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Abstract

We derive an EM for a big graphical model.

1 Notation

1.1 Generics

Scalar, vector and matrix Italic means scalar, italic bold means
vector and bold means matrix. For example, in the same order:

A A A

Collection of indexed variables Whenever a variable has an in-
dex, such as An the following notations hold:

A1:N is the set of An for all values of n from 1 to N .

A1:m:N is the set of An for all values of n from 1 to N except fro
m.

Vector and matrix components Whenever A is a vector A[n]
denotes the n-th component of the vector. The same intuition holds
for A[i, j] when A is a matrix.

Important sets We need to consider different sets of matrices
and vectors to simplify the notations:

• CMD ⊂ RD×D is the set of covariance matrices of dimen-
sion D. That is x ∈ CMD if and only if x is symmetric and
positive definite.

• SVD ⊂ RD is the set of stochastic vectors of dimension D.
That is x ∈ SVD if and only if x[d] ≥ 0 ∀d = 1, . . . , D and∑D

d=1 x[d] = 1.

• SMD×K ⊂ RD×K is the set of row-stochastic matrices of
dimensionD×K. That is x ∈ SVD×K if and only if x[d, k] ≥
0 ∀d = 1, . . . , D, k = 1, . . . ,K and

∑K
k=1 x[d, k] = 1, ∀d =

1, . . . , D.

Finally, we will use D(·) to denote the dimensionality of the model.

1.2 In the model

N Number of sources.

1.2.1 Source Position

• D dimension of the source space, RD.
• St,n position of the nth source at time t. St concatenation of

the N position vectors.
• νn, Ωn, parameters of the Gaussian for S1,n, νn ∈ RD and

Ωn ∈ CMD.
• Λn,0, Λn,1, parameters of the diffusion dynamics (not moving

and moving). Λn,0,Λn,1 ∈ CMD.
• θS = {νn,Ωn,Λn,0,Λn,1}Nn=1.

1.2.2 Auditory status

• At ∈ {0, 1}N (or At ∈ {1, . . . , 2N}), auditory status of the
N sources at time t.

• TA,λA, transition matrix and prior vector forAt.

• TA ∈ SM2N×2N

and λA ∈ SV2N

.
• θA = {TA,λA}.

1.2.3 Visibility and Motion status

The follow the same logic, changing F by M .

• Ft,n is the visibility of the nth source at time t.

• TF
n ,λ

F
n , transition matrix and prior vector for Ft,n.

• TF
n ∈ SM

2×2 and λF
n ∈ SV

2.
• θF = {TF

n ,λ
F
n }Nn=1.

1.2.4 Mel Frequency Cepstral Coefficients [MFCC]

DV dimension of the MFCC, V ∈ RDV .

• GV number of components of the GMM.
• KV

t number of MFCC observations at time t.
• ZV

t,k ∈ {1, . . . , GV } observation-to-component assignment
variable of the kth observation at time t.
• V t,k k

th MFCC observation at time t.
• There is one GMM per auditory status 1, . . . , 2N .
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• πV
j prior vector of the mixing coefficients, j = 1, . . . , 2N .

• µV
j,g,Σ

V
j,g mean and covariance matrix of the gth component

of the jth GMM, g = 1, . . . , GV , j = 1, . . . , 2N .
• θZV = {πV

1 , . . . ,π
V
2N }, πV

j ∈ SV
GV .

• θV = {µV
j,g,Σ

V
j,g}

GV ,2N

g=1,j=1, µV
j,g ∈ RGV , ΣV

j,g ∈ CM
DV .

1.2.5 Spectrogram [SPEC]

• PL,PR left and right spectrograms. PL,PR ∈ CPF×PI .
• GP number of components generating the spectrograms.
• Ct,g , gth component at time t.
• ωg, ξg , spectral pattern and temporal activation pattern of the
gth component.

• ΞL,ΞR left and right mixing matrices. ΞL,ΞR ∈ CPF×GP .
• ΣPL

f ,ΣPR
f noise variances of the f th frequency bin (L&R).

• θC = {ωg, ξg}
GV
g=1.

• θP = {ΞL,ΞR, {ΣPL
f ,ΣPR

f }
PF

f=1}.

1.2.6 Binaural SSL [BINAURAL] [MOTION]

Motion and binaural features follow the very same model, replac-
ing B by Y , and conditioning with respect toM t instead ofAt.

• KB
t number of binaural observations at time t.

• Bt,k k
th binaural observation at time t.

