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• Warm-up: distributed compressed sensing

• Distributed sensing: Joint reconstruction

• Distributed sensing: Distributed reconstruction

• Reconstruction of “big” images
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Warm-up: distributed compressed sensing
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Sampling + compression = no good

Theoretical foundations: Shannon’s
sampling theorem

• Sampling the signal densely enough, exact reconstruction can
be achieved

• Linear signal model: signal is bandlimited in (−B,B)

I Nyquist criterion: to represent a signal over a time interval T ,
we need at least 2BT samples

I This signal has 2BT degrees of freedom, i.e. different time or
frequency components

Is that the “true” number of degrees of freedom?
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Sparsity

Left: image; Right: discrete cosine transform of image
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Sparsity

• x ∈ Rn is said to be k-sparse if it has at most k non-zero
entries, i.e. ‖x‖0 ≤ k

• In many practical cases, x has a sparse representation in some
basis Φ, i.e. x = Φc, and ‖c‖0 ≤ k.

Sparsity in Italian: sparsità, parsimonia
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Compressed sensing: linear acquisition model

Let x ∈ Rn×1 be a signal.
Let A ∈ Rm×n, with m� n, be a sensing matrix.

We take linear projections of the signal as

y = Ax

= .

y A

x

with y ∈ Rm×1.
• A is typically a random matrix
• If x is sparse in another domain: y = Ax = AΦc ⇒ y = Bc
• Underdetermined system ⇒ infinitely many solutions
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Quest for the sparsest solution
Out of all possible solutions, we would like to pick the one that is
sparsest, i.e. solve the following problem:

min
x̂∈Rn
‖x̂‖0 subject to Ax̂ = y

Since this is NP-hard ⇒ convexify (Basis Pursuit - BP):

min
x̂∈Rn
‖x̂‖1 subject to Ax̂ = y

• Solutions to the BP problem still tend to be rather sparse,
O(n3) complexity

• Model with noise: y = Ax + n, solve min
x̂∈Rn
‖x̂‖1 subject to

‖Ax̂ − y‖2 ≤ ε
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Single-pixel camera
Single Pixel Camera

Object LED (light source)

DMD+ALP 
Board

Lens 1Lens 2
Photodiode 

circuit

Picture from Duarte et al., “Single-pixel imaging via compressive sampling”, IEEE Sig. Proc. Mag., Mar. 2008
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Distributed setting
In applications such as sensor networks, we have distributed
acquisition of multiple correlated signals.
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Signal models for distributed scenario

Joint sparsity model 1 (JSM-1): the signal acquired by the i-th
sensor can be written as

xi = xC + αxi

with i = 1, 2, . . . ,R, xC = ΦθC , xi = Φθi , KC = |θC | and Ki = |θi |.

• xC is the “common” component, with KC nonzero entries.
• xi is the “innovation” component observed by sensor i , with

Ki nonzero entries.
I For a single xi , we need around c(KC + Ki ) measurements
I Assuming R = 2, we expect something around

c(KC + K1 + K2)

D. Baron et al., “Distributed compressed sensing”, preprint available at www.arxiv.org
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Problems in distributed compressed sensing

Challenge: taking advantage of intra- and inter-sensor correlations
through proper design of sensing and reconstruction algorithms

• signal model (innovation, noise)
• coding model (quantization, entropy coding)
• availability of fusion center (joint vs. distributed
reconstruction)

• application-specific aspects
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Distributed sensing: Joint reconstruction
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Joint reconstruction with side information

• Scenario: signals acquired by a sensor network
I correlated in time
I correlated in space

• Compressed Sensing (CS)
I captures intra-sensor correlation
I allows a universal encoding scheme with low complexity

• Distributed (Slepian-Wolf) Source Coding (DSC)
I captures inter-sensor correlation
I allows efficient compression with no cooperation between the

encoders

G. Coluccia et al., “Lossy compression of distributed sparse sources: a practical scheme”, Proc. Eusipco 2011.
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Distributed Source Coding
CHAPTER 2. Distributed source coding

Figure 2.5: The source coding with side information at the decoder setup.

