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Outline: 3 good “sparse” problems
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• Brain imaging with MEG and EEG (M/EEG)

• Background on M/EEG (physiology and physics)

• The inverse problem: regression with sparse structured priors 
using time-frequency (TF) dictionaries

• “Brain reading” with functional MRI (fMRI)

• Prediction vs. recovery

• Support recovery with correlated design?

• Network and atlas learning with resting state fMRI

• Sparse covariance estimation and dictionary learning

THM: Means «Take Home Message»



Background on M/EEG
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Functional neuroimaging
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Brain anatomy
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Source: dartmouth.edu

White matter

Gray matter

Axial slice

Neurons
in the gray matter
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Neurons as current generators
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Large cortical pyramidal cells organized in 
macro-assemblies with their dendrites 

normally oriented to the local 
cortical surface

White matter

Gray matter

Q = I × d
(10 to 100 nAm) with 
the equivalent current 
dipole (ECD) model
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EEG & MEG systems
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M/EEG Measurements
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EEG :
• ≈ 32 to 100 sensors 

MEG :
• ≈ 150 to 300 sensors

Sampling between 250 
and1000 Hz

Sample EEG measurements

High temporal
resolution
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M/EEG Measurements: Notation

9

M ∈ R
dm×dtM =

−1.1

−0.5

0

0.5

1.1

R
dm

×dt

: Nb of sensors

: Nb of time points

2D topography

1 row = 1 time series 
on 1 sensor

MEG
and/or
EEG

1 column 

3D topography



The M/EEG inverse problem
with structured sparse priors

and time-frequency dictionaries

[Gramfort et al., Physics in Medicine and Biology 2012]
[Gramfort et al., IPMI 2011]
[Gramfort et al., submitted]

collaboration with  Strohmeier D., Haueisen J.,  Hämäläinen M., Kowalski M.
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Inverse problem: Objective
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Find the current 
generators that 

produced the M/EEG 
measurements
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Linear forward problem: Maxwell
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇× �E = 0

∇ · �B = 0

∇× �B = μ0
�J

∇ · �E =
ρ

ε0

Maxwell Equations
with quasi-static 

approximation

σ
V

�J = �Jp + �Jc

�Jc = −σ∇V

Primary 
currents

Conduction
currents

Ohm’s law:

Total currents:

Tissue conductivity
Electric potential

Remark: quasi-static implies 
no temporal derivatives and 

no propagation delay

∇ · ∇ × �B = 0 ⇒ ∇ · (�Js + �Jc) = 0

⇒ ∇ · �Jp = ∇ · (σ∇V )

Potential equation:
(relation btw. the potential and the sources)
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M = GX + EGM 

X 

M=GX+E :  An ill-posed problem

13

dx ≈ 10000 d
m

≈
100

THM: Following Maxwell’s equations
each source adds its contribution linearly

gain matrix

noise

sources
amplitudes

data
M = GX + E
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M = GX + EXy 

w  (or β) 

M = GX + E

y = Xw+E :  An ill-posed problem

14

dx ≈ 10000 d
m

≈
100

THM: At each time instant the M/EEG inverse problem 
IS a regression with more variables than observations

Standard
statistics notations

design matrix

regression 
coefficients
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Inverse problem framework
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is the prior.φ(X)

Examples for         : φ(X) �1, �2, �p with p ≥ 1, entropy . . .

λ
Data fit

Penalized (variational) formulation (with whitened data):

X∗ = arg min
X

‖M − GX‖2
F + λφ(X), λ > 0

:  Trade-off between the data fit and the prior

∗
X

2
F

Prior

‖A‖F = tr(AT A)where
2

THM: when SNR goes UP     goes DOWN.λ

Total-Variation ...
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L2 a.k.a. Minimum Norm Estimates (MNE)
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Leads to a closed form solution (matrix multiplication):

[Tikhonov et al. 77, Wang et al. 92, Hämäläinen et al.  94]
Remarks:

• MNE is known as Ridge regression in statistics.

• Really fast to compute (SVD of G), hence very much used in the field.

