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Summary of the project

In many scientific fields, the data acquisition devices have benefited of hardware improvement to increase the
resolution of the observed phenomena, leading to ever larger datasets. While the dimensionality has increased,
the number of samples available is often limited, due to physical or financial limits. This is a problem when these
data are processed with estimators that have a large sample complexity, such as multivariate statistical models.
In that case it is very useful to rely on structured priors, so that the results reflect the state of knowledge on
the phenomena of interest. The study of the human brain activity through neuroimaging belongs among these
problems, with up to 10° features, yet a set of observations limited by cost and participant comfort.

We are missing fast estimators for multivariate models with structured priors, that furthermore provide statistical
control on the solution.

We want to join forces to design a new generation of inverse problem solvers that can take into account the
complex structure of brain images and provide guarantees in the low-sample-complexity regime. To this end,
we will first adapt alternating direction method of multipliers (ADMM) or Approximate Message Passing (AMP)
methods to the brain mapping setting, using first simple convex priors regularizations. We will then consider more
complex structured priors that control the variation of the learned image patterns in space [16] and non-convex
priors. Crucial gains are expected from the use of the EM algorithm for parameter setting. We will also examine
the estimation of parametric and non-parametric confidence intervals about the estimates.

AMPHI will design a reference inference toolbox released as a generic open source library. We expect a 3- to
10-fold improvement in CPU time with respect to current solutions, that will benefit to large-scale brain mapping
investigations.




Detailed information

Context In many fields of physics or life sciences, improving the resolution of observations (signal, images,
spectra) is a major endeavor, as it is a pre-requisite toward more accurate information. Data acquisition devices
benefit thus of hardware improvement to increase the resolution of the observed phenomena, leading to ever lar-
ger datasets. From a statistical perspective, these datasets have a high dimensionality and the signals show some
prominent structures that require adequate modeling. While the dimensionality has increased, the number of
samples available is sometimes limited, due to physical or financial limits. This becomes a problem when these
data are processed with estimators that have a large sample complexity, such as many multivariate estimators
(classifiers, regression models, covariance estimators, structure learning). In that case it is very useful to rely on
structured priors, so that the resulting models reflect the state of knowledge on the phenomena of interest. Well-
chosen priors improve the accuracy of the models and decrease the sample complexity of the estimators.

The study of the human brain activity through functional Magnetic Resonance Imaging (MRI) belongs among
these problems. The number of features per image reaches 10° to 10° —thanks to the rise of high-field MRI
acquisitions that cross the mm scale— yet the number of observations is limited by the duration of scanning
sessions and the number of subjects that can be included in studies. The key challenge addressed here is to set up
a novel generation of efficient techniques to enforce structured priors on high-resolution MRI datasets to
improve statistical analysis.

State-of-the art and positioning The members of the consortium have set up analytic tools for predictive mo-
deling on these images, using the framework of convex M-estimators [11, 5, 2, 1, 3], obtaining state-of-the-art and
nearly computationally optimal solutions. An example is given in Fig. 1.
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FIGURE 1 — (Top) Weight vectors from estimating gain from brain functional activity, on a mixed gambles task
[15]. Prediction target is the gain proposed in a series of gambles proposed to the subjects. This inter-subject ana-
lysis shows broad regions of activation. Sophisticated estimators, such as Sparse variation and TV-11, yield a clean
map and obtain high accuracy. Parameter setting for these estimators is also easier than the cheaper Smooth Lasso
estimator. See [3] for details. (Bottom) These effective estimators can be used to single out specialized regions in
the ventral occipital cortex from [6], providing an elegant solution to fundamental brain mapping problems.

In brief, researchers of the consortium have applied structured penalties to multivariate estimators of brain
activity with great success. Yet an essential problem remains computation time !, because of the non-smooth opti-
mization steps involved when imposing these penalties. Another major open question is to gain statistical control
(e.g. confidence intervals, p-values) on the solutions of this problem : for instance, if a certain pattern of activity
predicts an autism diagnosis, one would like to test whether a given brain region is significantly loaded by this

1. Remember that neuroscientists have no easy access to intensive computation facilities, that require technical skills typically rare in
neuroscience labs. The research is performed by PhD students that cannot develop expertise on all technical aspects, such as computer science.



pattern. High dimensional regression models rely on convex optimization tools. In particular, recent developments
have allowed to achieve noticeable speed-ups for Lasso and multi-task Lasso solvers [13, 10]. Expertise on noise
level estimation is also brought by the consortium, as this could be a key element for predictive tasks [12].

An important challenge is to set up efficient estimators for the tractability of the computation. Approximate
Message Passing (AMP) techniques [14, 7, 8, 9] are known to be efficient, but fast implementations cannot deal
with the complex correlation structure of the data, and extensions have to be developed to enforce their conver-
gence. The challenge is thus to maintain computational efficiency while ensuring convergence.

Alternating direction method of multipliers (ADMM) approaches, that lead to a setting close to AMP, are
known to be generic and convergent, but they suffer from slow convergence and hard parameter tuning [18].
However, recent works have addressed these limitations, making ADMM attractive again [18].

Jointly considering these approaches may bring new opportunities, as they have distinct advantages. For
instance, AMP offers natural hyper-parameters tuning strategies, bypassing cumbersome and expensive cross-
validation runs.

Objectives, planning and deliverable We thus propose to design a new generation of inverse problem solvers
that can take into account the complex structure of brain images and provide guarantees in the low-sample regime
where they are used. To this end, we will first adapt ADMM/AMP tools to the neuroimaging setting, using standard
sparsity priors (a.k.a. £y norm, Gauss-Bernoulli etc.) on the estimated model. In this we will follow the approach
described in [19]. We will then consider more complex structured priors, that control the variation of the learned
image patterns in space [17, 16]. This is related to the well known analysis sparsity framework [4] : the signals of
interest should have a sparse representation in a well-chosen signal basis.

Crucial gains are expected from the use of the variational strategy for parameter setting (EM type of algorithm)
that comes naturally with AMP approaches [8]. An important task will be to benchmark the resulting estimator
against alternatives, in terms of prediction accuracy, support recovery and computation time. We expect different
regimes, depending on the number of features or samples in the dataset and the noise level in the data. We will also
examine the statistical guarantees provided by the AMP approach : are the confidence intervals returned by the
estimators reliable, compared to e.g. bootstrapped estimators, so that non-expert neuroscientists can rely on them ?

The project will deliver a technical publication and a software implementation in Python, which, after a
thorough assessment (code quality control, efficiency, simplicity of the API, documentation), will be included in
the Nilearn open source library. In parallel, these contributions will serve as a basis for large-scale analyses carried
out on human cognition based on open data repositories (http://neurovault.org, http://openfmri.
org); in the longer term they will also be considered for other problems (image reconstruction, compressed
sensing). The efficiency of the estimator will be crucial for the feasibility of the approach on large-scale data, as
existing datasets size now scale in tens of Gigabytes and keep increasing.
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