Ziv, and is discussed in detail in the following section.
The performance of the asymmetric Slepian-Wolf setup is characterized by the

Slepian-Wolf theorem [1], and it is represented by the corner point marked in Figure 2.3:
when the side information Y is available at the decoder side, rate RX = R = H(X|Y )
is sufficient to guarantee errorless recovery of the source X, with vanishing probability
of error as the length of the source block approaches infinity. The asymptotic Slepian-
Wolf setup can thus achieve the same compression performance of the conditional setup,
where the side information is available both at the encoder and the decoder; in order
to avoid the transmission of redundant information, already expressed by the side infor-
mation, the conditional scheme encodes and transmits only the innovation component
of X with respect to Y , thus realizing maximum compression.

The distributed paradigm is characterized by a shift in the coding strategy, allowing
to achieve the same performance, even if the innovation component cannot be determined
by direct comparison of X and Y at the encoder: the binning principle, at the basis
of the achievability proof of the Slepian-Wolf theorem [1], allows to recast the source
coding problem as a channel coding problem, and to adapt the resource allocation to
the statistical distribution of the innovation component, now understood as the additive
noise affecting the correlation channel between the source X and the side information Y .
We introduce the binning principle, and the link between distributed source coding and
channel coding, through the very simple, but effective, example proposed by Pradhan
and Ramchandran in [84].

Example 2.1 Let X and Y , the source and the side information messages, be repre-
sented by equiprobable binary words of length 3; the correlation between them is defined
by the rule that they shall differ at most in one position, so that the Hamming weight
of their binary sum is wH(X ⊕Y ) ≤ 1. In the conditional setup, when the side informa-
tion message Y is available at the encoder side as well, lossless communication can be
achieved at the cost of 2 bits, with the following strategy. The support of the random
sequence E = X ⊕ Y is E =

{
(000), (001), (010), (100)

}
; each element in E is indexed,

32

• DSC refers to the problem of compressing correlated i.i.d.
sources X and Y without cooperation at their encoders

• Asymmetric case:
I Y is available at the decoder
I X is compressed at rate H(X |Y ) and recovered using Y as

side information
• Lossless setup: uses channel codes (syndrome coding) at rate
depending on the correlation between X and Y

• Lossy setup: adds a quantization stage
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Proposed Algorithm – Quantization, CS, coding

• Linear measurement with Gaussian sensing matrix A
• Uniform scalar quantizer with step size ∆

• Slepian-Wolf coding stage
I syndrome-base turbo codes
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Proposed Algorithm – Joint Dequantization

• Side information x2 can be exploited for joint dequantization
I Reconstruction: linear combination of midpoint reconstruction

and x2:

ŷ1 =
σ2q

σ2q + σ2
y2 +

σ2

σ2q + σ2
ŷq,1

with clipping to quantization interval
[
ŷq,1 −

∆

2 < ŷ1 < ŷq,1 +
∆

2

]
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Proposed Algorithm – Joint Reconstruction

• Side information x2 can be exploited for joint reconstruction

1. Generate initial separate reconstruction x̂1
2. Estimate x̂C comparing x2 and x̂1
3. Subtract ŷC = Ax̂C from the measurement vector ŷ1
4. Reconstruct αxI,1: sparser than original x1
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Joint vs. Independent Reconstruction
N = 512, K = 16, Φ = DCT, α = 10−2
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Theoretical results: rate gain

• Result:
I For K ,M,N →∞ the elements of y1 weakly converge to a

Gaussian distribution
I The entropy-constrained operational RD curve is

lim
R→+∞

lim
K ,M,N→+∞

1
σ2y1

22RDec
y1 (R) =

πe
6

with σ2y1 = σ2A

[
KCσ

2
θC

+ α2Kjσ
2
θj

]

I Using y1 as side information, we have a rate gain R∗ such that

lim
R→+∞

lim
K ,M,N→+∞

1
σ2y1

22(R+R∗)Dec
y1|y2(R) =

πe
6

with R∗ = −1
2 log2



1−

[(
1 + α2 K1

KC

σ2θ1
σ2θC

)(
1 + α2 K2

KC

σ2θ2
σ2θC

)]−1
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Validation: measurements domain
N = 512, K = 16, Φ = DCT, α = 10−1, M = 128
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Theoretical results: reconstruction distortion

• Reconstruction performance depend on quantization noise
added to measurements

• For CS reconstruction, we use the ideal oracle estimator

Dx̂1(R) =
KC + K1

N Dy1(R) Dx̂1|x2(R) =
KC + K1

N Dy1|y2(R)

• If we use the side information also for joint reconstruction, we
can achieve an additional rate gain given by

RJR =
1
2 log2

(
1 +

KC
K1

)
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Validation: reconstruction
N = 512, K = 16, Φ = DCT, α = 10−1, M = 128
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Distributed sensing: Distributed reconstruction
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Distributed reconstruction algorithms

Classical distributed compressed sensing paradigm

• A sensor network acquires the compressed data;
• A fusion center collects the data and performs joint
reconstruction.

