
Post-doc proposal : Approximate Message Passing for the efficient
identification of cognitive networks (BrainAMP)

Description of the project
Context and Motivation In many fields of physics or life sciences, improving the resolution of observations
(signal, images, spectra) is a major endeavor, as it is a pre-requisite toward more accurate information. Data acqui-
sition devices benefit thus of hardware improvement to increase the resolution of the observed phenomena, leading
to ever larger datasets. From a statistical perspective, these datasets have a high dimensionality and the signals
show some prominent structures that require adequate modeling. While the dimensionality has increased, the
number of samples available is sometimes limited, due to physical or financial limits. This becomes a problem
when these data are processed with estimators that have a large sample complexity, such as many multivariate
estimators (classifiers, regression models, covariance estimators, structure learning). In that case it is very useful to
rely on structured priors, so that the resulting models reflect the state of knowledge on the phenomena of interest.
Well-chosen priors improve the accuracy of the models and decrease the sample complexity of the estimators.

The study of the human brain activity through functional Magnetic Resonance Imaging belongs among these
problems. The number of features per image reaches 105 to 106 —thanks to the rise of high-field MRI acquisitions
that cross the mm scale— yet the number of observations is limited by the duration of scanning sessions and
the number of subjects that can be included in studies. The key challenge addressed here is to set up a novel
generation of efficient techniques to enforce structured priors on high-resolution MRI datasets to improve
statistical analysis.

State-of-the art and positioning of BrainAMP partners The Parietal team has set up analytic tools for pre-
dictive modeling on these images, using the framework of convex M-estimators [12, 6, 2, 1, 4], obtaining state-of-
the-art and nearly computationally optimal solutions. An example is given in Fig. 1.
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FIGURE 1 – (Top) Weight vectors from estimating gain from brain functional activity on a gambling task [14].
Prediction target is the gain proposed in a series of gambles proposed to the subjects. This inter-subject analysis
shows broad regions of activation. Sophisticated estimators, such as Sparse variation and TV-l1, yield a clean map
and obtain high accuracy. Parameter setting for these estimators is also easier than the cheaper Smooth Lasso
estimator. See [4] for details. (Bottom) These effective estimators can be used to single out specialized regions in
the ventral occipital cortex from [7], providing an elegant solution to fundamental brain mapping problems.

In this field, Parietal is a major player when it comes to applying structured penalties to multivariate estimators
of brain activity. Yet an essential problem remains computation time, because of the non-smooth optimization steps
involved when imposing these penalties. Another major open question is to gain statistical control (e.g. confidence
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intervals, p-values) on the solutions of this problem : for instance, if a certain pattern of activity predicts an autism
diagnosis, one would like to test whether a given brain region is significantly loaded by this pattern.

The IPhT partner, on the other hand, is an expert on the so-called Approximate Message Passing (AMP)
techniques [13, 9, 10, 11]. AMP is a class of algorithms that derive from a probabilistic setting of the inference
problem where m data samples are presented, and each data sample Fµ ∈ Rn, µ = 1, . . . ,m is associated with
an observation yµ ∈ R (e.g. Fµ is a brain image and yµ an associated label). The goal is to estimate a latent
sparse vector x ∈ Rn such that zµ =

∑n
i=1 Fµixi explains well the observations yµ. AMP estimates marginals

(and their variances) of a posterior distribution of x given F and y, it is able to deal with a rather generic class of
priors on the vector x and "output channels" Pout(yµ|zµ). AMP is a message passing algorithm, related to loopy
belief propagation ; as such it is a distributed iterative procedure making it computationally very efficient. There are
well studied strategies that ensure that this iterative procedure converges ; they have been shown to work well for
problems such as the present one, as studied in [17]. In a range of statistical models, AMP works optimally in the
low-sample regime, where it outperforms (both in speed and precision) more traditional sparse estimation methods
[8]. AMP methods have been shown to perform well in compressed sensing, where they achieve information
theoretically optimal performance [9, 3], or in tomographic reconstruction, both problems formally similar to the
one posed by Parietal researchers [5]. AMP methods have several very appealing features, one of them is the
possibility to obtain approximate confidence intervals on the solution (indeed it outputs the estimators as well as
variances of the latent variables). Another promising feature is a natural way to tune hyper-parameters of the model
by imposing consistency of expectations, analogously to expectation maximization.