• Bt,k follows a N -component GMM.
• WB

t mixing priors, following a Dirichlet.
• αB

n , parameters of the nth component of the Dirichlet.
• ZB

t,k observation-to-component (source).

• ΣB
t,n, covariance matrix of the nth, ΣB

t,n ∈ CM
D.

• θWB = {αB
1 , . . . ,α

B
N}.

• θB = {ΣB
t,n}

T,N
t=1,n=1.

1.2.7 [FACIAL]

• KF
t number of detected faces at time t.

• e face detector false positive rate.
• Qt,k ∈ RD kth detection position at time t.
• ΣQ covariance matrix (face detector localization error).
• ZR

t,k pose detection (among GR poses).
• GF number of facial landmarks.
• RG

t,k ∈ RGF D positions of the landmarks.

• ΣG
n,m covariance of the Gaussian describing RG for the mth

pose of the nth source, ΣG
n,m ∈ CM

GF D ∀n,m
• DA dimension of the landmark descriptors.
• RA

t,k,g ∈ RDA descriptor of the gth landmark.
• µA

n,m,g,Σ
A
n,m,g mean and covariance of the Gaussian describ-

ing the gth landmark of the mth pose of the nth source.
• GL number of lip landmarks.
• Lt,k,g ∈ RDL lip movement descriptor of the gth landmark.
• µL

n,m,g,Σ
L
n,m,g mean and covariance of the Gaussian describ-

ing the gth lip landmark of the mth pose of the nth source.

2 The Model

We present in this section the graphical model, that is the probabil-
ity description of the relationship between the observed variables
and the hidden variables and how this relationship is parametrized.
The full model is shown in Figure 1. In the following, we describe
the variables and its relations little by little.

We assume the existence of N sources (potential speakers).

2.1 Dynamics

2.1.1 Positions

The N sources are placed in RD. St,n ∈ RD denotes the position
of the nth source at time t, and St is the concatenation of the N
vectors, so St ∈ RND. The dynamics of the positions are mod-
elled separately:

St,n|St−1,n,Mt−1,n ∼ N (St,n;St−1,n,Λn,Mt−1,n
) (2.1)

S1,n ∼ N (S1,n;νn,Ωn). (2.2)

This means that for each source there are two possible dynam-
ics, either moving Mt−1,n = 1 or not moving Mt−1,n = 0 (see
Section 2.1.4). Therefore, we consider two transition matrices per
source: dynamic Λn,1 and static Λn,0. This holds for all time
steps, except for the first one, in which is modelled as a multivari-
ate Gaussian with mean νn and covariance Ωn.

The parameters are: θS = {νn,Ωn,Λn,1,Λn,0}Nn=1, with νn ∈
RD, Λn,0:1,Ωn ∈ CMN for all n. The dimensionality of the
model for one source is: D+3D(D+1)/2 (mean vector and three
covariance matrices), so D(S1:T,1:N ) = ND(3D + 5)/2.

2.1.2 Auditory status

The auditory states are represented in At, which is a N -
dimensional binary variable, i.e., At ∈ {0, 1}N , ∀t. At,n = 1
if the nth source is speaking at time t and At,n = 0 otherwise. Of-
ten, we abuse the notation by writingAt = i, being i = 1, . . . , 2N

instead of the binary representation of i − 1. The auditory states
are modelled as an HMM:

p
(
At = i|At−1 = j,TA

)
= TA[i, j] (2.3)

p
(
A1 = i|λA

)
= λA[i] . i, j = 1, . . . , 2N , (2.4)

With θA =
{

TA,λA
}

, being TA ∈ SM2N×2N

, the transition

matrix and λA ∈ SV2N

the initial probabilities. The dimensional-
ity of the model is D(A1:T ) = 2N − 1 + 2N (2N − 1), from the
stochastic vector and matrix, that is D(A1:T ) = 4N − 1.
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F t+1

F t−1

θF

St
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Figure 1: Full graphical model at time t. Rectangular nodes mean parameters, single circular nodes mean hidden variables and double
circular nodes mean observations. Variables are grouped into six colors. The yellow ones, At, F t, M t and St, correspond to dynamic
variables, i.e., those which their values across time are linked. The green variables, ZV

t,k and V t,k, are related to the modelling of the Mel
Frequency Cepstral Coefficients (MFCC). Red variables, Ct,1, . . . ,Ct,J , PL

t and PR
t , model the spectrogram (SPEC). Cyan variables,

WB
t , ZB

t,k and Bt,k, model the extraction of sound source locates from binaural cues. (BINAURAL). Magenta variables, ZF
t,k, Lt,k,