• In practice, it’s much more complicated (whitening data, correcting 

artifacts, channels with different SNRs, setting     based on SNR, loose 

orientation, ...)
λ

THM: A lot of domain knowledge to make it work

φ(X) = ‖WX‖2F =
∑
i,j

w2
i x

2
ij = ‖X‖2Σ,2

W2 = Σ source covariance

X∗ = Σ−1GT (GΣ−1GT + λId)−1M
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Mixed-Norm Estimates (MxNE) & sparse priors
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• M/EEG data are commonly assumed to be produced by a few 

brain regions (justifies the use of multi-dipole fits)

• Activations have small spatial extents w.r.t. meas. distance

Brief history of contributions up to now:
• [MCE 95, Focuss 95] : single instant solvers (not adapted)

• [Nummenmaa 2007, Wipf 2009, Friston (MSP) 2009] : Bayesian methods 

based on automatic relevance determination (ARD)

• [Haufe 2008, Ou 2009] convex mixed-norm prior but uses a very slow 

SOCP solver (sedumi).

Why sparse priors?
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L1 vs L2 norms on combined M/EEG data
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Activation in left-auditory cortex

L2 result
L1 result
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Why does not everybody use sparse priors?
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• Sparse priors lead to harder optimization problems 

(non-differentiable with no closed form solution).

• Solvers are iterative and slower than L2.

• Provide relevant sparse priors and fast algorithm:

• Definition of good convex priors (beyond simple L1)

• Come up with fast algorithms exploiting sparsity of the solution

• Handle specificities of M/EEG: depth bias, loose/free 

orientation, whitening etc.

Contribution:
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Inverse problem

20

Data fit

X∗ = arg min
X

‖M − GX‖2
F + λφ(X), λ > 0

• Data fit is quadratic hence convex

• If            is convex, then it is a convex 

optimization problem

φ(X)

Optimization problem:

convex       +    convex
   =

   convex

Prior
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L1 in the MEG world
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Remarks:
• It’s known as LASSO in machine learning / stats [Tibshirani 96], 

basis pursuit denoising (BPDN) in signal processing [Chen 
Donoho Saunders 99] and MCE [Matsuura 95, Uutela 99] in M/EEG

• Not good enough for M/EEG

L1 priors a.k.a. Minimum current estimate (MCE) :

φ(X)           is convex, non differentiable and has no 
closed form solution.

[Matsuura et al. 95]

dt = 1withφ(X) = ‖X‖1 =
∑

i

|xi|
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[Ou et al. Neuroimage 2009]

• It introduces temporal structure in the prior
• It guarantees that the active sources are the same over time

X =
...

L2
L

1
         with M/EEG data: L21 φ(X)

2-level mixed-norm

Remark : It is known as Group Lasso in Machine Learning & «joint feature selection»

[Yuan et al. 2006, Obozinski 2009 ...] 

φ(X) = ‖X‖21 =
∑
i

√∑
t

|xi,t|2
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X = ...
L2

L
2
1

L21 with loose orientation

custom but still a 2-level 
mixed-norm

φ(X) = ‖X‖21 =
∑
i

√∑
t

|xnormal
i,t |2 + ρ|xtang1

i,t |2 + ρ|xtang2
i,t |2

with for example ρ =
1

0.2

THM: you need custom sparse
solvers adapted to M/EEG

normal

tangential
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Proximal iterations

24

• Very generic method (works for L1, L2, L21, etc.)

• Iterative method

• First order method (only requires to compute gradients)

• Algorithms scalable with highly sampled source spaces

• Can be much faster when combined with an active-set 
strategy that exploits the known sparsity of the solution

[Gramfort et al., Mixed-norm estimates for the M/EEG inverse problem 
using accelerated gradient methods, PMB 2012]

[Kowalski et al., NIPS Optim. Workshop 2011]
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Proximal iterations

25

[Moreau 65]

Definition: 
The proximal operator associated to        is given by

Remark: It’s the inverse problem with no G ie. no smoothing kernel

proxλφ(Y) = arg min
X

1
2
‖Y − X‖2

2 + λφ(X)

λφ
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Forward-Backward iterations

26

• Initialize: Choose x(0) ∈ R
dx (for example 0).

• Iterate:
x(k+1) = proxμλφ

(
x(k) + μGT (m − Gx(k))

)
where 0 < μ < 2|||GT G|||−1.

