Compressed sensing for distributed communications

INRIA, Oct. 16, 2012

Talk sponsored by EURASIP

Enrico Magli

Department of Electronics and Telecommunications
Politecnico di Torino (Italy)
enrico.magli@polito.it

Acknowledgments

This talk is part of the dissemination activities of ERC starting grant project 279848

CRISP
Towards compressive information processing systems

Credits

- Valerio Bioglio
- Giulio Coluccia
- Attilio Fiandrotti
- Sophie Fosson
- Chiara Ravazzi
- Aline Roumy
- Diego Valsesia

Outline

- Warm-up: distributed compressed sensing
- Distributed sensing: Joint reconstruction
- Distributed sensing: Distributed reconstruction
- Reconstruction of "big" images

Warm-up: distributed compressed sensing

Sampling + compression = no good

Theoretical foundations: Shannon's sampling theorem

- Sampling the signal densely enough, exact reconstruction can be achieved
- Linear signal model: signal is bandlimited in (-B, B)
 - Nyquist criterion: to represent a signal over a time interval T, we need at least 2BT samples
 - ▶ This signal has 2BT degrees of freedom, i.e. different time or frequency components

Is that the "true" number of degrees of freedom?

Sparsity

Left: image; Right: discrete cosine transform of image

Sparsity

- $x \in \mathbb{R}^n$ is said to be k-sparse if it has at most k non-zero entries, i.e. $\|x\|_0 \le k$
- In many practical cases, x has a sparse representation in some basis Φ , i.e. $x = \Phi c$, and $||c||_0 \le k$.

Sparsity

- $x \in \mathbb{R}^n$ is said to be k-sparse if it has at most k non-zero entries, i.e. $\|x\|_0 \le k$
- In many practical cases, x has a sparse representation in some basis Φ , i.e. $x = \Phi c$, and $||c||_0 \le k$.

Sparsity in Italian: sparsità, parsimonia

Compressed sensing: linear acquisition model

Let $x \in \mathbb{R}^{n \times 1}$ be a signal.

Let $A \in \mathbb{R}^{m \times n}$, with $m \ll n$, be a sensing matrix.

We take linear projections of the signal as

$$y = Ax$$

with $y \in \mathbb{R}^{m \times 1}$.

- A is typically a random matrix
- If x is sparse in another domain: $y = Ax = A\Phi c \Rightarrow y = Bc$
- Underdetermined system ⇒ infinitely many solutions

Quest for the sparsest solution

Out of all possible solutions, we would like to pick the one that is sparsest, i.e. solve the following problem:

$$\min_{\widehat{x} \in \mathbb{R}^n} \|\widehat{x}\|_0 \text{ subject to } A\widehat{x} = y$$

Since this is NP-hard \Rightarrow convexify (Basis Pursuit - BP):

$$\min_{\widehat{x} \in \mathbb{R}^n} \|\widehat{x}\|_1$$
 subject to $A\widehat{x} = y$

- Solutions to the BP problem still tend to be rather sparse, $O(n^3)$ complexity
- Model with noise: y=Ax+n, solve $\min_{\widehat{x}\in\mathbb{R}^n}\|\widehat{x}\|_1$ subject to $\|A\widehat{x}-y\|_2<\epsilon$

Single-pixel camera

Distributed setting

In applications such as sensor networks, we have distributed acquisition of multiple correlated signals.

Signal models for distributed scenario

Joint sparsity model 1 (JSM-1): the signal acquired by the i-th sensor can be written as

$$x_i = x_C + \alpha x_i$$

with
$$i = 1, 2, ..., R$$
, $x_C = \Phi \theta_C$, $x_i = \Phi \theta_i$, $K_C = |\theta_C|$ and $K_i = |\theta_i|$.