Rt,k and Qt,k are related to the facial detections (FACIAL). Finally, blue variables, W Y
t , ZY

t,k and Y t,k, model the motion features
(MOTION). 3



2.1.3 Visibility

The visibility variable indicates whether the face of the nth speaker
is visible at time t (Ft,n = 1) or not (Ft,n = 0). They are modelled
as independent HMM:

p
(
Ft,n = i|Ft−1,n = j,TF

n

)
= TF

n [i, j] (2.5)

p
(
F1,n = i|λF

n

)
= λF

n [i] . (2.6)

We notice that θF =
{

TF
1 , . . . ,T

F
N ,λ

F
1 , . . . ,λ

F
N

}
with TF

n ∈
SM2×2 and λA

n ∈ SV
2, ∀n = 1, . . . , N . Therefore, the dimen-

sionality of the model is D(F 1:T ) = N(2(2− 1)) +N(2− 1) =
3N .

2.1.4 Motion

The motion variable indicates whether the nth speaker is moving or
not at time t, Mt,n ∈ {0, 1}.

p
(
Mt,n = i|Mt−1,n = j,TM

n

)
= TM

n [i, j] (2.7)

p
(
M1,n = i|λM

n

)
= λM

n [i] . (2.8)

Therefore θM =
{

TM
1 , . . . ,TM

N ,λM
1 , . . . ,λM

N

}
, the same as in

the previous case. Obviously, the dimensionality of the model is
also D(M1:T ) = 3N .

2.2 Modalities

2.2.1 Mel Frequency Cepstral Coefficients

The Mel Frequency Cepstral Coefficients (MFCC) are denoted by
V ∈ RDV . The correspond to the green box in Figure 1, also
shown in Figure 2. V are modelled using Gaussian Mixture Mod-
els (GMM). The set of parameters of the GMM, that is mixing pro-
portions, mean vectors and covariance matrices, depend on the au-
ditory statusAt. We assume that KV

t MFCC vectors are extracted
at time t, and that they are independent and identically distributed
realizations. GMMs have GV components. For the auditory state
At = j, the GMM is parametrized by the mixing parameters
πV

j ∈ SV
GV , the mean vectors µV

j,1, . . . ,µ
V
j,GV

∈ RDV and the
covariance matrices ΣV

j,1, . . . ,Σ
V
j,GV

∈ CMDV , ∀j = 1, . . . , 2N .
The hidden variable ZV

t,k represents the assignment of the kth

MFCC observation at time t, V t,k, to one of the mixture’s com-
ponents. Therefore, ZV

t,k ∈ {1, . . . , GV }.

ZV
t,k|At = j ∼ Mult

(
πV

j

)
(2.9)

V t,k|At = j, ZV
t,k = g ∼ N

(
µV

j,g,Σ
V
j,g

)
(2.10)

We now denote θZV = πV
1:2N and θV =

{
µV

j,g,Σ
V
j,g

}2N ,GV

j=1,g=1
.

The dimensionality of the MFCC model per each value of the
auditory state variable At is GV (DV + DV (DV + 1)/2) =
GV DV (DV + 3)/2, so the dimensionality is: D(V 1:T,1:KV ) =
2NGV DV (DV + 3)/2.

V t,k

ZV
t,k

KV
t

{
µV

j,g,Σ
V
j,g

}2N ,GV

j=1,g=1

{
πV

j

}2N

j=1

MFCC

At

Figure 2: Graphical model of the MFCC. At each time interval we
assume KV

t i.i.d. realizations of the same GMM. The parameters
of this GMM depend on the auditory state At. The assignment
variable ZV

t,k describes which of the GV Gaussian components has
generated the kth observation V t,k. The parameters corresponding
to this part of the model are the mixing coefficients πV

j , the mean
vectors µV

j,g and the covariance matrices ΣV
j,g .

2.2.2 Spectrogram

The spectrogram is modelled using mixtures of proper1 complex
Gaussians (see Figure 3). We inspired from the works of [3, 5].
The mixture has GP components, assigned to the different speak-
ers. Let {Gn}Nn=1 be a non-trivial partition of {1, . . . , GP }, then
component g is assigned to source n if and only if g ∈ Gn. Each
Time-Frequency point of each component’s spectrogram follows a
proper complex Gaussian:

Ct,g[f, i] |At,ng
∼ At,ng

Nc

(
0,ωg[f ] ξg[i]

)
(2.11)

with f = 1, . . . , PF , i = 1, . . . , PI . ng is the source to which the
gth component is assigned (i.e. ng = n ⇔ g ∈ Gn). The two
vectors ωg ∈ (R+)PF and ξg ∈ (R+)PI model the power of the
spectrogram of Ct,g . The final left spectrogram is:

PL
t [f, i] |Ct,1:GP

[f, i] ∼ Nc

(
GP∑
g=1

ΞL[f, g] Ct,g[f, i] ,ΣPL
f

)
,

(2.12)
where ΞL ∈ CPF×GP is the mixing matrix and ΣPL

f ∈ CM1 =
R+ is the noise variance. The same formula holds for the right
spectrogram with ΞR and ΣPR

f . Notice that ΞL and ΞR are
structured matrices. Indeed, the rows corresponding to the same
source must be identical. Therefore, the parameters are: θC =
{ωg, ξg}

GP
g=1 and θP = {ΞL,ΞR, {ΣPL

f ,ΣPR
f }Ff=1}; and the di-

mensionality of the model is D(PL
1:T ,P

R
1:T ) = GP (PF + PI) +

2(2GPPF + PF ), from the ω’s and the ξ’s, the two mixing matri-
ces ΞL,ΞR and the noise ΣPL

f ,ΣPR
f .

2.2.3 Binaural SSL cues

We will use binaural cues to help in the source localisation task.
Binaural cues, denoted byB follow a GMM with a Dirichlet prior

1Proper complex Gaussians, also called circular symmetric complex Gaussians,
have zero mean and zero relation matrix [4].
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PL
t

PR
t

Ct,1

...

Ct,GP

ΞL,ΣPL
1:PF

ΞR,ΣPR
1:PF

{ωg, ξg}
GP
g=1

SPEC

At

Figure 3: Graphical model of the spectrogram. The GP com-
ponents Ct,g are assigned to the different sources and the power
spectrum at each time frequency point is modelled using ωg and
ξg . This hidden components are mixed with the matrices ΞL and
ΞR. Finally stationary noise is added in form complex Gaussian
noise (with covariance matrices ΣPL

f and ΣPR
f respectively.

on the mixing coefficients (see Figure 4). We assume KB
t obser-

vations at time t, all i.i.d., following the same GMM. The variable
WB

t ∈ SV
N follows a Dirichlet distribution whose parameters

depend on the auditory state:

WB
t |At ∼ D(αB(At)) (2.13)

with

αB(At)[n] =
{
αB

n [0] if At,n = 0
αB

n [1] if At,n = 1 n = 1, . . . , N. (2.14)

The vector WB
t is used as mixing coefficients of the GMM [1]

(Chapter 10), so the parameters of the multinomial distribution
generating the assignment variable ZB

t,k ∈ {1, . . . , N}:

ZB
t,k|W

B
t ,∼ Mult(WB

t ). (2.15)

Finally, the observations Bt,k ∈ RD follow a Gaussian distribu-
tion:

Bt,k|ZB
t,k = n,St ∼ N (St,n,ΣB

t,n) (2.16)

Therefore, θWB = αB
1:N and θB = ΣB

1:T,1:N ; and the dimension-
ality of the model is D(B1:T,1:KB ) = 2N + TND(D + 1)/2,
from the parameters of the Dirichlet, plus the covariance matrices
(D(D+1)/2 per person per time interval). If there are not enough
samples to correctly estimate the covariance matrices, we will use
one covariance per source (so the same for all time intervals).

2.2.4 Facial cues

Facial cues consist on four observations: face position Q, face de-
scriptor R, pose detection ZR and lip movement detection L. We
assume the existence of KF

t face detections at interval t. The as-
signment variable, ZF

t,k indicates to which source the kth detected
face is assigned, and follows a multinomial with N + 1 elements
(since we account for false detections):

ZF
t,k|F t ∼ Mult

(
(1− e)Ft,1

NF
t

, . . . ,
(1− e)Ft,N

NF
t

, e

)
, (2.17)

being NF
t =

∑N
n=1 Ft,n the number of visible people and e the

false error rate of the face detector.

Bt,kZB
t,kWB

t

KB
t

ΣB
1:T,1:NαB

1:N

BINAURAL

At St

Figure 4: Graphical model for the binaural cues. WB
t follows

a Dirichlet distribution whose parameters, αB
1:N , depend on the

auditory state At. One realization of the variable corresponds to
the mixing coefficients for the GMM at time t. The means of the
GMM correspond to the source positions St,1:N and the covari-
ances, ΣB

1:T,1:N need to be estimated.

