SpaceNet: Multivariate brain decoding and segmentation

Elvis DOHMATOB
(Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX)

Inria
PARIETAL
Introducing the model
Brain decoding

- **We are given:**
 - \(n = \# \) scans; \(p = \) number of voxels in mask
 - design matrix: \(X \in \mathbb{R}^{n \times p} \) (brain images)
 - response vector: \(y \in \mathbb{R}^{n} \) (external covariates)

- Need to predict \(y \) on new data.

- Linear model assumption: \(y \approx Xw \)

- We seek to **estimate the weights map, \(w \) that ensures best prediction / classification scores**
The need for regularization

- **ill-posed problem**: high-dimensional ($n \ll p$)
- Typically $n \sim 10 - 10^3$ and $p \sim 10^4 - 10^6$
- We need **regularization** to reduce dimensions and encode practitioner’s priors on the weights w
Why spatial priors?

3D spatial gradient (a linear operator)
\[\nabla : w \in \mathbb{R}^p \longrightarrow (\nabla_x w, \nabla_y w, \nabla_z w) \in \mathbb{R}^{p \times 3} \]

- penalize image grad \(\nabla w \) \(\Rightarrow \) regions

- Such priors are reasonable since brain activity is spatially correlated

- more stable maps and more predictive than unstructured priors (e.g. SVM)

[Hebiri 2011, Michel 2011, Baldassare 2012, Grosenick 2013, Gramfort 2013]
SpaceNet is a family of “structure + sparsity” priors for regularizing the models for brain decoding.

SpaceNet generalizes

- TV [Michel 2001],
- Smooth-Lasso / GraphNet [Hebiri 2011, Grosenick 2013], and
- TV-L1 [Baldassare 2012, Gramfort 2013].
2 Methods
The SpaceNet regularized model

\[y = Xw + \text{"error"} \]

- Optimization problem (regularized model):

\[
\text{minimize } \frac{1}{2} \| y - Xw \|_2^2 + \text{penalty}(w)
\]

- \(\frac{1}{2} \| y - Xw \|_2^2 \) is the loss term, and will be different for squared-loss, logistic loss, ...
The SpaceNet regularized model

\[\text{penalty}(\mathbf{w}) = \alpha \Omega_\rho(\mathbf{w}), \text{ where} \]

\[\Omega_\rho(\mathbf{w}) := \rho \| \mathbf{w} \|_1 + (1 - \rho) \begin{cases} \frac{1}{2} \| \nabla \mathbf{w} \|_2^2, & \text{for GraphNet} \\ \| \mathbf{w} \|_{TV}, & \text{for TV-L1} \end{cases} \]

\[\alpha \ (0 < \alpha < +\infty) \text{ is total amount regularization} \]

\[\rho \ (0 < \rho \leq 1) \text{ is a mixing constant called the } \ell_1\text{-ratio} \]

\[\rho = 1 \text{ for Lasso} \]
The SpaceNet regularized model

\[\text{penalty}(w) = \alpha \Omega_\rho(w), \text{ where} \]

\[\Omega_\rho(w) := \rho \|w\|_1 + (1 - \rho) \begin{cases} \frac{1}{2} \|\nabla w\|^2, & \text{for GraphNet} \\ \|w\|_{TV}, & \text{for TV-L1} \end{cases} \]

- \(\alpha (0 < \alpha < +\infty) \) is total amount regularization
- \(\rho (0 < \rho \leq 1) \) is a mixing constant called the \(\ell_1 \)-ratio
 - \(\rho = 1 \) for Lasso
- Problem is \textbf{convex, non-smooth}, and heavily-ill-conditioned.
Interlude: zoom on ISTA-based algorithms

- **Settings**: \(\min f + g; \) \(f \) smooth, \(g \) non-smooth
 \(f \) and \(g \) convex, \(\nabla f \) L-Lipschitz; both \(f \) and \(g \) convex

ISTA: \(\mathcal{O}(L_{\nabla f}/\epsilon) \)
- **Step 1**: Gradient descent on \(f \)
- **Step 2**: Proximal operator of \(g \)

FISTA: \(\mathcal{O}(L_{\nabla f}/\sqrt{\epsilon}) \)
- = ISTA with a “**Nesterov acceleration**” trick!

[Beck Teboulle 2009]
2 FISTA: Implementation for TV-L1

Convergence time in seconds

α-ratio

ℓ_1 ratio

1e-3 1e-3 1e-3 1e-3 1e-3 1e-2 1e-2 1e-2 1e-2 1e-2 1e-1 1e-1 1e-1 1e-1
0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75

[DOKOMATOBO 2014 (PRNI)]
Augment X: $\tilde{X} := [X \ c_{\alpha, \rho} \nabla]^T \in \mathbb{R}^{(n+3p) \times p}$

$\Rightarrow \tilde{X}z^{(t)} = Xz^{(t)} + c_{\alpha, \rho} \nabla(z^{(t)})$

1. **Gradient descent step** (datafit term):

 $w^{(t+1)} \leftarrow z^{(t)} - \gamma \tilde{X}^T (\tilde{X}z^{(t)} - y)$

2. **Prox step** (penalty term):

 $w^{(t+1)} \leftarrow \text{soft}_{\alpha \rho \gamma}(w^{(t+1)})$

3. **Nesterov acceleration**:

 $z^{(t+1)} \leftarrow (1 + \theta^{(t)})w^{(t+1)} - \theta^{(t)}w^{(t)}$

Bottleneck: $\sim 80\%$ of runtime spent doing $Xz^{(t)}$!