- x_C is the "common" component, with K_C nonzero entries.
- x_i is the "innovation" component observed by sensor i, with K_i nonzero entries.
 - For a single x_i , we need around $c(K_C + K_i)$ measurements
 - Assuming R = 2, we expect something around $c(K_C + K_1 + K_2)$

Problems in distributed compressed sensing

Challenge: taking advantage of intra- and inter-sensor correlations through proper design of sensing and reconstruction algorithms

- signal model (innovation, noise)
- coding model (quantization, entropy coding)
- availability of fusion center (joint vs. distributed reconstruction)
- application-specific aspects

Distributed sensing: Joint reconstruction

Joint reconstruction with side information

- Scenario: signals acquired by a sensor network
 - correlated in time
 - correlated in space
- Compressed Sensing (CS)
 - captures intra-sensor correlation
 - allows a universal encoding scheme with low complexity
- Distributed (Slepian-Wolf) Source Coding (DSC)
 - captures inter-sensor correlation
 - allows efficient compression with no cooperation between the encoders

G. Coluccia et al., "Lossy compression of distributed sparse sources: a practical scheme", Proc. Eusipco 2011.

Distributed Source Coding

- DSC refers to the problem of compressing correlated i.i.d. sources X and Y without cooperation at their encoders
- Asymmetric case:
 - Y is available at the decoder
 - ightharpoonup X is compressed at rate H(X|Y) and recovered using Y as side information
- Lossless setup: uses channel codes (syndrome coding) at rate depending on the correlation between X and Y
- Lossy setup: adds a quantization stage

Proposed Algorithm – Quantization, CS, coding

- Linear measurement with Gaussian sensing matrix A
- ullet Uniform scalar quantizer with step size Δ
- Slepian-Wolf coding stage
 - syndrome-base turbo codes

Proposed Algorithm – Joint Dequantization

- Side information x_2 can be exploited for joint dequantization
 - Reconstruction: linear combination of midpoint reconstruction and x₂:

$$\widehat{y}_1 = \frac{\sigma_q^2}{\sigma_q^2 + \sigma^2} y_2 + \frac{\sigma^2}{\sigma_q^2 + \sigma^2} \widehat{y}_{q,1}$$

with clipping to quantization interval

$$\left[\widehat{y}_{q,1} - \frac{\Delta}{2} < \widehat{y}_1 < \widehat{y}_{q,1} + \frac{\Delta}{2}\right]$$

Proposed Algorithm – Joint Reconstruction

- Side information x₂ can be exploited for joint reconstruction
 - 1. Generate initial separate reconstruction \hat{x}_1
 - 2. Estimate \hat{x}_C comparing x_2 and \hat{x}_1
 - 3. Subtract $\hat{y}_C = A\hat{x}_C$ from the measurement vector \hat{y}_1
 - 4. Reconstruct $\alpha x_{1,1}$: sparser than original x_1

Joint vs. Independent Reconstruction

Theoretical results: rate gain

- Result:
 - ▶ For $K, M, N \rightarrow \infty$ the elements of y_1 weakly converge to a Gaussian distribution
 - ▶ The entropy-constrained operational RD curve is

$$\lim_{R\to+\infty} \lim_{K,M,N\to+\infty} \frac{1}{\sigma_{y_1}^2} 2^{2R} D_{y_1}^{ec}(R) = \frac{\pi e}{6}$$

with
$$\sigma_{y_1}^2 = \sigma_A^2 \left[K_C \sigma_{\theta_C}^2 + \alpha^2 K_j \sigma_{\theta_j}^2 \right]$$

▶ Using y_1 as side information, we have a rate gain R^* such that

$$\lim_{R \to +\infty} \lim_{K,M,N \to +\infty} \frac{1}{\sigma_{y_1}^2} 2^{2(R+R^*)} D_{y_1|y_2}^{ec}(R) = \frac{\pi e}{6}$$

$$\text{with } R^* = -\frac{1}{2} \log_2 \left\{ 1 - \left[\left(1 + \alpha^2 \frac{K_1}{K_C} \frac{\sigma_{\theta_1}^2}{\sigma_{\theta_c}^2} \right) \left(1 + \alpha^2 \frac{K_2}{K_C} \frac{\sigma_{\theta_2}^2}{\sigma_{\theta_c}^2} \right) \right]^{-1} \right\}$$

Validation: measurements domain

Theoretical results: reconstruction distortion

- Reconstruction performance depend on quantization noise added to measurements
- For CS reconstruction, we use the ideal oracle estimator

$$D_{\hat{x}_1}(R) = \frac{K_C + K_1}{N} D_{y_1}(R) \qquad D_{\hat{x}_1|x_2}(R) = \frac{K_C + K_1}{N} D_{y_1|y_2}(R)$$

 If we use the side information also for joint reconstruction, we can achieve an additional rate gain given by

$$R^{\mathsf{JR}} = rac{1}{2}\log_2\left(1 + rac{\mathcal{K}_\mathsf{C}}{\mathcal{K}_\mathsf{1}}
ight)$$

Validation: reconstruction

Distributed sensing: Distributed reconstruction

Distributed reconstruction algorithms

Classical distributed compressed sensing paradigm

- A sensor network acquires the compressed data;
- A fusion center collects the data and performs joint reconstruction.

