $\boldsymbol{\theta}$ parameters
- Inverse conditional density: $p(Y \mid X; \theta)$ Y is a noisy function of X

Modeled via mixtures \rightarrow tractable θ estimation

• Forward conditional density: $p(X \mid Y; \theta^*)$, with $\theta^* = g(\theta)$

 \rightarrow high-to-low prediction, eg. $\hat{x} = E[X \mid Y = y; \theta^*]$

Gaussian Locally-linear Mapping (GLLiM)

- $X \in \mathcal{X} \subset \mathbb{R}^L$ low-dimensional space,
- $\boldsymbol{Y} \in \mathcal{Y} \subset \mathbb{R}^D$ high-dimensional space,
- A piecewise affine model: Introduce a missing variable Z

$$p(\mathbf{Y} = \mathbf{y}, \mathbf{X} = \mathbf{x}; \boldsymbol{\theta}) =$$

$$\sum_{k=1}^{K} p(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}, Z = k; \boldsymbol{\theta}) \ p(\mathbf{X} = \mathbf{x} | Z = k; \boldsymbol{\theta}) \ p(Z = k; \boldsymbol{\theta})$$

 $Z = k \Leftrightarrow oldsymbol{Y}$ is the image of $oldsymbol{X}$ by an affine transformation au_k

Hierarchical definition

$$\boldsymbol{Y} = \sum_{k=1}^{K} \mathbb{I}(Z = k) (\boldsymbol{A}_k \boldsymbol{X} + \boldsymbol{b}_k + \boldsymbol{E}_k)$$

 ${\mathbb I}$ Indicator function, ${\boldsymbol{\mathsf A}}_k \ D \times L$ matrix, ${\boldsymbol{\mathsf b}}_k$ D-dim vector

 E_k : observation noise in \mathbb{R}^D and reconstruction error, Gaussian, centered, independent on X, Y, and Z

$$p(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}, Z = k; \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{y}; \boldsymbol{A}_k \boldsymbol{x} + \boldsymbol{b}_k, \boldsymbol{\Sigma}_k)$$

• Affine transformations are local: mixture of K Gaussians

$$p(\boldsymbol{X} = \boldsymbol{x} | Z = k; \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_k, \boldsymbol{\Gamma}_k)$$
$$p(Z = k; \boldsymbol{\theta}) = \pi_k$$

• The set of all model parameters is:

 $\boldsymbol{\theta} = \{\boldsymbol{c}_k, \boldsymbol{\Gamma}_k, \pi_k, \boldsymbol{A}_k, \boldsymbol{b}_k, \boldsymbol{\Sigma}_k, k = 1 \dots K\}$

Usually $\{ \Sigma_k = \sigma I_D, k = 1 \dots K \}$ (isotropic reconstruction error)

Geometric Interpretation

This model induces a partition of \mathbb{R}^{L} into K regions \mathcal{R}_{k} where the transformation τ_{k} is the most probable.

If $|\Gamma_1| = \cdots = |\Gamma_K|$: $\{\mathcal{R}_k, k = 1 \dots K\}$ define a Voronoi diagram of centroids $\{c_k, k = 1 \dots K\}$ (Mahalanobis distance $||.||_{\Gamma}$).

L = 2, D = 3, K = 15.

Low-to-high (Inverse) Regression

If X and Y are both observed

- The parameter vector, θ , can be estimated in closed-form using an EM inference procedure
- This yields the *inverse conditional density* which is a Gaussian mixture:

$$p(\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \underbrace{\frac{\pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_k, \boldsymbol{\Gamma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_j, \boldsymbol{\Gamma}_j)}}_{\beta_k} \mathcal{N}(\boldsymbol{y}; \underbrace{\boldsymbol{A}_k \boldsymbol{x} + \boldsymbol{b}_k}_{\boldsymbol{\mu}_k}, \boldsymbol{\Sigma}_k)$$

High-to-low (Forward) Regression

- The forward parameter vector, θ^* , has an analytic expression as a function of θ
- This yields the *forward conditional density* which is a Gaussian mixture as well:

$$p(\boldsymbol{X} = \boldsymbol{x} | \boldsymbol{Y} = \boldsymbol{y}; \boldsymbol{\theta}^*) = \sum_{k=1}^{K} \underbrace{\frac{\pi_k^* \mathcal{N}(\boldsymbol{y}; \boldsymbol{c}_k^*, \boldsymbol{\Gamma}_k^*)}{\sum_{j=1}^{K} \pi_j^* \mathcal{N}(\boldsymbol{y}; \boldsymbol{c}_j^*, \boldsymbol{\Gamma}_j^*)}}_{\beta_k^*} \mathcal{N}(\boldsymbol{x}; \underbrace{\boldsymbol{A}_k^* \boldsymbol{y} + \boldsymbol{b}_k^*}_{\boldsymbol{\mu}_k^*}, \boldsymbol{\Sigma}_k^*)$$

