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Warm-up: distributed compressed sensing



Sampling + compression = no good

Theoretical foundations: Shannon's AL Al

sampling theorem “\LI_U)/

e Sampling the signal densely enough, exact reconstruction can
be achieved
e Linear signal model: signal is bandlimited in (—B, B)

Nyquist criterion: to represent a signal over a time interval T,
we need at least 2BT samples

This signal has 2BT degrees of freedom, i.e. different time or
frequency components
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Sparsity

Left: image; Right: discrete cosine transform of image
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Sparsity

e x € R" is said to be if it has at most k non-zero
entries, i.e. [|x|jo < k

e In many practical cases, x has a sparse representation in some
basis @, i.e. x = ®c, and ||c||o < k.
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Sparsity

e x € R" is said to be if it has at most k non-zero
entries, i.e. [|x|jo < k

e In many practical cases, x has a sparse representation in some
basis @, i.e. x = ®c, and ||c||o < k.

Sparsity in ltalian: , parsimonia
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Compressed sensing: linear acquisition model

Let x € R"™1 be a
Let A€ R™" with m < n, be a

We take of the signal as

y = Ax

with y € R™¥1,
e Ais typically a random matrix
e If x is sparse in another domain: y = Ax = A®dc = y = Bc

e Underdetermined system =- infinitely many solutions
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Quest for the sparsest solution

Out of all possible solutions, we would like to pick the one that is
, i.e. solve the following problem:

‘min [|X||o subject to AX =y
x€R"

Since this is NP-hard = (Basis Pursuit - BP):

‘min [|X||1 subject to AX =y
x€R"

e Solutions to the BP problem still tend to be ,
O(n%) complexity
e Model with noise: y = Ax + n, solve min ||X||; subject to
x€RN

|AX — yll2 <€
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Single-pixel camera

Object LED (light source)

Photodiode - ; | DMD+ALP
circuit

Board

Picture from Duarte et al., “Single-pixel imaging via compressive sampling”, IEEE Sig. Proc. Mag., Mar. 2008
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Distributed setting

In applications such as sensor networks, we have distributed
acquisition of

@ Sensor Node

Wireless

Communication

Fusion Center
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Signal models for distributed scenario

Joint sparsity model 1 ( ): the signal acquired by the i-th

sensor can be written as

Xi = Xc + aX;

with i =1,2,...,R, xc = ®l¢, x; = 0;, Kc = ‘Qc‘ and K; = |9,|

e xc is the " component, with K¢ nonzero entries.
e x; is the * " component observed by sensor i, with

K; nonzero entries.
For a single x;, we need around c(K¢ + K;) measurements

Assuming R = 2, we expect something around
c(Kc + Ki + Kz)
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Problems in distributed compressed sensing

taking advantage of intra- and inter-sensor correlations
through proper design of sensing and reconstruction algorithms

e signal model (innovation, noise)
e coding model (quantization, entropy coding)

e availability of fusion center ( Vs.
reconstruction)

e application-specific aspects
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Distributed sensing: Joint reconstruction
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Joint reconstruction with side information

e Scenario: signals acquired by a sensor network

correlated in
correlated in

e Compressed Sensing (CS)

captures correlation
allows a encoding scheme with
e Distributed (Slepian-Wolf) Source Coding (DSC)
captures correlation
allows efficient compression with between the
encoders
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Distributed Source Coding

y

DSC refers to the problem of compressing correlated i.i.d.
sources X and Y at their encoders

Y is at the decoder
X is compressed at rate H(X|Y) and recovered using Y as

Lossless setup: uses channel codes (syndrome coding) at rate
depending on the correlation between X and Y

Lossy setup: adds a quantization stage
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Proposed Algorithm — Quantization, CS, coding

Uniform : Joint
ISM-L X, y, |Quantizer|y, 1 ¥, Pequant

X, Y. -

e Linear measurement with sensing matrix A

° quantizer with step size A
e Slepian-Wolf coding stage
syndrome-base turbo codes
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Proposed Algorithm — Joint Dequantization