Remarks: 
• a.k.a. Iterative soft thresholding (ISTA)
• Convergence rate proportional to 1/k

 [Daubechies et al. 2004, Combettes et al. 2005]

A
lg

or
ith

m
:

gradient of data fit

Pb
:

X∗ = arg min
X

‖M − GX‖2
F + λφ(X), λ > 0



Alexandre Gramfort             Sparse methods for functional brain imaging

Some proximal operators: L1

27

x∗
i = yi

(
1 − λ

|yi|
)+

proxλ‖ ‖1
(y) = arg min

x

1
2
‖y − x‖2

2 + λ‖x‖1

φ(x) = ‖x‖1 =
∑

i

|xi|
Proximal operator:

Solution:

Remark: It is referred to as Soft Thresholding
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Lasso/MCE PythonISTA
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alpha = 0.1 # Lambda parameter
L = 1.05 * linalg.norm(G)**2
for i in xrange(maxit):
    X += (1 / L) * np.dot(G.T, M - np.dot(G, X))
    X = np.sign(X) * np.maximum(np.abs(X) - (alpha / L), 0)

Ok but how many iterations?



Alexandre Gramfort             Sparse methods for functional brain imaging

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−4

−2

0

2

4

6

8

Y ∗X∗

Fp(X
∗) = Fd(Y

∗)

Primal : 0.5(M − X)2 + λ|X|
Dual : −0.5Y 2 + Tr(Y M) − λχ|·|≤1(Y/λ)

Optimality conditions & Duality gaps

29

Primal problem

Dual problem

min
X

1
2
‖M − GX‖2

2 + λφ(X) = min
X

Fp(M)

max
Y

−1
2
‖Y ‖2

2 + Tr(Y T M) − λφ∗(GT Y/λ) = max
Y

Fd(Y )

Gap η(X, Y ) = Fp(X) −Fd(Y ) ≥ 0

Example with Lasso :

THM:
A principled way to test
the optimality of a solution
for a non-smooth problem

Slater’s conditions «say» :           at optimum (strong duality)η = 0
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Active set methods (L1 & L21 priors)
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• You know 2 things:
• only a few sources will be active
• how to test the optimality of a solution

[Markowitz 1952, Osborne «Homotopy methods» 2001, Efron «Lars» 2004, 
Roth «active-set for the group-lasso» ICML’ 08,

Kowalski et al., NIPS Optim. Workshop 2011]

The idea :
1. Start with a small problem (only a few sources)
2. Test optimality assuming all left out sources have 0 activation
3. If not good enough

add new sources to the problem and goto 1
else

stop !
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ISTA vs. FISTA vs.  Active Set
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• It is possible to reach an 1/k2 using multi-steps methods e.g. 
FISTA (Fast - ISTA)

• It is possible to be even faster for certain problems using an 
«active set» strategy.

 [Nesterov 2007, Beck et al. 2009]
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The M/EEG inverse pb can 
be solved with non-l2 priors 

also in a few seconds !
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But… the brain is not stationary

32

L21 like any other sparse solver available today
it imposes the sources to be the same 

over the entire time interval

Challenge:

How do you promote sparse solutions 
with non-stationary sources?
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M = GX + EGM 

X 

M = GX + E

back to M = G X + E

33

forward operatordata 

sources 

Objective:  estimate X given M

+ E

≈20 000 dipoles ≈
100 sensors noise
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M = GX + E
Z

TF coefficients
M = GX + EM 

M = GZΦ + E

34

G
forward operatordata 

Objective:  estimate Z given M

+ E
noise

TF coefficients 

Z Z
TF dictionary

Φ

Fr
eq

ue
nc

y 
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Time-frequency (TF) prior

35

data fit

The classical approach [MNE, dSPM, sLORETA]:

prior
we propose:

Ẑ = arg min
Z

‖M − GZΦH‖2
F + λφ(Z), then X̂ = ẐΦH

X̂ = arg min
X

‖M − GX‖2
F + λφ(X), λ > 0

•     : is a TF dictionary of Gabor atoms

•     : coefficients of the TF transform of the sources

Φ
Z

Advantage:
localization in 

space, time and frequency
in one step
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Why does it make sense?

36

and why a sparse prior shall work ?