The forward parameter vector $\boldsymbol{\theta}^*$ from $\boldsymbol{\theta}$

$$\begin{split} \boldsymbol{c}_{k}^{*} &= \boldsymbol{\mathsf{A}}_{k}\boldsymbol{c}_{k} + \boldsymbol{b}_{k}, \\ \boldsymbol{\Gamma}_{k}^{*} &= \boldsymbol{\Sigma}_{k} + \boldsymbol{\mathsf{A}}_{k}\boldsymbol{\Gamma}_{k}\boldsymbol{\mathsf{A}}_{k}^{\top}, \\ \boldsymbol{\pi}_{k}^{*} &= \boldsymbol{\pi}_{k}, \\ \boldsymbol{\mathsf{A}}_{k}^{*} &= \boldsymbol{\Sigma}_{k}^{*}\boldsymbol{\mathsf{A}}_{k}^{\top}\boldsymbol{\Sigma}_{k}^{-1}, \\ \boldsymbol{b}_{k}^{*} &= \boldsymbol{\Sigma}_{k}^{*}(\boldsymbol{\Gamma}_{k}^{-1}\boldsymbol{c}_{k} - \boldsymbol{\mathsf{A}}_{k}^{\top}\boldsymbol{\Sigma}_{k}^{-1}\boldsymbol{b}_{k}), \\ \boldsymbol{\Sigma}_{k}^{*} &= (\boldsymbol{\Gamma}_{k}^{-1} + \boldsymbol{\mathsf{A}}_{k}^{\top}\boldsymbol{\Sigma}_{k}^{-1}\boldsymbol{\mathsf{A}}_{k})^{-1}. \end{split}$$

Regression functions

Both densities are Gaussian mixtures parameterized by θ . Therefore, to obtain:

• A low-to-high *inverse* regression function:

$$\mathbb{E}[\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\theta}] = \sum_{k=1}^{K} \frac{\pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_k, \boldsymbol{\Gamma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_j, \boldsymbol{\Gamma}_j)} (\boldsymbol{A}_k \boldsymbol{x} + \boldsymbol{b}_k),$$

• A high-to-low *forward* regression function:

$$\mathbb{E}[oldsymbol{X}=oldsymbol{x}|oldsymbol{Y}=oldsymbol{y};oldsymbol{ heta}]=\sum_{k=1}^{K}rac{\pi_k\mathcal{N}(oldsymbol{y};oldsymbol{c}_k^*,oldsymbol{\Gamma}_k^*)}{\sum_{j=1}^{K}\pi_j\mathcal{N}(oldsymbol{y};oldsymbol{c}_j^*,oldsymbol{\Gamma}_j^*)}(oldsymbol{A}_k^*oldsymbol{y}+oldsymbol{b}_k^*).$$

Low-to-High or High-to-Low?

If θ is unconstrained

 $\mathsf{GLLiM} \Leftrightarrow \mathsf{Joint}\;\mathsf{GMM}\;\mathsf{on}\;(\boldsymbol{X},\boldsymbol{Y})\;\mathsf{(JGMM)}$

- $oldsymbol{X}$ and $oldsymbol{Y}$ roles are symmetric
- Low-to-High or High-to-Low estimation are equivalent

Intractable for high D:

• JGMM requires inversion of K matrices of size $(D+L)\times (D+L)$

Low-to-High or High-to-Low?

Error vectors E_k assumed isotropic Gaussians: $\forall k, \Sigma_k = \sigma I_D$ (θ is constrained)

Example: D = 1000, L = 2, K = 10

Low-to-high regression: K(1 + L + DL + L(L + 1)/2 + D) = 30,060 parameters.
High-to-low regression:

K(1 + D + LD + D(D + 1)/2 + L) =**5,035,030** parameters. Requires inversion of 1000×1000 covariance matrices.

Therefore it is better to perfom a low-dimensional-to-high-dimensional (inverse) regression, and then deduce the forward density.

