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Context Dictionary learning and its convolutional counter part are very popular methods to learn unsupervised and
structured representations of a datasets. The core idea is to represent the data points as linear combinations of a
few atoms selected from an over-complete family of atoms – also called the dictionary. This dictionary is learned
solving an optimization problem that promotes the sparsest representations for the data. This type of method has
been applied successfully in many fields, from astrophysics to bio-imaging. In the context of neuroscience, it has been
used to develop brain atlases from fMRI [9] or to highlight recurring patterns in MEG [5].

While the problem of learning a dictionary is non-convex, many methods have been proposed to compute an approxi-
mate solution. Classical methods typically rely on alternate minimization and online updates [8]. A critical element in
these methods is the need to compute a good solution of the sparse coding problem using iterative algorithm. Indeed,
this step can require many iterations to output a good enough solution which is needed in order to have a correct
gradient. These algorithms have been studied in the literature and it has been shown that under certain assumptions
on the generating model for the observation, the dictionary could be retrieved up to permutations [3, 4, 7].

Recent studies have shown that deep neural networks can be designed based on iterative thresholding algorithms used
to solve sparse coding. Their use speeds up and improves inference compared to original solvers [6]. Returning to
the point of view of an iterative algorithm, it is possible to study these models with the classical tools of convex
optimization and sparse coding. Our recent works [1, 2] take this point of view to show some properties of networks
based on iterative thresholding. These networks can also be used in order to make the sparse coding step in itself
differentiable and facilitate the dictionary learning [10]. While the first empirical approaches have shown the potential
of these methods – particularly for denoising tasks – the results are regularly confronted with the problem of overfitting
and the evaluation of their quality remains an open question.

Quantifying how well a dictionary is recovered is complicated as it is rare that we have a ground truth to evaluate
it. To guarantee that the learned atoms are not artifacts, it is thus necessary to have theoretical evidence that the
learning process will not provide spurious atoms. While some guarantees have been provided for classical methods,
the problem becomes more complicated when using neural dictionary learning methods, due to approximation in the
optimization process. However, leveraging classical results, it would be interesting to evaluate the recovery properties
of neural algorithms on the class of dictionary that can theoretically be recovered with classical methods. This would
provide a set of hypothesis on the potential theoretical properties that could be proven for these models.

Methods In order to properly answer these questions, we propose to rely on an empirical approach, simulating
controlled dictionary recovery problems that match the theoretical assumption for dictionary recovery. The classical
and neural algorithms would then be evaluated on their capacity to successfully estimate the simulated dictionary.
The generated dictionary will have controlled mutual incoherence or RIP properties. We will aim at developing a
proper library to simulate such problems in order to provide a reference framework for evaluating dictionary recovery
methods.
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Environment The internship will take place in Inria Saclay, in the Parietal team. This is a large team working focused
on mathematical methods for statistical modeling of brain function using neuroimaging data (fMRI, MEG, EEG).
Particular topics of interest include machine learning techniques, numerical and parallel optimization, applications to
human cognitive neuroscience, and scientific software development.

Requirements
• Strong mathematical background. Knowledge in numerical optimization is a plus.

• Good programming skills in Python. Knowledge of a deep-learning library is a plus.
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