SpaceNet: Multivariate brain decoding and segmentation

Elvis DOHMATOB

(Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX)

1 Introducing the model

We are given:

n = # scans; p = number of voxels in mask

design matrix: $X \in \mathbb{R}^{n \times p}$ (brain images)

response vector: $y \in \mathbb{R}^n$ (external covariates)

■ Need to predict *y* on new data.

Linear model assumption: $\mathbf{y} \approx \mathbf{X} \mathbf{w}$

• We seek to estimate the weights map, w that ensures best prediction / classification scores

Typically $n \sim 10 - 10^3$ and $p \sim 10^4 - 10^6$ We need **regularization** to reduce dimensions and encode practioner's priors on the weights **w**

1 Why spatial priors ?

■ **3D** spatial gradient (a linear operator) $\nabla : \mathbf{w} \in \mathbb{R}^{p} \longrightarrow (\nabla_{x}\mathbf{w}, \nabla_{y}\mathbf{w}, \nabla_{z}\mathbf{w}) \in \mathbb{R}^{p \times 3}$

• penalize image grad ∇w

 \Rightarrow regions

 Such priors are reasonable since brain activity is spatially correlated

 more stable maps and more predictive than unstructured priors (e.g SVM) [Hebiri 2011, Michel 2011, Baldassare 2012, Grosenick 2013, Gramfort 2013]

1 SpaceNet

■ SpaceNet is a family of "structure + sparsity" priors for regularizing the models for brain decoding.

SpaceNet generalizes

- TV [Michel 2001],
- Smooth-Lasso / GraphNet [Hebiri 2011, Grosenick 2013], and
- TV-L1 [Baldassare 2012, Gramfort 2013].

2 The SpaceNet regularized model

$\mathbf{y} = \mathbf{X} \mathbf{w} +$ "error"

• Optimization problem (regularized model):

minimize $\frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2$ + penalty(w)

 $\frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ is the loss term, and will be different for squared-loss, logistic loss, ...

2 The SpaceNet regularized model

penalty(**w**) = $\alpha \Omega_{\rho}$ (**w**), where

$$\Omega_{\rho}(\mathbf{w}) := \rho \|\mathbf{w}\|_{1} + (1-\rho) \begin{cases} \frac{1}{2} \|\nabla w\|^{2}, & \text{ for GraphNet} \\ \|\mathbf{w}\|_{TV}, & \text{ for TV-L1} \\ \dots \end{cases}$$

• α (0 < α < + ∞) is total amount regularization • ρ (0 < $\rho \le 1$) is a mixing constant called the ℓ_1 -ratio

 $\rho = 1$ for Lasso

2 The SpaceNet regularized model

penalty(\mathbf{w}) = $\alpha \Omega_{\rho}(\mathbf{w})$, where

$$\Omega_{\rho}(\mathbf{w}) := \rho \|\mathbf{w}\|_{1} + (1-\rho) \begin{cases} \frac{1}{2} \|\nabla w\|^{2}, & \text{ for GraphNet} \\ \|\mathbf{w}\|_{TV}, & \text{ for TV-L1} \\ \dots \end{cases}$$

 α (0 < α < + ∞) is total amount regularization ρ (0 < $\rho \le 1$) is a mixing constant called the ℓ_1 -ratio

ρ = 1 for Lasso
Problem is convex, non-smooth, and heavily-ill-conditioned.

- Settings: min f + g; f smooth, g non-smooth f and g convex, ∇f L-Lipschitz; both f and g convex
- **ISTA**: $\mathcal{O}(\mathcal{L}_{\nabla f}/\epsilon)$ [Daubechies 2004] **Step 1:** Gradient descent on *f* **Step 2:** Proximal operator of *g*
- **FISTA**: $\mathcal{O}(\mathcal{L}_{\nabla f}/\sqrt{\epsilon})$ [Beck Teboulle 2009] = ISTA with a "**Nesterov acceleration**" trick!

2 FISTA: Implementation for TV-L1

[DOHMATOB 2014 (PRNI)]

2 FISTA: Implementation for GraphNet

■ Augment X: $\tilde{X} := [X \ c_{\alpha,\rho} \nabla]^T \in \mathbb{R}^{(n+3\rho) \times p}$ ⇒ $\tilde{X} \mathbf{z}^{(t)} = \mathbf{X} \mathbf{z}^{(t)} + c_{\alpha,\rho} \nabla(\mathbf{z}^{(t)})$

1. Gradient descent step (datafit term): $\mathbf{w}^{(t+1)} \leftarrow \mathbf{z}^{(t)} - \gamma \mathbf{\tilde{X}}^T (\mathbf{\tilde{X}} \mathbf{z}^{(t)} - \mathbf{y})$

- 2. **Prox step** (penalty term): $\mathbf{w}^{(t+1)} \leftarrow soft_{\alpha\rho\gamma}(\mathbf{w}^{(t+1)})$
- 3. Nesterov acceleration: $\mathbf{z}^{(t+1)} \leftarrow (1 + \theta^{(t)}) \mathbf{w}^{(t+1)} - \theta^{(t)} \mathbf{w}^{(t)}$

Bottleneck: $\sim 80\%$ of runtime spent doing $Xz^{(t)}$! We badly need speedup!