Extension: the Hybrid GLLiM model

Incorporate a latent component into the low-dimensional variable:

$$oldsymbol{X} = \left[egin{array}{c} oldsymbol{T} \ oldsymbol{W} \end{array}
ight]$$

where $T \in \mathbb{R}^{L_{t}}$ is observed and $W \in \mathbb{R}^{L_{w}}$ is latent $(L = L_{t} + L_{w})$

Fully-latent Output Variable: Dimensionality reduction, eg. PPCA

Partially-latent Output Variable : Hybrid GLLiM

The hybrid GLLiM model

Hybrid between regression and dimensionality reduction:

$$oldsymbol{X} = \left[egin{array}{c} T \ W \end{array}
ight]$$

- Observed pairs $\{(\boldsymbol{y}_n, \boldsymbol{t}_n), n = 1 \dots N\}$ $(\boldsymbol{T} \in \mathbb{R}^{L_{\mathrm{t}}})$
- Additional latent variable $oldsymbol{W}$ $(oldsymbol{W} \in \mathbb{R}^{L_{\mathrm{w}}})$
- Assuming the independence of ${m T}$ and ${m W}$ given Z :

$$p(\boldsymbol{X} = (\boldsymbol{t}, \boldsymbol{w})^{\top} \mid Z = k) = \mathcal{N}_L((\boldsymbol{t}, \boldsymbol{w})^{\top}; \boldsymbol{c}_k, \boldsymbol{\Gamma}_k)$$

with
$$oldsymbol{c}_k = \left[egin{array}{c} oldsymbol{c}_k^{
m t} \\ oldsymbol{c}_k^{
m w} \end{array}
ight], \ oldsymbol{\Gamma}_k = \left[egin{array}{c} oldsymbol{\Gamma}_k^{
m t} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{\Gamma}_k^{
m w} \end{array}
ight]$$

The hybrid GLLiM model

With
$$\mathbf{A}_k = \begin{bmatrix} \mathbf{A}_k^{t} & \mathbf{A}_k^{w} \end{bmatrix}$$
,
 $\mathbf{Y} = \sum_{k=1}^{K} \mathbb{I}(Z = k) (\mathbf{A}_k^{t} \mathbf{T} + \mathbf{A}_k^{w} \mathbf{W} + \mathbf{b}_k + \mathbf{E}_k)$

with $\boldsymbol{E}_k \sim \mathcal{N}_D(0, \boldsymbol{\Sigma}_k)$

rewrites

$$\begin{split} \boldsymbol{Y} &= \sum_{k=1}^{K} \mathbb{I}(Z=k) (\boldsymbol{\mathsf{A}}_{k}^{\mathrm{t}}\boldsymbol{T} + \boldsymbol{b}_{k} + \boldsymbol{\mathsf{A}}_{k}^{\mathrm{w}}\boldsymbol{c}_{k}^{\mathrm{w}} + \boldsymbol{E}_{k}') \\ & \text{ with } \boldsymbol{E}_{k}' \sim \mathcal{N}_{D}(\boldsymbol{0},\boldsymbol{\Sigma}_{k} + \boldsymbol{\mathsf{A}}_{k}^{\mathrm{w}}\boldsymbol{\Gamma}_{k}^{\mathrm{w}}\boldsymbol{\mathsf{A}}_{k}^{\mathrm{w}\top}) \end{split}$$

- Supervised GLLiM with unconventional covariance structure
- Diagonal $\Sigma_k \longrightarrow$ Factor analysis with L_w factors (at most)
- A compromise between full $O(D^2)$ and diagonal O(D) covariances

Link to other models

Assuming $\Sigma_k = \sigma_k^2 \mathbf{I}_D$, $(\Sigma'_k = \Sigma_k + \mathbf{A}_k^{\mathbf{w}} \mathbf{\Gamma}_k^{\mathbf{w}} \mathbf{A}_k^{\mathbf{w}\top})$

- $L_w = 0$, Supervised case, $\Sigma'_k = \Sigma_k$: Mixture of local linear experts (MLE) [Xu et al 95]
- $L_{\rm w} = D$, Σ'_k general covariance matrix: JGMM model [Qiao et al 09], the most general GLLiM model Over-parameterized, intractable ($(D + L) \times (D + L)$ matrices)
- $0 < L_{\rm w} < D$: a wide variety of models *between* MLE and JGMM.

