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Linear measurement system (compressed sensing)

Redundant dictionary, fixed by signal properties (ex: union of 
wavelets, curvelets, gabor ...) or data driven{
A convenient ortho basis
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OR contains few big entries 

Example: MDCT/Gabor for audio signals
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Recover x by promoting sparsity:

x

⇤ = argmin
x

1

2
ky ��xk2 + µkxk?

If the model is an ortho basis it is easy to solve

In general models are embodied by dictionaries
Model coefficients can be recovered by families of algorithms, often solving 
an optimization problem that promotes sparsity:
iterative shrinkage, greedy algorithms etc ...

Ex:
kxkStruct

cfr. F. Bach

kxk0

kxk1
cfr. R. Gribonval
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Sparsity constrained recovery and inverse problems:

x

⇤ = argmin
x

1
2
ky �U�xk2 + µkxk1 s

⇤ = �x

⇤

ỹ = Us

observed signal degrading operator

New perspective: Sparsity as a regularizer (ex: TV - sparsity of gradients)
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See tutorials of Rémi Gribonval and Francis 
Bach on how to find a needle in a haystack



Take Home Messages So Far
- Many signals are sparse on some basis or dictionary

‣ zoology of fixed “optimal” bases
‣ bases/dictionary learning
‣ data driven representation (link with Machine Learning)

- Sparsity offers a lot of flexibility
‣ dimensionality reduction
‣ compression

- Algorithms to handle sparsity (provably correct)
‣ greedy, convex relaxation ...

- Applications !
‣ in particular “compressive sensing”

8
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... you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !
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Sad Realization and Hopeful Wish
10

Sparse recovery techniques are great for processing data but ...

... you acquire the whole signal, i.e dimension N and then ...

Can we estimate the sparse components from few measurements ?

threshold
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Sparse Recovery and Compressive Sensing
11

We measure an unknown signal y :

But we know it comes from a model

Try to fit the model to 
the observations

s = Ay

arg min
x
⇥s�A�x⇥2

2

The fit maybe hard to find BUT we know the model is sparse 

arg min

x2RN
kxk1 subject to ky �A�xk22  �

Sparsity constrained inverse problem

arg min
x
⇥s�A�x⇥2

2 + �⇥x⇥1



Bring Home Key Concepts
l Sparsity / Compressibility
- large dimension but few degrees of freedom

l Linear (non adaptive !) measurements
-  

l Incoherence / Randomness
- each measurement counts !
- universality, robustness, scalability

l Recovery
- provably correct algoS to solve inverse problem

12

M = O(K log N/K)

[Candès, Romberg, Tao, Donoho]

See 2nd talk of 
R. Gribonval
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Applications
well, applications @EPFL really...
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Spread-Spectrum Compressive Sensing
14

Generative sparse model

Sensing model: randomly select few 
projections onto an ONB

A common sensing model: projections onto an ONB
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Spread-Spectrum Compressive Sensing
14

Generative sparse model

Sensing model: randomly select few 
projections onto an ONB

A common sensing model: projections onto an ONB

µ = max

i,j
|h�i, ji|

Recovery performance driven by the incoherence between the two bases:
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[13], with a successful implementation on a MRI scanner. This paper concentrates on the theoretical

guarantees associated to the proposed scheme.

C. Main contributions and organization

In Section II, we study the spread spectrum technique for arbitrary pairs of sensing and sparsity bases

(Φ,Ψ). We consider a digital pre-modulation by a random Rademacher or Steinhaus sequence and show

that the recovery conditions do not depend anymore on the coherence of the system but on a new

parameter β (Φ,Ψ) called modulus-coherence and defined as

β (Φ,Ψ) = max
1!i,j!N

√

√

√

√

N
∑

k=1

∣

∣φ∗kiψkj

∣

∣

2
, (4)

where φki and ψkj are respectively the kth entries of the vectors φi and ψj . We then show that this

parameter reaches its optimal value β (Φ,Ψ) = N−1/2 whatever the sparsity basis Ψ for particular

sensing matrices Φ including the Fourier matrix, suggesting universal recovery performances. These

theoretical results are then confirmed experimentally through an analysis of the phase transition of the

$1-minimization problem for different pairs of sensing and sparsity bases. In Section IV, we illustrate the

effectiveness of the spread spectrum technique by a study of its application to radio interferometry and

MRI. We show in this context that the spread spectrum technique drastically enhances the performance

of a compressed sensing strategy. Technical proofs are gathered in the appendices A and B.

II. SPREAD SPECTRUM TECHNIQUE

In this section, we first recall the standard recovery conditions of sparse signals randomly sampled in

a bounded orthonormal system. These recovery results depend on the mutual coherence µ of the system.

Hence, we study the effect of a random pre-modulation on this value and deduce the new recovery

conditions for the spread spectrum technique. We then show that the number of measurements needed to

recover sparse signals becomes universal for a family of sensing matrices Φ which includes the Fourier

and Hadamard bases. Finally, our predictions are confirmed experimentally.

A. Recovery results in a bounded orthonormal system

For the setting presented in Section I, the theory of compressed sensing already provides sufficient

conditions on the number of measurements needed to recover the vector α from the measurements y by

solving the $1-minimization problem (3) [6], [7].