50 STFT coef.

[«Denoising by soft-thresholding» Donoho 95]

Original STFT
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Time frequency dictionaries

37

complex Gabor transform =

• It is invertible

• It is translation invariant

  (not like classical dyadic wavelets)

• It can capture non-stationary signals (not like FFT)

   (It is classically used in M/EEG on sensor measurements)

• It is relatively fast to compute

What is a good prior on Z?

discrete version of the
short time fourier transform

(STFT)
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What prior?

38

Time
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φ(Z) = λ(ρ‖Z‖1 + (1 − ρ)‖Z‖21)

Time
Sp

ac
e �21 + �1
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Algorithm

39

Definition 1 (Proximity operator). Let ϕ : R
M → R be a proper convex

function. The proximity operator associated to ϕ, denoted by proxϕ : R
M → R

M

reads:
proxϕ(Z) = arg min

V∈RM

1
2
‖Z − V‖2

2 + ϕ(V) .

[Jenatton et al. 2011, Gramfort et al. IPMI 2011]

Lemma 1 (Proximity operator for �21 + �1). Let Y ∈ C
P×K be indexed by

a double index (p, k). Z = proxλ(ρ‖.‖1+(1−ρ)‖.‖21)(Y) ∈ C
P×K is given for each

coordinates (p, k) by

Zp,k =
Yp,k

|Yp,k| (|Yp,k| − λρ)+
⎛
⎝1 − λ(1 − ρ)√∑

k(|Yp,k| − λρ)+2

⎞
⎠

+

.

where for x ∈ R, (x)+ = max(x, 0) , and by convention 0
0 = 0 .

THM: It boils down to 2 successive thresholdings
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Simulation results (part 1)
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Simulation results (part 2)
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(a) MEG data (Gradiometers only) (b) GX�
TF-MxNE (explained data)

(c) X�
MxNE (d) X�

TF-MxNE

MEG Auditory data

42

A1i
A1c

Protocol: 50 epochs of auditory tones in left ear
(305 MEG, 59 EEG channels)
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MEG Visual data

43

Protocol: 50 epochs of visual 
flash in left hemi-field

(305 MEG, 59 EEG channels)

V2d
V1



“Brain reading” with fMRI
… prediction vs. recovery

[Gramfort et al., Beyond brain reading: randomized 
sparsity and clustering to simultaneously predict 

and identify, NIPS Workshop 2011]

[Varoquaux et al., Small-sample brain mapping: 
sparse recovery on spatially correlated designs 

with randomization and clustering, ICML 2012]
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fMRI: neurons change hemoglobin oxygenation

45

Oxy. Hb

Deoxy. Hb

Neurons

3D volumes
(1 every 2s)

High spatial
resolution

(vox ⋍ 2mm)

Scanner

Nuclear
Magnetic

Resonance
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Brain mapping

46

[Haxby, Science 2001, Distributed and 
Overlapping Representations of Faces 

and Objects in Ventral Temporal Cortex]

Stimuli

How does it
get mapped 

into the 
brain?

Which brain region?
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Standard analysis vs. MVPA

47

Standard analysis

• Test whether the voxel is 
recruited by the task

• Many voxels : problem of 
multiple comparisons

• Statistical power ∝1 / n_voxels

Supervised Learning
• Predictive model
• Many voxels : curse of 

dimensionality
• But can exploit the information 

shared between voxels: more 
statistical power?
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Supervised learning a.k.a. MVPA

48

Image,
sound, task

[Haxby et al. 01, Cox et al. 2003, Mitchell et al 04, Laconte et al 05, Kamitani et al 05, 
Thirion et al. 06, Haynes et al. 06, Kay et al. 08, Miyawaki et al. 08, Yamashita et al. 08, 

Naseralis et al. 09, Pereira et al. 09, Caroll et al. 09, Ryali et al. 2010, ...]

fMRI volume

Challenge: Predict a behavioral variable from the fMRI data

Scanning
Learn prediction fstim

Question: Is the information captured by fMRI? If so, where?

Any variable:
healthy?

MVPA: multi-voxel 
pattern analysis
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Classification example with fMRI

49

The objective is to be able
to predict
given an fMRI activation map 

i.e.

objective: Predict  given y = {−1, 1} x ∈ R
p

y = {−1, 1}

Patient Controlsvs.
Faces Housesvs.