Gaussian Process Latent Variable Model [Lawrence 05, Fusi & al 12]: Regression with partially-latent *input*, but not with partially-latent *response*

GPLVM mapping not inversible (non-linear nature of the kernels used in practice)

Particular instances of the hybrid GLLiM model

First three rows: supervised GLLiM methods ($L_w = 0$) Last six rows: unsupervised GLLiM methods ($L_t = 0$)

Model	$ c_k$	$\mathbf{\Gamma}_k$	π_k	\mathbf{A}_k	$oldsymbol{b}_k$	$\mathbf{\Sigma}_k$	$L_{\rm t}$	$L_{\rm w}$	K
MLE [Xu et al 95]	-	-	-	-	-	diag	-	0	-
MLR [Jedidi et al 96]	0_L	∞ I $_L$	-	-	-	iso+eq	-	0	-
JGMM [Qiao et al 09]	-	-	-	-	-	-	-	0	-
PPAM [Deleforge et al 12]	-	eq	eq	-	-	diag+eq	-	0	-
GTM [Bishop et al 98]	fixed	0_L	eq.	eq.	0_D	iso+eq	0	-	-
PPCA [Tipping et al 99a]	0_L	\mathbf{I}_L	-	-	-	iso	0	-	1
MPPCA [Tipping et al 99b]	0_L	I_L	-	-	-	iso	0	-	-
MFA [Ghahramani et al 96]	0_L	I_L	-	-	-	diag	0	-	-
PCCA [Bach et al 05]	0_L	I_L	-	-	-	block	0	-	1
RCA [Kalaitzis et al 11]	0_L	I_L	-	-	-	fixed	0	-	1

Expectation Maximization for Hybrid GLLiM

2 data augmentation schemes: Convergence speed/M-step tractability tradeoff

(other: Alternating ECM [Meng & Rubin 97] eg. for MFA [McLachlan et al 03])

- General hybrid GLLiM-EM: augmenting with both (Z, W)
 - Closed-form expressions for a wide range of $\{ \mathbf{\Gamma}_k, \mathbf{\Sigma}_k, k = 1 \dots K \}$
- Marginal-hGLLiM: integrating out the W
 - Less general, closed form only for distinc isotropic $\{ \pmb{\Sigma}_k, k=1 \dots K \}$
 - Algorithmic insight: alternation of a regression & reduction step
 - Natural initialization strategy

Identifiability issues

As for latent variable models for dimensionality reduction (eg MPPCA, MFA): $\{\boldsymbol{c}_{k}^{w}\}_{k=1}^{K}$ and $\{\boldsymbol{\Gamma}_{k}^{w}\}_{k=1}^{K}$ must be fixed , eg. $\boldsymbol{c}_{k}^{w} = 0$ and $\boldsymbol{\Gamma}_{k}^{w} = \boldsymbol{I}_{Lw}$

$$\boldsymbol{Y} = \sum_{k=1}^{K} \mathbb{I}(Z=k) (\boldsymbol{A}_{k}^{\mathrm{t}} \boldsymbol{T} + \boldsymbol{A}_{k}^{\mathrm{w}} \boldsymbol{W} + \boldsymbol{b}_{k} + \boldsymbol{E}_{k})$$

$$\begin{aligned} (\boldsymbol{W}|Z = k) &\sim \mathcal{N}(\boldsymbol{c}_{k}^{\mathrm{w}},\boldsymbol{\Gamma}_{k}^{\mathrm{w}}) \implies \\ (\boldsymbol{A}_{k}^{\mathrm{w}}\boldsymbol{W} + \boldsymbol{b}_{k}|Z = k) &\sim \quad \mathcal{N}(\boldsymbol{A}_{k}^{\mathrm{w}}\boldsymbol{c}_{k}^{\mathrm{w}} + \boldsymbol{b}_{k},\boldsymbol{A}_{k}^{\mathrm{w}}\boldsymbol{\Gamma}_{k}^{\mathrm{w}}\boldsymbol{A}_{k}^{\mathrm{w}\top}) \end{aligned}$$

The general Hybrid GLLiM EM algorithm

Observed $\{(Y_n, T_n), n = 1 : N\}$ and Missing variables $\{(Z_n, W_n), n = 1 : N\}$ At iteration (i), update:

$$\boldsymbol{\theta}^{(i+1)} = \arg \max_{\boldsymbol{\theta}} \mathbb{E}[\log p(\{\boldsymbol{y}, \boldsymbol{t}, \boldsymbol{W}, Z\}_{1:N}; \boldsymbol{\theta}) | \{\boldsymbol{y}, \boldsymbol{t}\}_{1:N}; \boldsymbol{\theta}^{(i)}].$$