• Whereby we **detect and remove irrelevant voxels** before optimization problem is even entered!

100% brain vol

100% brain vol

50% brain vol

50% brain vol

20% brain vol

The 20% mask has the 3 bright blobs we would expect to get

 \blacksquare ... but contains much less voxels \Rightarrow less run-time

2 Our screening heuristic

■ $t_p := p$ th percentile of the vector $|X^T y|$. ■ Discard *j*th voxel if $|X_i^T y| < t_p$

k = 100% voxels k = 50% voxels

k = 20% voxels

• Marginal screening [Lee 2014], but without the (invertibility) restriction $k \leq \min(n, p)$.

The regularization will do the rest...

See [DOHMATOB 2015 (PRNI)] for a more detailed exposition of speedup heuristics developed.

2 Automatic model selection via cross-validation

■ regularization parameters:

 $\mathbf{0} < \alpha_L < \ldots < \alpha_3 < \alpha_2 < \alpha_1 = \alpha_{max}$

mixing constants:

 $0 < \rho_M < ... < \rho_3 < \rho_2 < \rho_1 \le 1$

Thus $L \times M$ grid to search over for best parameters

(α_1, ρ_1)	(α_1, ρ_2)	(α_1, ρ_3)	 (α_1, ρ_M)
(α_2, ρ_1)	(α_2, ρ_2)	(α_2, ρ_3)	 (α_2, ρ_M)
(α_{3}, ρ_{1})	(α_{3}, ρ_{2})	(α_3, ρ_3)	 (α_3, ρ_M)
(α_L, ρ_1)	(α_L, ρ_2)	(α_L, ρ_L)	 (α_L, ρ_M)

The final model uses average of the the per-fold best weights maps (bagging)

This bagging strategy ensures more stable and robust weights maps

3 Some experimental results

3 Weights: SpaceNet versus SVM

Faces vs objects classification on [Haxby 2001]

TV-L1 weights

3 Classification scores: SpaceNet versus SVM

SpaceNet enforces both sparsity and structure, leading to better prediction / classification scores and more interpretable brain maps.

The code runs in \sim 15 minutes for "simple" datasets, and \sim 30 minutes for very difficult datasets.

SpaceNet enforces both sparsity and structure, leading to better prediction / classification scores and more interpretable brain maps.

The code runs in \sim 15 minutes for "simple" datasets, and \sim 30 minutes for very difficult datasets.

In the next release, SpaceNet will feature as part of Nilearn [Abraham et al. 2014] http://nilearn.github.io. **3** Why $X^T y$ maps give a good relevance measure ?

In an orthogonal design, least-squares solution is $\hat{\mathbf{w}}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$ \Rightarrow (intuition) $X^T y$ bears some info on optimal solution even for general **X** **3** Why $X^T y$ maps give a good relevance measure ?

In an orthogonal design, least-squares solution is $\hat{\mathbf{w}}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$ \Rightarrow (intuition) $X^T y$ bears some info on optimal solution even for general **X** Marginal screening: Set S = indices of **top** k**voxels** j in terms of $|\mathbf{X}_j^T \mathbf{y}|$ values

In [Lee 2014], $k \leq \min(n, p)$, so that $\hat{\mathbf{w}}_{LS} \sim (\mathbf{X}_{S}^{T}\mathbf{X}_{S})^{-1}\mathbf{X}_{S}^{T}\mathbf{y}$

■ We don't require invertibility condition k ≤ min(n, p). Our spatial regularization will do the rest! **3** Why $X^T y$ maps give a good relevance measure ?

In an orthogonal design, least-squares solution is $\hat{w}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$ \Rightarrow (intuition) $X^T y$ bears some info on optimal solution even for general **X** Marginal screening: Set S = indices of **top** k**voxels** j in terms of $|\mathbf{X}_i^T \mathbf{y}|$ values

In [Lee 2014], $k \leq \min(n, p)$, so that $\hat{\mathbf{w}}_{LS} \sim (\mathbf{X}_{S}^{T}\mathbf{X}_{S})^{-1}\mathbf{X}_{S}^{T}\mathbf{y}$

■ We don't require invertibility condition k ≤ min(n, p). Our spatial regularization will do the rest!

Lots of screening rules out there: [El Ghaoui 2010, Liu 2014, Wang 2015, Tibshirani 2010, Fercoq 2015]