We badly need speedup!
Whereby we **detect and remove irrelevant voxels** before optimization problem is even entered!
$X^T y$ maps: relevant voxels stick-out

100% brain vol
The $2X^Ty$ maps: relevant voxels stick-out

100% brain vol

50% brain vol
$X^T y$ maps: relevant voxels stick-out

100% brain vol

50% brain vol

20% brain vol
The 20% mask has the 3 bright blobs we would expect to get

... but contains much less voxels ⇒ less run-time
Our screening heuristic

- \(t_p := p \)th percentile of the vector \(|X^T y|\).
- Discard \(j \)th voxel if \(|X_j^T y| < t_p\)

\(k = 100\% \) voxels \hspace{1cm} \(k = 50\% \) voxels \hspace{1cm} \(k = 20\% \) voxels

Marginal screening [Lee 2014], but without the (invertibility) restriction \(k \leq \min(n, p) \).

The regularization will do the rest...
See [DOHMATOB 2015 (PRNI)] for a more detailed exposition of speedup heuristics developed.
Automatic model selection via cross-validation

regularization parameters:

\[0 < \alpha_L < \ldots < \alpha_3 < \alpha_2 < \alpha_1 = \alpha_{max}\]

mixing constants:

\[0 < \rho_M < \ldots < \rho_3 < \rho_2 < \rho_1 \leq 1\]

Thus \(L \times M \) grid to search over for best parameters

\[
\begin{array}{cccc}
(\alpha_1, \rho_1) & (\alpha_1, \rho_2) & (\alpha_1, \rho_3) & \ldots & (\alpha_1, \rho_M) \\
(\alpha_2, \rho_1) & (\alpha_2, \rho_2) & (\alpha_2, \rho_3) & \ldots & (\alpha_2, \rho_M) \\
(\alpha_3, \rho_1) & (\alpha_3, \rho_2) & (\alpha_3, \rho_3) & \ldots & (\alpha_3, \rho_M) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(\alpha_L, \rho_1) & (\alpha_L, \rho_2) & (\alpha_L, \rho_L) & \ldots & (\alpha_L, \rho_M)
\end{array}
\]
The final model uses average of the per-fold best weights maps (bagging)

This bagging strategy ensures more stable and robust weights maps
3 Some experimental results
3 Weights: SpaceNet versus SVM

Faces vs objects classification on [Haxby 2001]

Smooth-Lasso weights

TV-L1 weights

SVM weights
Classification scores: SpaceNet versus SVM

![Classification accuracy chart](chart.png)
3 Concluding remarks

- SpaceNet enforces both sparsity and structure, leading to better prediction / classification scores and more interpretable brain maps.

- The code runs in ~ 15 minutes for “simple” datasets, and ~ 30 minutes for very difficult datasets.
SpaceNet enforces both sparsity and structure, leading to better prediction / classification scores and more interpretable brain maps.

The code runs in \(\sim 15 \text{ minutes}\) for “simple” datasets, and \(\sim 30 \text{ minutes}\) for very difficult datasets.

In the next release, SpaceNet will feature as part of Nilearn [Abraham et al. 2014]
http://nilearn.github.io
Why $X^T y$ maps give a good relevance measure?

- In an orthogonal design, least-squares solution is

$$\hat{w}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$$

\Rightarrow (intuition) $X^T y$ bears some info on optimal solution even for general X
Why $X^T y$ maps give a good relevance measure?

- In an orthogonal design, least-squares solution is
 $$\hat{w}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$$
 \Rightarrow (intuition) $X^T y$ bears some info on optimal solution even for general X

- Marginal screening: Set $S = \text{indices of top } k$ voxels j in terms of $|X_j^T y|$ values
 - In [Lee 2014], $k \leq \min(n, p)$, so that
 $$\hat{w}_{LS} \sim (X_S^T X_S)^{-1} X_S^T y$$
 - We don’t require invertibility condition
 $k \leq \min(n, p)$. Our spatial regularization will do the rest!
Why $X^T y$ maps give a good relevance measure?

- In an orthogonal design, least-squares solution is
 \[
 \hat{w}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y
 \]
 \[\Rightarrow \text{(intuition)} \quad X^T y \text{ bears some info on optimal solution even for general } X\]

- Marginal screening: Set $S = \text{indices of top } k \text{ voxels } j \text{ in terms of } |X_j^T y|$ values

 - In [Lee 2014], $k \leq \min(n, p)$, so that
 \[
 \hat{w}_{LS} \sim (X_S^T X_S)^{-1} X_S^T y
 \]

 - We don’t require invertibility condition $k \leq \min(n, p)$. Our spatial regularization will do the rest!