... ...vs.
1 -1vs.

X= fMRI data
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fMRI  //  M/EEG

50

MNE:
min

w

1
n

n∑
i=1

(yi − xT
i w)2 + λ‖w‖2

2 ‖w‖2
2 =

p∑
i=1

w2
i

Linear SVM:
min

w

1
n

n∑
i=1

hinge(yix
T
i w) + λ‖w‖2

2

⋍ 1e2 or 1e3 observations, 1e6 voxels (variables): ill-posed

yi = sign(xiw)

THM: Like L2 is heavily 
used for MEG, linear SVM is 
very common in fMRI
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Hope and caveats

51

Hope: Use sparse priors to get sub-linear sample 

complexity (n ∝ k log(p) )

Problem: RIP, mutual incoherence … not valid 
for fMRI due to spatial redundancy: very correlated 
design

L R

y=-31 x=17

L R

z=-17

Lasso with CV : 23 Coefs

[Candes 06, Tropp 04, Wainright 09]
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Randomized sparsity

52

[Meinshausen and Buhlmann “Stability Selection” 2010, Bach “Bootstrap Lasso” 2008]

Stability Selection: • Perturb design: subsample the 
data (or bootstrap) & rescale features 
(columns)

• Run L1 solver
• Keep features that are “often” active

Problem: Cannot recover large 
correlated groups of features

Good recovery without mutual 
incoherence property but RIP-like 

Intuition: For m correlated features, 
selection frequency divided by m
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Randomized sparsity & clustering

53

Stability Selection: • Perturb design: subsample the 
data (or bootstrap) & rescale features 
(columns)

• Cluster features / voxels
• Run L1 solver
• Keep features that are “often” 

present in an active cluster

Ward hierarchical 
clustering with spatial 

constraint

[Michel et al. 2011]

Reduces correlations: 
better RIP
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Algorithm
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1 set n clusters and sparsity by cross-validation

2 loop: perturb randomly data

3 clustering to form reduced features

4 sparse linear model on reduced features

5 accumulate non-zero features

6 threshold map of apparition counts
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Simulations
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• p = 2048, k = 64, n = 256 
(nmin > 1000)

• Weights w: patches of 
varying size

• Design matrix X: 2D 
Gaussian random images 
of varying smoothness
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Results on [Haxby et al.]
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F test

Randomized logistic

Randomized ward logistic

[ICML 2012]



Resting state fMRI:
from networks

to a population atlas

[Varoquaux, Gramfort et al. NIPS 2010
Varoquaux, Gramfort et al. IPMI 2011]
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The context

58

fMRI resting state:
Subject with “no task” (eyes closed) for 
a few minutes (5 to 15 mins).

Why resting state:
• Easy to acquire
• Adapted to patients, infants

Challenge:
• Non-standard fMRI data
• Completely unsupervised
• Need new methodology

Question:
• We want to “learn” what is a “normal” resting state activity
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Video of raw resting state data
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courtesy of Gael Varoquaux
http://www.youtube.com/watch?v=uhCF-zlk0jY
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The problem
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Objective:
Estimate brain «networks» from full brain fMRI 
ongoing activity (resting state) on a population.

[Fox et al. Nat Rev Neurosci 2007,  Bullmore Nat Rev Neurosci 2009, Smith PNAS 2009 ...]

Definition [network]:
Regions that activate simultaneously, 
spontaneously or as an evoked response, form an 
integrated network that supports a specific 
cognitive function.
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The ingredients
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• Full brain

• Population level model

• A probabilistic model where likelihood of 
unseen data can be tested and used for model 
selection with cross-validation

• Gaussian graphical models (special case of 
probabilistic graphical models with 2nd order statistics)

• Networks estimation using graph partioning with 
modularity criterion
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From voxels to regions (ROIs)

62

• 122 cortex ROIs (sulcal lines)

• 15 subcortical structures (FSL HO atlas)

[Perrot et al. IPMI (2009)]

The atlas:
THM:
A volume is summarized by 
p=137 values

Data are:

• co-registered to a template brain

• averaged within anatomically-defined regions
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Gaussian graphical model
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x1

x2

x3

.