Distributed compressed sensing with no fusion center

• Is it possible to perform reconstruction with no fusion center?
• Goal: distribute the reconstruction task over the network,
taking into account the sensors’ limited computational power.
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Problem Statement

Model:
• a directed graph G = (V, E)

- nodes in V are sensors
- edges in E ⊆ V × V are available communication links

• set of observations
yv = Av x0 + ξv v ∈ V

- x0 ∈ Σk ⊆ Rn unknown signal
- Av ∈ Rm×n with m << n
- ξv i.i.d. Gaussian noise

LASSO regression: all data are collected in a fusion center

x̂ = argmin
∑

v∈V
‖yv − Av x‖22 + 2α ‖x‖1
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Novel Distributed Approach

min
∑

v∈V
‖yv − Av x‖22 + 2α ‖x‖1︸ ︷︷ ︸

fv (x)

Idea: Develop an iterative procedure that envisages cooperation
among sensors.

At each step, the sensors
• move towards the minimum of their own LASSO functionals

fv (x);
• improve their current estimate by sharing information with
their neighbors.
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Numerical results

Experiments
signal length n, number of measurements per node m, number of
nodes |V|

• signal: x is generated by choosing k components uniformly
among the n elements

• sensing matrix: Av (i , j) ∼ N(0, 1/
√

m)

• consensus matrix: Pv ,w = 1/N, ∀(v ,w) ∈ V × V

Declare success if
∑

v∈V
‖x0 − x?

v ‖
2
2 /(n|V|) < 10−4
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Reconstruction probability
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DCS-SOMP

DCS - Simultaneous Orthogonal Matching Pursuit

• Derived from OMP [Tropp & Gilbert ’05]
• Joint support recontruction:

I average the magnitudes of the projection of the residuals;
I identify the maximal value and selects a new element of the

support.
• Given the support, each sensor independently reconstructs the
signal

DCS-SOMP requires at least k measurements per sensor
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DISTA vs DCS-SOMP

n = 150, k = 15
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Reconstruction of “big” images
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Progressive sensing and reconstruction of
multidimensional signals

• Trivial approach, complexity of BP is infeasible

CS CS-1

Data Data ReconstructionMeasurement

• Proposed iterative architecture

CS

Data

Measurement

Initial
CS-1

Data Reconstruction

Prediction
Prediction Error

CS-1

+

I CS exploits correlation on a “subset” of dimensions
I Iterative joint reconstruction based on linear predictors exploits

correlation on “orthogonal” dimensions
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2D progressive imaging

• Devices equipped with 1D
array of detectors

• Array moves in orthogonal
direction

Flatbed Scanners Airborne Imagers
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Acquisition: separate row CS measurement

• M/NCOL dimensionality reduction
• No transform coding and sorting of coefficients
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Reconstruction: refinement of row i at iteration (n)

• Each row is predicted from the adjacent ones
• Measurement prediction error is computed and reconstructed
• Row estimate is obtained as predictor + prediction error
• Complexity reduction ∼ O(N2

ROW)
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Flatbed scanner (bilevel images)

(a) Constellation (b) Trellis (c) Sample Text

(d) Block Diagram
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Flatbed scanner (bilevel images)
Constellation
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• Larger M
⇒ faster
convergence,
lower MSE

• Sparse image,
5÷ 10 dB gain,
∼ 10 iterations

• Dense image,
3 dB gain,
∼ 5 iterations
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AIRS sensor (1501 spectral channels)

• ∼ 10 dB MSE gain
• 5÷ 10 iterations
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Conclusions

A number of open problems:

• Optimal joint reconstruction for multiple sources
• Distributed reconstruction

I Performance bounds
I Extensions (noise, innovation, faulty nodes, ...)
I New formulations

• Error resilient representations of sparse signals
I scalable, multiple descriptions, ...

• Improved reconstruction of big signals
I Better signal models than sparsity
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