Uniform P >| . L Joint
A DSC - = DSC*
ISMA1 X, v, [Quantizerly, »| —~ | |~ | 1 ¥, Dequant
%yz

source

X,

e Side information x can be exploited for

linear combination of reconstruction

Reconstruction:
and xo:
g N o?
NT 2T a2

with clipping to quantization interval

. A A
Yq,1_§<y1<}/q,1+5
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Proposed Algorithm — Joint Reconstruction

Uniform P >| 1 Joint
—>| A |—>| l—-t-| DSC - - DSC* |-v—>| |—>| |—>
ISM-1 X, v, [Quantizerly, »| —~ | |~ | y, .| Dequant
Y2

X,

e Side information x, can be exploited for

Generate initial separate reconstruction Xx;

Estimate Xc comparing x» and X;

Subtract yc = Axc from the measurement vector y;
Reconstruct o 1: than original x;

bl A
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Joint vs. Independent Reconstruction

Distortion, MSE

N=512, K=16, ® = DCT, o = 1072

T T T T T T
—©— Independent - M = 64

—&— Independent - M = 128
—o— Joint— M =64
Uk Joint - M =128 E

L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Rate, bit per source symbol




Theoretical results: rate gain

For K, M, N — oo the elements of y; weakly converge to a
Gaussian distribution
The entropy-constrained operational RD curve is

1 me
lim lim  —-2*RDe(R) = —
R—+o0 K,M,N=+co 07, 1 6
with 051 = crf‘ [Kcagc + ozszagj]
Using y1 as , we have a such that
lim lim 27 R )pee () T
R—+oo K,M,N—+too g2 vily2 6

Y1

-1
Ky 03 Ky o2
1+a2—1% 1+a2—2%
Kc The Kc The
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Validation: measurements domain

Distortion

N=512, K=16, ® = DCT, a =101, M =128
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Theoretical results: reconstruction distortion

e Reconstruction performance depend on
added to measurements

e For CS reconstruction, we use the ideal estimator
Kc + K1 Kc + K1
Dsy(R) = —5—Du(R)  Dyjo(R) = ——Dy,(R)

o If we use the side information also for joint reconstruction, we
can achieve an given by

1 K
JR _ - c
R —2|og2<1+K1>
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Validation: reconstruction

Distortion

N=512, K=16, ® = DCT, a =101, M =128

D, (BPDN
A ( )
D (oracle)
_e_ Xl
D, (IR)

-0 -
(oracle)

(BPDN + ideal JR)
2

(oracle + ideal JR)

(JR)

0 1 2 3 4 5 6 7 8
Rate (bit per measurement sample)
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Distributed sensing: Distributed reconstruction



Distributed reconstruction algorithms

Classical distributed compressed sensing paradigm

e A sensor network acquires the compressed data;

e A fusion center collects the data and performs joint
reconstruction.

Distributed compressed sensing with no fusion center

e Is it possible to perform reconstruction with no fusion center?

e Goal: over the network,
taking into account the sensors’ limited computational power.
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Problem Statement

Model:
¢ a g= (V7g)
nodes in V' are sensors
edges in £ CV x V are available communication links
e set of

yv:AvXO"i_gv vevV

Xo € X, € R"” unknown signal
A, € R™" with m << n
&, i.i.d. Gaussian noise

LASSO regression: all data are collected in a fusion center

% = argmin 3 Iy, — Avx[2 + 2aJx]|
vey
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Novel Distributed Approach

min > |[y, — Aux|3 + 20 ||
vey
fu(x)

Develop an iterative procedure that envisages cooperation
among sensors.
At each step, the sensors
e move towards the minimum of their own LASSO functionals
f,(x);
e improve their current estimate by sharing information with
their neighbors.
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Numerical results