E-step: compute posterior distributions: $\forall n, \forall k$

$$p(Z_n = k | \boldsymbol{t}_n, \boldsymbol{y}_n; \boldsymbol{\theta}^{(i)}) = \frac{\pi_k^{(i)} p(\boldsymbol{y}_n, \boldsymbol{t}_n | Z_n = k; \boldsymbol{\theta}^{(i)})}{\sum_{j=1}^K \pi_j^{(i)} p(\boldsymbol{y}_n, \boldsymbol{t}_n | Z_n = j; \boldsymbol{\theta}^{(i)})}$$

 $p(\boldsymbol{w}_n|Z_n = k, \boldsymbol{t}_n, \boldsymbol{y}_n; \boldsymbol{\theta}^{(i)}) \sim \mathcal{N}(\widetilde{\boldsymbol{\mu}}_{nk}^{w}, \widetilde{\boldsymbol{S}}_k^{w})$ (Factor Analysis like)

The general Hybrid GLLiM EM algorithm

With
$$\widetilde{r}_{nk} = p(Z_n = k | \boldsymbol{t}_n, \boldsymbol{y}_n; \boldsymbol{\theta}^{(i)})$$

M-step: divides in two

- Updating π_k, c_k^t, Γ_k^t : standard Gaussian mixture step on $\{t_n, n = 1 \dots N\}$
- Updating the mapping parameters $\mathbf{A}_k, \mathbf{b}_k, \mathbf{\Sigma}_k$
 - $L_w = 0$: \mathbf{A}_k is that of standard linear regression from $\{\mathbf{t}_n, n = 1 \dots N\}$ to $\{\mathbf{y}_n, n = 1 \dots N\}$ weighted by $\{\tilde{r}_{nk}, n = 1 \dots N\}$

• $L_{\rm t} = 0$: principal components update of PPCA

M-GMM step

With
$$\widetilde{r}_k = \sum_{n=1}^N \widetilde{r}_{nk}$$

$$\begin{split} \widetilde{\pi}_k &= \frac{\widetilde{r}_k}{N}, \\ \widetilde{\boldsymbol{c}}_k^t &= \sum_{n=1}^N \frac{\widetilde{r}_{kn}}{\widetilde{r}_k} \boldsymbol{t}_n, \\ \widetilde{\boldsymbol{\Gamma}}_k^t &= \sum_{n=1}^N \frac{\widetilde{r}_{kn}}{\widetilde{r}_k} (\boldsymbol{t}_n - \widetilde{\boldsymbol{c}}_k^t) (\boldsymbol{t}_n - \widetilde{\boldsymbol{c}}_k^t)^\top. \end{split}$$

M-mapping step

$$\widetilde{\mathbf{A}}_{k} = \widetilde{\mathbf{Y}}_{k} \widetilde{\mathbf{X}}_{k}^{\top} (\widetilde{\mathbf{S}}_{k}^{\mathrm{x}} + \widetilde{\mathbf{X}}_{k} \widetilde{\mathbf{X}}_{k}^{\top})^{-1}$$

where:

$$\begin{split} \widetilde{\mathbf{S}}_{k}^{\mathrm{x}} &= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{S}}_{k}^{\mathrm{w}} \end{bmatrix}, \\ \widetilde{\mathbf{X}}_{k} &= \frac{1}{\sqrt{\widetilde{r}_{k}}} \begin{bmatrix} \sqrt{\widetilde{r}_{1k}} (\widetilde{\mathbf{x}}_{1k} - \widetilde{\mathbf{x}}_{k}), & \dots, & \sqrt{\widetilde{r}_{Nk}} (\widetilde{\mathbf{x}}_{Nk} - \widetilde{\mathbf{x}}_{k}) \end{bmatrix}, \\ \widetilde{\mathbf{Y}}_{k} &= \frac{1}{\sqrt{\widetilde{r}_{k}}} \begin{bmatrix} \sqrt{\widetilde{r}_{1k}} (\mathbf{y}_{1} - \widetilde{\mathbf{y}}_{k}), & \dots, & \sqrt{\widetilde{r}_{Nk}} (\mathbf{y}_{N} - \widetilde{\mathbf{y}}_{k}) \end{bmatrix}, \\ \widetilde{\mathbf{x}}_{nk} &= \begin{bmatrix} \mathbf{t}_{n}; \widetilde{\boldsymbol{\mu}}_{nk}^{\mathrm{w}} \end{bmatrix} \in \mathbb{R}^{L}, \quad \widetilde{\mathbf{x}}_{k} = \sum_{n=1}^{N} \frac{\widetilde{r}_{kn}}{\widetilde{r}_{k}} \widetilde{\mathbf{x}}_{nk}, \quad \widetilde{\mathbf{y}}_{k} = \sum_{n=1}^{N} \frac{\widetilde{r}_{kn}}{\widetilde{r}_{k}} \mathbf{y}_{n}. \end{split}$$