Distributed compressed sensing with no fusion center

- Is it possible to perform reconstruction with no fusion center?
- Goal: distribute the reconstruction task over the network, taking into account the sensors' limited computational power.

Problem Statement

Model:

- a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - nodes in $\mathcal V$ are sensors
 - edges in $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ are available communication links
- set of observations

$$y_{v} = A_{v}x_{0} + \xi_{v} \qquad v \in \mathcal{V}$$

- $x_0 \in \Sigma_k \subseteq \mathbb{R}^n$ unknown signal
- $A_v \in \mathbb{R}^{m \times n}$ with $m \ll n$
- ξ_v i.i.d. Gaussian noise

LASSO regression: all data are collected in a fusion center

$$\widehat{x} = \operatorname{argmin} \sum_{v \in \mathcal{V}} \|y_v - A_v x\|_2^2 + 2\alpha \|x\|_1$$

Novel Distributed Approach

$$\min \sum_{v \in \mathcal{V}} \underbrace{\left\| y_v - A_v x \right\|_2^2 + 2\alpha \left\| x \right\|_1}_{f_v(x)}$$

Idea: Develop an iterative procedure that envisages cooperation among sensors.

At each step, the sensors

- move towards the minimum of their own LASSO functionals $f_{\nu}(x)$;
- improve their current estimate by sharing information with their neighbors.

Numerical results

Experiments

signal length n, number of measurements per node m, number of nodes $|\mathcal{V}|$

- signal: x is generated by choosing k components uniformly among the n elements
- sensing matrix: $A_{\nu}(i,j) \sim N(0,1/\sqrt{m})$
- consensus matrix: $P_{v,w} = 1/N$, $\forall (v,w) \in \mathcal{V} \times \mathcal{V}$

Declare success if

$$\sum_{v \in \mathcal{V}} \|x_0 - x_v^{\star}\|_2^2 / (n|\mathcal{V}|) < 10^{-4}$$

Reconstruction probability

$$n = 150, k = 15.$$

DCS-SOMP

DCS - Simultaneous Orthogonal Matching Pursuit

- Derived from OMP [Tropp & Gilbert '05]
- Joint support recontruction:
 - average the magnitudes of the projection of the residuals;
 - identify the maximal value and selects a new element of the support.
- Given the support, each sensor independently reconstructs the signal

DCS-SOMP requires at least k measurements per sensor

DISTA vs DCS-SOMP

• DCS-SOMP requires at least k measurements per sensor

Reconstruction of "big" images

Progressive sensing and reconstruction of multidimensional signals

Trivial approach, complexity of BP is infeasible

Proposed iterative architecture

- ▶ CS exploits correlation on a "subset" of dimensions
- Iterative joint reconstruction based on linear predictors exploits correlation on "orthogonal" dimensions

2D progressive imaging

- Devices equipped with 1D array of detectors
- Array moves in orthogonal direction

Airborne Imagers

Acquisition: separate row CS measurement

- *M*/*N*_{COL} dimensionality reduction
- No transform coding and sorting of coefficients

Reconstruction: refinement of row i at iteration (n)

- Each row is predicted from the adjacent ones
- Measurement prediction error is computed and reconstructed
- Row estimate is obtained as predictor + prediction error
- Complexity reduction $\sim O(N_{\rm ROW}^2)$

Flatbed scanner (bilevel images)

Flatbed scanner (bilevel images)

- Larger M
 ⇒ faster
 convergence,
 lower MSE
- Sparse image, $5 \div 10$ dB gain, ~ 10 iterations
- Dense image,
 3 dB gain,
 5 iterations

AIRS sensor (1501 spectral channels)

- $\bullet~\sim 10~\text{dB}$ MSE gain
- $5 \div 10$ iterations

Conclusions

A number of open problems:

- Optimal joint reconstruction for multiple sources
- Distributed reconstruction
 - Performance bounds
 - Extensions (noise, innovation, faulty nodes, ...)
 - New formulations
- Error resilient representations of sparse signals
 - scalable, multiple descriptions, ...
- Improved reconstruction of big signals
 - Better signal models than sparsity