Experiments

signal length n, number of measurements per node m, number of
nodes

e signal: x is generated by choosing k components uniformly
among the n elements

e sensing matrix: A, (i,j) ~ N(0,1//m)
e consensus matrix: P, , =1/N, V(v,w) €V xV

Declare if

> lxo =713 /(nv) < 107

vey
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Reconstruction probability

Sensors

123456 7 89 1011121314 151617 1819 20 21 22 23 24 25 26 27 28 29 30
Measurements

n =150, k = 15.
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DCS-SOMP

DCS - Simultaneous Orthogonal Matching Pursuit

e Derived from OMP [Tropp & Gilbert '05]
e Joint support recontruction:
average the magnitudes of the projection of the residuals;
identify the maximal value and selects a new element of the
support.
e Given the support, each sensor independently reconstructs the
signal
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DISTA vs DCS-SOMP

Probability of Recovery

0.8

0.6

0.4

0.2

e DCS-SOMP requires at least k measurements per sensor

n =150, k =15

/ff

A

DISTA 5 sensors —&8—
DISTA 10 sensors —&—
DISTA 15 sensors —<—

DCS-SOMP 5 sensors —&—
DCS-SOMP 10 sensors —&—
DCS-SOMP 15 sensors ——

5 10

15
Measurements

20 25

30
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Reconstruction of “big” images
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Progressive sensing and reconstruction of
multidimensional signals

e Trivial approach, complexity of BP is infeasible

cs cs?

Data Measurement Data Reconstruction

e Proposed iterative architecture

1 JUUU

Prediction Error|

Prediction cst

Measurement

Data Reconstruction

CS exploits correlation on a “subset” of dimensions
Iterative joint reconstruction based on exploits
correlation on “orthogonal” dimensions
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2D progressive imaging

e Devices equipped with 1D
array of detectors

e Array moves in orthogonal
direction

Flatbed Scanners
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Acquisition: separate row CS measurement

— "‘

NELE

T
B
B
F)
I

“&-‘

1 U
e

e M/NcoL dimensionality reduction

e No transform coding and sorting of coefficients
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Reconstruction: refinement of row i at iteration (n)

Linear Measurement
Predictor Prediction

- cs™
Measurement Row
Prediction Prediction
Error Error

Y

Each row is predicted from the adjacent ones

e Measurement prediction error is computed and reconstructed

Row estimate is obtained as predictor 4+ prediction error

Complexity reduction ~ O(NZqy)
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Flatbed scanner (bilevel images)

(a) Constellation (c) Sample Text

RX |—»

(d) Block Diagram



Flatbed scanner (bilevel images)

Constellation Sample Text

N o Larger M

= faster
20 20
L - convergence,
[ Conv. MSE (dB)| [ Conv. MSE (dB)|
30 1 Gain (d8) -30 l:I‘Ga ) I M S E
I terations s I Iterations OWe r
M/N(‘DL M/NC()L

e Sparse image,
5+ 10 dB gain,
© : ~ 10 iterations

Trellis Block Diagram

e Dense image,
3 dB gain,
~ 5 iterations

a5t T Init. MISE (dB) -25 I Init. MSE (dB)
ol ISE (dB)| [ Conv. MSE (dB)|
in (dB) 30 1 Gain (dB)

I erations
022 044 - 023 0.46
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AIRS sensor (1501 spectral channels)

. -25 | I Init.
e ~ 10 dB MSE gain | conv. we (48)
-30 H I:IGain_(dB)
e 5+ 10 iterations L ‘
0.06 0.12 0.24 0.47
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Conclusions

A number of open problems:

e Optimal joint reconstruction for multiple sources
e Distributed reconstruction

Performance bounds
Extensions (noise, innovation, faulty nodes, ...)
New formulations

e Error resilient representations of sparse signals
scalable, multiple descriptions, ...

e Improved reconstruction of big signals
Better signal models than sparsity
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