.
xp

∈ R
p ∼ N (0,Σ) zero mean multivariate

Gaussian distribution

p(x) =
1

(2π)p/2
√|Σ| exp(−1

2
xT Σ−1x)

p brain regions

and:

taking the log of the likelihood gives:

Log-Likelihood

X ∈ R
p×n,

n brain volumes

Data covariance

log(p(X)) =
n

2
log(|K|) − 1

2
tr(K(XXT )) + cst

log(p(X)) =
n

2
log(|K|) − 1

2
tr(XT KX) + cst

precision matrixK = Σ−1let
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Graph and partial correlations
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x1

x2

x3

.

.
xp

∈ R
p ∼ N (0,Σ)

p brain regions

p(x) =

√|K|
(2π)p/2

exp(−1
2
xT Kx)

xT Kx =
∑
i,j

xiKijxjwe have

THM: The «connections» between xi and xj are in K
Rq: It’s the partial correlations

K = Σ−1Let x2

x1

x3

K23

K13

K12
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The challenges
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• With 137 ROIs the covariance estimation 
requires to estimate (137x138)/2 =9 453 values

THM: The estimation problem is ill-posed

9 453 >> n≈250 (number of volumes for 1 subject)

Idea: To increase n take more subjects

Problem: Inter-subject variability

Remark: Even with NO noise, it is ill-posed
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Single subject estimation
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Remark: It’s a maximum a posteriori (MAP) estimate 
with i.i.d. Laplace prior on off-diagonal coefficients

Penalized maximum likelihood:

K̂�1 = argminK�0tr (KΣ̂sample)− log detK+ λ‖K‖1,

where ‖K‖1 =
∑
i �=j

|Kij |and

[A. Rothman, et al. : Sparse permutation invariant covariance estimation. Electron J Stat 2 (2008) 494]

THM: L1 regularization promotes a weakly connected 
graph (sparse)

Data fit L1 Prior

Optimization: Convex problem, cyclic descent

Σ̂sample =
1

n
XXT
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Population level estimation
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Idea: Promote the same graph structure across the population but 

allow different weights to take into account inter-subject variability

Subject 1 Subject 2

different weight
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Population level estimation
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K(s) is the precision for subject s

is the empirical covariance for subject sΣ̂sampleK
(s)

Optimization problem:

Notations:

THM: The L1/L2 prior imposes the same zeros in Ks in the population 

(same graph edges for all subjects) but with different weights.

(
K̂

(s)
�21

)
s=1..S

= argminK(s)�0

⎛
⎝ S∑

s=1

(
tr(K(s) Σ̂

(s)
sample)− log detK(s)

)
+ λ

∑
i �=j

‖K(·)
ij ‖2

⎞
⎠

∑
i �=j

√∑S
s=1(K

(s)
ij )2 =

∑
i �=j ‖K(·)

ij ‖2.

Data fit L1/L2 Prior

L1/L2 norm of off-diagonal terms
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Data and preprocessing
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• 20 subjects

• 2 sessions with 244 volumes per session (TR 2.4s)

• Slice timing, motion correction, realignment with SPM5

• Confounds are regressed out (Ventricles, CSF, motion)

• 0.3 Hz low pass filter

• Removing of linear trend and unit variance to look at 
correlations

Remark: domain knowledge
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Model selection
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• Leave one session out (possibly informed by population data)

• The likelihood of the left out session is tested to find the 

best regularization parameters.

session 1

session 2

subj. 1 subj. 2 subj. 20

Train

Test

...

Example with session 2 of subj. 20 out:



Alexandre Gramfort             Sparse methods for functional brain imaging

Results

71

Using subject data Uniform group model
MLE LW �2 �1 MLE LW �2 �1 �21

Generalization likelihood 33.1 -57.1 38.8 43.0 40.6 41.5 41.6 41.8 45.6
Filling factor 100% 100% 100% 45% 100% 100% 100% 60% 8%

b f i i 6 5 5 9 9 8 9 16

Comparison between:
• MLE naive inverse
• L2
• LW 
• L1 individual subject
• L1 on concatenated data from all subjects
• L1/L2 

K̂�2 = (Σ̂sample + λ I)−1

[Ledoit and Wolf 2004]
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Communities and modularity
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[M. Newman et al., Finding and evaluating community structure in networks. Phys rev E (2004)]

[S. White and P. Smyth, A spectral clustering approach to finding communities in graphs. In: 5th SIAM 
international conference on data mining. (2005) 274]

Objective [clustering]:
Graph partioning that optimizes
modularity Q

Now that we have the graph....

