SpaceNet: Multivariate brain decoding and segmen-
tation

Elvis DOHMATOB
(Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX)
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1 Introducing the model



1 Brain decoding

m We are given:
m n = # scans; p = number of voxels in mask
m design matrix: X € R™" (brain images)

m response vector: y € R” (external covariates)

m Need to predict y on new data.

mLinear model assumption: Y =~ Xw

m\We seek to estimate the weights map, w that
ensures best prediction / classification scores



1 The need for regularization

mill-posed problem: high-dimensional (n < p)

m Typically n ~ 10 — 10° and p ~ 10* — 10°
m We need regularization to reduce dimensions and
encode practioner’s priors on the weights w



1 Why spatial priors ?

m 3D spatial gradient (a linear operator)
V:weR — (Vw, Vw, V,w) € RP3

m penalize image grad Vw
= regions

m Such priors are reasonable
since brain activity is
spatially correlated

m more stable maps and more
predictive than unstructured
priors (e.g SVM)
[Hebiri 2011, Michel 2011,
Baldassare 2012, Grosenick 2013,
Gramfort 2013]




1 SpaceNet

m SpaceNet is a family of “structure + sparsity”
priors for regularizing the models for brain decoding.

m SpaceNet generalizes
m TV [Michel 2001],

m Smooth-Lasso / GraphNet [Hebiri 2011,
Grosenick 2013], and

m TV-L1 [Baldassare 2012, Gramfort 2013].



2 Methods



2 The SpaceNet regularized model

y = Xw + “error”

m Optimization problem (regularized model):
¢ e e 1 2
minimize ;|ly — Xw|j5 + penalty(w)

m ||y — Xw|3 is the loss term, and will be different
for squared-loss, logistic loss, ...



2 The SpaceNet regularized model

mpenalty(w) = a£,(w), where

2IVw]?,  for GraphNet
Q(w) = pllwlly + (1 = p) {lIwllrv,  for TV-L1

mo (0 < a < 400) is total amount regularization
mp (0 < p <1)is a mixing constant called the
/1-ratio

m p =1 for Lasso



2 The SpaceNet regularized model

mpenalty(w) = a£,(w), where

2IVw]?,  for GraphNet
Q,(w) = pllwlls + (1 = p) {[wll7v,  for TV-L1

mo (0 < a < 400) is total amount regularization
mp (0 < p <1)is a mixing constant called the
/1-ratio

m p =1 for Lasso

m Problem is convex, non-smooth, and
heavily-ill-conditioned.



2 Interlude: zoom on ISTA-based algorithms

mSettings: minf + g; f smooth, g non-smooth
f and g convex, Vf L-Lipschitz; both f and g

convex

ISTA: O(ﬁvf/e) [Daubechies 2004]
Step 1: Gradient descent on f

Step 2: Proximal operator of g

FISTA: O(Lvyr/\/¢€) [Beck Teboulle 2009]
= |STA with a “Nesterov acceleration’ trick!
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2 FISTA: Implementation for TV-L1
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2 FISTA: Implementation for GraphNet

mAugment X: X = X c.,V] € R(n+3p)xp
= Xz(t) = + ¢, V(z1)

Ql. Gradient descent step (datafit term):

w(tth) (1) ’V)N(T( _ y)
2. Prox step (penalty term):
w(tD) « soft, . (w(th)
3. Nesterov acceleration:
Z(t+1) (1+ e(t))w(t+1) — g(Ow(0)

Bottleneck: ~ 80% of runtime spent doing
m We badly need
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2 Speedup via univariate screening

m Whereby we detect and remove irrelevant
voxels before optimization problem is even entered!
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2 X7y maps: relevant voxels stick-out
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2 X7y maps: relevant voxels stick—_
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2 X7y maps: relevant voxels stick—o_
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2 X7y maps: relevant voxels stick-out
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2 Our screening heuristic

mt, := pth percentile of the vector | X y]|.
m Discard jth voxel if | X;"y| < t,
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m Marginal screening [Lee 2014], but
(invertibility) restriction k < min(n, p).

m T he regularization will do the rest...
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2 Our screening heuristic

mSee [DOHMATOB 2015 (PRNI)] for a more
detailed exposition of speedup heuristics developed.
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2 Automatic model selection via cross-validation

mregularization parameters:

O<a <. <az3<ar<a] = Omax

mmixing constants:

O<pu<..<p3<pp<p1 <1

m Thus L x M grid to search over for best

parameters
(a1, p1) | (o, 02) | (1, p3) (a1, pm)
(a2, p1) | (a2, 02) | (2, p3) (a2, pm)
(a3, p1) | (a3, 02) | (a3, p3) (o3, pm)
(@i.p1) | (L p2) | (@0,p0) |~ | (o, pur)
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2 Automatic model selection via cross-validation

m The final model uses average of the the per-fold
best weights maps (bagging)

m This bagging strategy ensures more stable and
robust weights maps
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3 Some experimental results
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3 Weights: SpaceNet versus SVM B

m Faces vs objects classification on [Haxby 2001]
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SpaceNet versus SVM
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3 Concluding remarks

m SpaceNet enforces both sparsity and structure,
leading to better prediction / classification scores
and more interpretable brain maps.

m The code runs in for “simple”
datasets, and for very difficult
datasets.
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http://nilearn.github.io

3 Concluding remarks

m SpaceNet enforces both sparsity and structure,
leading to better prediction / classification scores
and more interpretable brain maps.

m The code runs in for “simple”
datasets, and for very difficult
datasets.

mln the next release, SpaceNet will feature as part
of Nilearn [Abraham et al. 2014]

22


http://nilearn.github.io

3 Why X'y maps give a good relevance measure ?

mIn an orthogonal design, least-squares solution is
Wis = (XTX) 2 XTy = ()" XTy=XTy

= ( ) XTy bears some info on optimal
solution even for general X
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3 Why X'y maps give a good relevance measure ?

mIn an orthogonal design, least-squares solution is
Wis = (XTX) 2 XTy = ()" XTy=XTy

= ( ) XTy bears some info on optimal
solution even for general X

m Marginal screening: Set S = indices of top k
voxels j in terms of |X[y| values

m In [Lee 2014], k < min(n, p), so that
Ws ~ (Xg—XS)_lxgy

m We don't require invertibility condition
k < min(n, p). Our spatial regularization will do
the rest!
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3 Why X'y maps give a good relevance measure ?

mIn an orthogonal design, least-squares solution is
Wis = (XTX) 2 XTy = ()" XTy=XTy

= ( ) XTy bears some info on optimal
solution even for general X

m Marginal screening: Set S = indices of top k
voxels j in terms of |X[y| values

m In [Lee 2014], k < min(n, p), so that
Ws ~ (Xg—XS)_lxgy

m We don't require invertibility condition
k < min(n, p). Our spatial regularization will do
the rest!

m Lots of screening rules out there: [El Ghaoui
2010, Liu 2014, Wang 2015, Tibshirani 2010,

Fercoq 2015] 3
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