And

$$\widetilde{oldsymbol{b}}_k = \sum_{n=1}^N rac{\widetilde{r}_{kn}}{\widetilde{r}_k} (oldsymbol{y}_n - \widetilde{oldsymbol{A}}_k \widetilde{oldsymbol{x}}_{nk}),$$

Practical setting

Algorithm initialization

No straightforward way of choosing $r_{nk}^{(0)}, \boldsymbol{\mu}_{nk}^{\mathrm{w}(0)}$, $\mathbf{S}_k^{\mathrm{w}(0)}$ or a complete set $\boldsymbol{\theta}^{(0)}$ including all affine transformations

 \longrightarrow Use one iteration of Marginal hGLLiM EM to get $heta^{(0)}$

Latent dimension L_w estimation

$$BIC(\widetilde{\boldsymbol{\theta}}, N) = -2\mathcal{L}(\widetilde{\boldsymbol{\theta}}) + \mathcal{D}(\widetilde{\boldsymbol{\theta}}) \log N,$$

 \mathcal{L} : observed-data log-likelihood $\mathcal{D}(\widetilde{\pmb{ heta}})$: dimension of the complete parameter vector The Marginal Hybrid GLLiM-EM

$$oldsymbol{c}_k^{\mathrm{w}}=0$$
 and $oldsymbol{\Gamma}_k^{\mathrm{w}}=oldsymbol{\mathsf{I}}_{L_w}\Longrightarrow$

$$\boldsymbol{Y} = \sum_{k=1}^{K} \mathbb{I}(Z=k) (\boldsymbol{A}_{k}^{\mathrm{t}} \boldsymbol{T} + \boldsymbol{b}_{k} + \boldsymbol{E}_{k}')$$

with $E_k' \sim \mathcal{N}_D(0, \mathbf{\Sigma}_k + \mathbf{A}_k^{\mathrm{w}} \ \mathbf{A}_k^{\mathrm{w} \top})$

- No E-W step (marginalized)
- Same E-Z step (\tilde{r}_{nk} initialized via eg. K-means)
- Same M-GMM step $(\pi_k, oldsymbol{c}_k^{\mathrm{t}}, oldsymbol{\Gamma}_k^{\mathrm{t}})$
- M-regression step $(\mathbf{A}_k^{\mathrm{t}}, \boldsymbol{b}_k)$: standard, does not involve noise variance
- M-residual step $(\mathbf{A}_k^{\mathrm{w}}, \boldsymbol{\Sigma}_k)$: PPCA like on residuals $\boldsymbol{y}_n \mathbf{A}_k^{\mathrm{t}} \boldsymbol{t}_n \boldsymbol{b}_k$ (time consumming)

The Marginal Hybrid GLLiM M-step

M-regression-step: Weighted affine regression from

 $\{oldsymbol{t}_n,n=1:N\}$ to $\{oldsymbol{y}_n,n=1:N\}$ with weights \widetilde{r}_{nk} ,

$$\widetilde{\mathbf{A}}_{k}^{\mathrm{t}} = \widetilde{\mathbf{Y}}_{k} \widetilde{\mathbf{T}}_{k}^{\top} (\widetilde{\mathbf{T}}_{k} \widetilde{\mathbf{T}}_{k}^{\top})^{-1}, \quad \widetilde{\mathbf{b}}_{k} = \sum_{n=1}^{N} \frac{\widetilde{r}_{kn}}{\widetilde{r}_{k}} (\mathbf{y}_{n} - \widetilde{\mathbf{A}}_{k}^{t} \mathbf{t}_{n}),$$

with

$$\widetilde{\mathbf{T}}_k = \left[\sqrt{\widetilde{r}_{1k}}(\mathbf{t}_1 - \widetilde{\mathbf{t}}_k) \dots \sqrt{\widetilde{r}_{Nk}}(\mathbf{t}_N - \widetilde{\mathbf{t}}_k)\right] \sqrt{\widetilde{r}_k}$$

and

$$\widetilde{oldsymbol{t}}_k = \sum_{n=1}^N (\widetilde{r}_{kn}/\widetilde{r}_k)oldsymbol{t}_n$$