[M. Newman., Modularity and community structure in networks. PNAS (2006)]

Approach:
Spectral clustering and k-means to maximize Q based on the 
precision matrices used as adjacency matrices

3 communities

Idea: Strong edges within clusters and few edges 
between clusters (functional specialization with high 
transport properties)
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Medial visual
Occipital pole visual
Lateral visual

Default mode

Basal ganglia
Right Thalamus
Left Putamen

Dorsal motor
Auditory
Ventral motor
Pars opercularis 
(Broca aera)
Fronto-lateral

 
fronto-parietal
Left and right

Posterior inferior
temporal 2

Posterior inferior
temporal 1

Cingulo-insular
network

Graph is clustered
in 16 communities

manually labelled.

Results

73
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Take home messages
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• When you have unsupervised problems, with a likelihood you can do 
proper selection by cross-validation

• Single-subject estimates give poor fits due to estimation noise

• Group-level estimates give poor fits due to subject-variability

• We improve on both by learning a common structure across 
subjects (shared independence structure)

But …

• How do you learn the atlas and the ROIs allowing inter-subject 
variability from the fMRI data
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Dictionary learning to learn the ROIs
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[Varoquaux G., Gramfort A., J.B. Poline, B. Thirion, IPMI 2011]

4
5

6

1
2
3

7

8

=
S∑

s=1

1

2

(
‖Ys −UsVsT ‖2Fro + μ‖Vs −V‖2Fro

)
+ λΩ(V) s.t. ‖us

l ‖22 ≤ 1

ΩSL(v) = ‖v‖1 + 1

2
vTLv
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Minimized with cyclic optimization
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[Varoquaux G., Gramfort A., J.B. Poline, B. Thirion, IPMI 2011]

Input: {Ys ∈ R
n×p, s = 1, . . . , S}, the time series for each subject; k, the number of

maps; an initial guess for V.
Output: V ∈ R

p×k the group-level spatial maps, {Vs ∈ R
p×k} the subject-specific

spatial maps, {Us ∈ R
n×k} the associated time series.

1: E0 ← ∞, E1 ← ∞, i ← 1 (initialize variables).
2: Vs ← V, Us ← YsV(VTV)−1, for s = 1 . . . S
3: while Ei − Ei−1 > εEi−1 do
4: for s=1 to S do
5: for l=1 to k do
6: Update Us: us

l ← us
l + ‖vs

l ‖−2
2 (Ys(vs

l −UsVsTvs
l )

7: us
l ← us

l /max(‖us
l ‖2, 1))

8: end for
9: Update Vs (ridge regression): Vs ← V+ (Ys −UsVT )TUs(UsTUs + μI)−1

10: end for
11: Update V using lemma 1: V ← prox

λ/Sμ Ω

(
1
S

∑S
s=1 V

s
)
.

12: Compute value of energy: Ei ← E(Us,Vs,V)
13: i ← i+ 1
14: end while

Rank 1 update

Ridge
Prox



Conclusion
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Conclusion
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• Sparse methods are great tools but there are a few caveats:

• Pure L1 is often not enough. You need to enforce the good structure

• If you know you look for a sparse solution use it to be faster

• You should promote sparsity in the right “basis” (representation)

• Prediction (reconstruction error) is different from support recovery

• To make something really work:

• a lot of domain knowledge

• understand, adapt and improve ideas emerging in other fields (goes in 
both ways)

• good software engineering: integrate your contributions/code in existing 
software packages to reach users.
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The human inverse problem
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Sparse, Convex 
optimization, STFT,

Proximal iterations,

etc...

Observations
brain 
imaging 
people

?

How do you solve
this inverse problem?
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For MEG
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http://www.github.com/mne-tools
http://www.martinos.org/mne
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Machine learning

81

http://scikit-learn.org

http://nisl.github.com/

[Pedregosa et al. JMLR 2011]
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