The face is detected using the method proposed in [7]. This
method provides the position of the face Qt,k, an estimation of
the face pose ZR

t,k ∈ {1, . . . , GR} and a set of GF landmarks (the
number may depend on the pose). The position of the face follows
a Gaussian distribution:

Qt,k|ZF
t,k = n,St ∼ N

(
St,n,ΣQ

)
(2.18)

where ΣQ describes the distribution of the localisation error of the
face detector. Therefore θQ = ΣQ and the dimensionality of the
model is D1:T,1:KF(Q) = D(D + 1)/2.

The extracted landmarks are used to build a face descriptor
which consists on the concatenation of the landmarks’ positions
together with a DA-dimensional local descriptor per landmark.
Therefore, Rt,k ∈ RGF (D+DA). This observation is modelled
as a Gaussian, in which the geometric part (the landmark’s po-
sitions) is independent of the appearance part and the appear-
ance observations are independent between them. We denote
the geometric part of R as RG ∈ RGF D and the appearance
parts as RA

g ∈ RDA , for g = 1, . . . , GF . Therefore R =((
RG
)>

,
(
RA

1

)>
, . . . ,

(
RA

GF

)>)>
, modelled by:

RG
t,k|ZF

t,k = n,ZR
t,k = m ∼ N

(
µG

n,m,Σ
G
n,m

)
(2.19)

RA
t,k,g|ZF

t,k = n,ZR
t,k = m ∼ N

(
µA

n,m,g,Σ
A
n,m,g

)
, (2.20)

for g = 1, . . . , GF . We inspired from [2], but for the time be-
ing we remove the priors on the matrices and means. There-

fore θR =
{
µG

n,m,Σ
G
n,m, {µA

n,m,g,Σ
A
n,m,g}

GF
g=1

}N,GR

n=1,m=1
. In all,

D(R1:T,1:KF ) = NGR(GFD(GFD+ 3) +GFDA(DA + 3))/2.

The lip movement descriptor will consist on the concatenation
of spatio-temporal features (e.g. Laptev or [6]). Therefore, we
consider GL (one per lip landmark) independent DL-dimensional
features all of them following a different Gaussian:

Lt,k,g|ZF
t,k = n,ZR

t,k = m,At,n = a ∼ N
(
µL

n,m,g,a,Σ
L
n,m,g,a

)
,

(2.21)
with g = 1, . . . , GL. Therefore θL ={
µL

n,m,g,a,Σ
L
n,m,g,a

}N,GF ,GL,1

n=1,m=1,g=1,a=0
and the dimensional-

ity of L: D(L1:T,1:KF ) = 2NGRGLDL(DL + 3)/2.

5



Lt,k

Rt,k

Qt,kZF
t,k

ZR
t,k

KF
t

θL

ΣQ

θR
e

FACIAL
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Figure 5: Graphical model of the facial cues. KF
t faces are de-

tected at time t. ZF
t,k assigns the faces to the sources, and ZR

t,k is
the estimated pose. Qt,k is the position of the face,Rt,k describes
the geometry and the appearance of the face landmarks and Lt,k

describes the local dynamics of the lip landmarks.

2.2.5 Movement cues

Movement cues have a model very similar to the binaural cues.
We will use movement cues to help in the source localisation task.
Motion cues, Y will be assumed to follow a GMM with a Dirich-
let prior on the mixing coefficients (see Figure 6). We assume KY

t

observations at time t, all i.i.d., following the same GMM. The
variable W Y

t ∈ SV
N follows a Dirichlet distribution whose pa-

rameters depend on the auditory state:

W Y
t |M t ∼ D(αY (M t)) (2.22)

with

αY (M t)[n] =
{
αY

n [0] if Mt,n = 0
αY

n [1] if Mt,n = 1 n = 1, . . . , N.

(2.23)
The vectorW Y

t is used as mixing coefficients of the GMM, so the
parameters of the multinomial distribution generating the assign-
ment variable ZY

t,k ∈ {1, . . . , N}:

ZY
t,k|W

Y
t ,∼ Mult(W Y

t ). (2.24)

Finally, the observations Y t,k ∈ RD follow a Gaussian distribu-
tion:

Y t,k|ZY
t,k = n,St ∼ N (St,n,ΣY

t,n) (2.25)

Therefore, θWY = αY
1:N and θY = ΣY

1:T,1:N ; and the dimension-
ality of the model is D(Y 1:T,1:KY ) = 2N + TND(D + 1)/2,
from the parameters of the Dirichlet, plus the covariance matrices
(D(D+1)/2 per person per time interval). If there are not enough
samples to correctly estimate the covariance matrices, we will use
one covariance per source (so the same for all time intervals).
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