M-residual-step: Minimization of the following criterion:

$$Q_k(\boldsymbol{\Sigma}_k, \mathbf{A}_k^{\mathrm{w}}) = -\frac{1}{2} \left(\log |\boldsymbol{\Sigma}_k + \mathbf{A}_k^{\mathrm{w}} \mathbf{A}_k^{\mathrm{w}\top}| + \sum_{n=1}^N \boldsymbol{u}_{kn}^{\top} (\boldsymbol{\Sigma}_k + \mathbf{A}_k^{\mathrm{w}} \mathbf{A}_k^{\mathrm{w}\top})^{-1} \boldsymbol{u}_{kn} \right),$$
where $\boldsymbol{u}_{kn} = \sqrt{\widetilde{r}_{nk}/\widetilde{r}_k} (\boldsymbol{y}_n - \widetilde{\mathbf{A}}_k^{\mathrm{t}} \boldsymbol{t}_n - \widetilde{\boldsymbol{b}}_k).$

Experiments and results

High dimensional function regression

$$oldsymbol{\phi} = (\phi_1 \dots \phi_d \dots \phi_D)^ op$$
 $oldsymbol{\phi} = oldsymbol{f}, oldsymbol{g}, oldsymbol{h}$

$$f: \mathbb{R}^2 \to \mathbb{R}^D$$
 with $f_d(t, w_1) = \alpha_d \cos(\eta_d t/10 + \phi_d) + \gamma_d w_1^3$

$$\boldsymbol{g}: \mathbb{R}^2 \to \mathbb{R}^D$$
 with $g_d(t, w_1) = \alpha_d \cos(\eta_d t/10 + \beta_d w_1 + \phi_d)$

$$\begin{aligned} \boldsymbol{h} &: \mathbb{R}^3 \to \mathbb{R}^D \text{ with} \\ h_d(t, w_1, w_2) &= \alpha_d \cos(\eta_d \ t/10 + \beta_d w_1 + \phi_d) + \gamma_d w_2^3 \end{aligned}$$

$$oldsymbol{\xi} = \{ lpha_d, \eta_d, \phi_d, eta_d, \gamma_d \}_{d=1}^D$$
 in $[0, 2]$, $[0, 4\pi]$, $[0, 2\pi]$, $[0, \pi]$, $[0, 2]$

High dimensional function regression

100 f, g, h functions generated using different random values for ξ

$$\begin{split} &N \text{ training couples } \{(t_n, \boldsymbol{y}_n)\}_{n=1}^N \\ &N' \text{ test couples } \{(t'_n, \boldsymbol{y}'_n)\}_{n=1}^{N'} \end{split}$$

by randomly drawing $t\in[0,10]$ and $\boldsymbol{w}\in[-1,1]\;(\boldsymbol{f},\boldsymbol{g})\;\;\text{or}\;\in[-1,1]^2\;(\boldsymbol{h})$

and adding some random isotropic Gaussian noise $oldsymbol{y}=oldsymbol{\phi}(t,oldsymbol{w})+oldsymbol{e}.$

Training couples: train the different regression algorithms tested (h-GLLiM, SIR, RVM, MLE, JGMM) Task: Estimate $\hat{t'}_n$ given a test observation $y'_n = \phi(t'_n, w'_n) + e'_n$

High dimensional function regression D = 50

Average, standard deviation and % of extreme values of the absolute error $|t'_n - t'_n|$. N = 200, N' = 200, K = 5 (MLE, JGMM,hGLLiM)

MLE: $L_w = 0$, JGMM : $L_w > D$

		f			g			h	
Method	Avg	Std	Ex	Avg	Std	Ex	Avg	Std	Ex
JGMM	1.78	2.21	19.5	2.45	2.76	28.4	2.26	2.87	22.4
SIR-1	1.28	1.07	5.92	1.73	1.39	14.9	1.64	1.31	13.0
SIR-2	0.60	0.69	1.02	1.02	1.02	4.20	1.03	1.06	4.91
RVM	0.59	0.53	0.30	0.86	0.68	0.52	0.93	0.75	1.00
MLE	0.36	0.53	0.50	0.36	0.34	0.04	0.61	0.69	0.99
hGLLiM-1	0.20	0.24	0.00	0.25	0.28	0.01	0.46	0.48	0.22
hGLLiM-2	0.23	0.24	0.00	0.25	0.25	0.00	0.36	0.38	0.04
hGLLiM-3	0.24	0.24	0.00	0.26	0.25	0.00	0.34	0.34	0.01
hGLLiM-4	0.23	0.23	0.01	0.28	0.27	0.00	0.35	0.34	0.01
hGLLiM-BIC	0.18	0.21	0.00	0.24	0.26	0.00	0.33	0.35	0.06

hGLLiM-BIC minimizes BIC for $0 < L_w < 10$: expected latent dimension L_w ($L_w = 2$ or $L_w = 1$) selected 72 times over 100 (non-linear effects could be modeled by higher L_w)