Objectives, Planning and deliverable We thus propose to join forces between the two groups to design a new
generation of inverse problem solvers that can take into account the complex structure of brain images and
provide guarantees in the low-sample regime where they are used. To this end, we will first adapt AMP tools to the
neuroimaging setting, using first standard sparsity priors (a.k.a. `0 norm, Gauss-Bernoulli etc.) on the estimated
model. In this we will follow the approach described in [17]. We will then consider more complex structured priors,
that control the variation of the learned image patterns in space [16, 15]. This is related to the well known analysis
sparsity framework : the signals of interest should have a sparse representation in a well-chosen signal basis.

Crucial gains are expected from the use of the variational strategy for parameter setting (EM type of algorithm)
that comes naturally with AMP approaches [10]. An important task will be to benchmark the resulting estimator
against alternatives, in terms of prediction accuracy, support recovery and computation time. We expect different
regimes, depending on the number of features or samples in the dataset and the noise level in the data. We will also
examine the statistical guarantees provided by the AMP approach : are the confidence intervals returned by the
estimators reliable, compared to e.g. bootstrapped estimators, so that non-expert neuroscientists can rely on them ?

The project will deliver a technical publication and a software implementation in Python, which, after a
thorough assessment (code quality control, efficiency, simplicity of the API, documentation), will be included
in the Nilearn open source library. In parallel, these contributions will serve as a basis for large-scale analyses
carried out on human cognition based on the data accumulated at Neurospin ; in the longer term they will also be
considered for other problems (image reconstruction, compressed sensing). The efficiency of the estimator will be
crucial for the feasibility of the approach on large-scale data (existing datasets now scale in tens of Gigabytes, and
keep increasing).

Work environment The Parietal team has set up analytic tools for predictive modeling on these images, using
the framework of convex M-estimators [12], with important validation experiments [6] and technical improvement
to reduce computation time [2, 1] or finesse the model [4]. These tools are disseminated the Nilearn open-source
software (http://nilearn.github.io), which has an increasing impact in neuroimaging.

The IPhT partner is an expert on the so-called Approximate Message Passing techniques [13], which are an
alternative solution for more generic class of estimators with less formal guarantees, that are more efficient in
many settings. For instance, AMP methods have been shown to perform well in problems formally similar to the
one posed by Parietal researchers [5, 9].

Further collaborations This BrainAMP proposal is related to the COSMIC project, that proposes enhancements
for compressed sensing for MRI and links the parietal team with the CosmoStat laboratory. The two projects share
in common the interest in sparse methods for brain imaging, that rely on the statistical structure of images to
optimize acquisition or statistical analysis related to these images. As the two projects will run in parallel, they will
share intellectual and software contributions.
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Duration of the project : 10 months. Further extensions are under active consideration.

Required skills
— Prior experience in machine learning, high-dimensional estimation problems.
— If possible, some knowledge on graphical models and related inference techniques.
— Knowledge of statistical inference.
— Knowledge of Python language.
— Interest in Open Software development.

Contacts
— Bertrand Thirion, Neurospin, Parietal team, bertrand.thirion@inria.fr
— Lenka Zdeborová, Institut de Physique Théorique, lenka.zdeborova@cea.f

How to apply The position must start in 2016, ideally November 1st, 2016. Applicants should send there cv
and a short statement of interest to Bertrand Thirion and Lenka Zdeborova starting from July and certainly before
August 10th, 2016.
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