Influence of L_w

Influence of the parameter L_w of hGLLiM on the mean mapping error of h. Each point corresponds to an average error over 10,000 tests on 50 distinct functions MLE: $L_w = 0$, JGMM : $L_w > D$

Influence of K

Influence of K in MLE, JGMM and hGLLiM-3 on the mean mapping error of synthetic function h.

Each point corresponds to an average error over 10,000 tests on 50 distinct functions

Errors generally decrease with K. Overfitting for K > 10 for JGMM

Influence of D

Influence of D on the mean mapping error of synthetic functions \boldsymbol{h}

Each point corresponds to an average error over 10,000 tests on 50 distinct functions

h-GLLiM performs better in high-dimension

Influence of the SNR

Influence of the signal-to-noise ration (SNR) on the mean mapping error of synthetic functions \boldsymbol{f}

Each point corresponds to an average error over $10,000\ {\rm tests}$ on $50\ {\rm distinct}\ {\rm functions}$

All methods perform similarly under extreme noise (SNR=-10dB) (except for JGMM)

Retrieval of Mars physical properties

Hyperspectral images

dimension

Radiative transfer model

A. Deleforge, F. Forbes & R. Horaud

High dimensional regression

Synthetic data

15,407 spectra (D = 184 wavelengths) and L = 5 real parameters (proportion of water ice, of CO₂ ice, of dust, grain size of water ice, of CO₂ ice) Proportion of water ice & grain size of CO₂ ice ignored from training

Method	Proportion of CO2 ice	Proportion of dust	Grain size of water ice
JGMM	0.83 ± 1.61	0.62 ± 1.00	0.79 ± 1.09
SIR-1	1.27 ± 2.09	1.03 ± 1.71	0.70 ± 0.94
SIR-2	0.96 ± 1.72	0.87 ± 1.45	0.63 ± 0.88
RVM	0.52 ± 0.99	0.40 ± 0.64	0.48 ± 0.64
MLE	0.54 ± 1.00	0.42 ± 0.70	0.61 ± 0.92
hGLLiM-1	0.36 ± 0.70	0.28 ± 0.49	0.45 ± 0.75
hGLLiM-2*†	0.34 ± 0.63	0.25 ± 0.44	0.39 ± 0.71
hGLLiM-3	0.35 ± 0.66	0.25 ± 0.44	0.39 ± 0.66
hGLLiM-4	0.38 ± 0.71	0.28 ± 0.49	0.38 ± 0.65
hGLLiM-5	0.43 ± 0.81	0.32 ± 0.56	0.41 ± 0.67
hGLLiM-20	0.51 ± 0.94	0.38 ± 0.65	0.47 ± 0.71
hGLLiM-BIC	0.34 ± 0.63	0.25 ± 0.44	0.39 ± 0.71

NRMSE for Mars surface physical properties recovered from synthetic spectra: cross validation with 10,000 training pairs at random and 5,407 test pairs ($\times 20$)

K=50 for MLE, LGMM, hGLLiM

Hyperspectral images of South polar cap of Mars

Omega instrument, Mars Express

Proportions of dust for the South polar cap of Mars: orbits 41 and 61

Hyperspectral images of South polar cap of Mars

Proportions of CO_2 ice for the South polar cap of Mars: orbits 41 and orbit 61

Conclusion/ Perspectives

- We propose a novel inverse approach to high-dimensional regression based on mixture- and latent-variable models.
- Latent component allows to capture behaviors that cannot be easily modeled
- Adaptive latent dimension L_w selection
- More complex dependencies between variables (eg. $(Z_1 \dots Z_N)$ is a MRF)
- More complex noise models, eg, Student for outliers accommodation and robustness

Matlab code available at: https://team.inria.fr/perception/gllim_toolbox/

A. Deleforge, F. Forbes and R. Horaud, High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables. Statistics & Computing.

A. Deleforge, F. Forbes and R. Horaud, Hyper-spectral Image Analysis with Partially-Latent Regression. EUSIPCO, Lisbon, Portugal, September 2014.

MRF modelling