February 23, 2011 DRAFT
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B. Pre-modulation effect on the mutual coherence

The spread spectrum technique consists in pre-modulating the signal x by a wide-band signal c =

(cl)1!l!N ∈ CN , with |cl| = 1 and random phases, before projecting the resulting signal onto m vectors

of the basis Φ. The measurement vector y then still satisfies relation (1) but with

AΩ = Φ
∗
ΩCΨ ∈ C

m×N , (8)

where the additional matrix C ∈ RN×N stands for the diagonal matrix associated to the sequence c.

In this setting, the matrix A is still orthonormal. Therefore, the recovery condition of sparse signals

sampled with the use of this matrix depends on the mutual coherence µ = max1!i,j!N |〈φi,Cψj〉|.

With a pre-modulation by a random Rademacher or Steinhaus sequence, Lemma 1 shows that the mutual

coherence µ is essentially bounded by the modulus-coherence β (Φ,Ψ) defined in equation (4).

Lemma 1. Let c ∈ CN be a random Rademacher or Steinhaus sequence and C ∈ CN×N be the

associated diagonal matrix. Then, the mutual coherence µ = max1!i,j!N |〈φi,Cψj〉| satisfies

µ ! β (Φ,Ψ)
√

2 log (2N2/ε), (9)

with probabilty at least 1 − ε.

The proof of Lemma 1 relies on a simple application of the Hoeffding’s inequality and the union

bound.

Proof: We have 〈φi,Cψj〉 =
∑N

k=1 ckφ∗kiψkj =
∑N

k=1 cka
ij
k , where aij

k = φ∗kiψkj . An application

of the Hoeffding’s inequality shows that

P (|〈φi,Cψj〉| > u) ! 2 exp

(

−
u2

2‖aij‖2
2

)

,

for all u > 0 and 1 ! i, j ! N , with ‖aij‖2
2 =

∑N
k=1

∣

∣

∣
aij

k

∣

∣

∣

2
. The union bound then yields

P (µ > u) !
∑

1!i,j!N

P (|〈φi, c ·ψj〉| > u)

! 2
∑

1!i,j!N

exp

(

−
u2

2‖aij‖2
2

)

,

for all u > 0. As β2 (Φ,Ψ) = max1!i,j!N
∑N

k=1

∣

∣

∣
aij

k

∣

∣

∣

2
then ‖aij‖2

2 ! β2 (Φ,Ψ) for all 1 ! i, j ! N ,

and the previous relation becomes

P (µ > u) ! 2N2 exp

(

−
u2

2β2 (Φ,Ψ)

)

,

for all u > 0. Taking u =
√

2β2 (Φ,Ψ) log (2N2/ε) terminates the proof.
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C. Sparse recovery with the spread spectrum technique

Combining Theorem 1 with the previous estimate on the mutual coherence, we can state the following

theorem:

Theorem 3. Let c ∈ CN , with N > 3, be a random Rademacher or Steinhaus sequence and C ∈ CN×N

the associated diagonal matrix. Let α ∈ CN be a s-sparse vector and y = AΩα ∈ Cm, with A = Φ∗CΨ.

For a universal constant C ′ > 0, if

m ! C ′ Nβ2 (Φ,Ψ) s log8(N), (10)

thenα is the unique minimizer of the "1-minimization problem (3) with probability at least 1−O
(

N− log3(N)
)

.

Proof: It is straightforward to check that C∗C = CC∗ = I where I is the identity matrix. The

matrix A = Φ∗CΨ is thus orthonormal and Theorem 1 applies. From Lemma 1, we know that the

coherence satisfies relation (9) with probality at least 1 − ε. Consequently, with probability at least
(

1 − N−γ log3(N)
)

(1 − ε), if

m ! 2C Nβ2 (Φ,Ψ) s log
(

2N2/ε
)

log4(N),

then α is the unique minimizer of the "1-minimization minimization problem (3). Taking ε = N− log3(N),

noticing that
(

1 − N−γ log3(N)
) (

1 − N− log3(N)
)

> 1 −O
(

N− log3(N)
)

, and that the previous relation

is satisfied if

m ! 4C Nβ2 (Φ,Ψ) s log8(N),

for N > 3, and taking C ′ = 4C terminates the proof.

Note that relation (10) also ensure the stability of the spread spectrum technique relative to noise and

compressibility by combination of Theorem 2 and Lemma 1.

D. Universal sensing bases with ideal modulus-coherence

Theorem 3 shows that the performance of the spread spectrum technique is driven by the modulus-

coherence β (Φ,Ψ). In general the spread spectrum technique is not universal and the number of mea-

surements required for accurate reconstructions depends on the value of this parameter. For example,

one can show that when both matrices Φ and Ψ are the Haar wavelet basis, then β (Φ,Ψ) = 2−1/2 (see

appendix A). In this particular case, the random modulation sightly reduces the mutual coherence from

µ = 1 to µ # 2−1/2, suggesting a slight improvement of the recovery results.

February 23, 2011 DRAFT

modulation

Theoretical Analysis of Recovery (joint with R. Gribonval):

15
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P (µ > u) !
∑

1!i,j!N

P (|〈φi, c ·ψj〉| > u)

! 2
∑

1!i,j!N

exp

(

−
u2

2‖aij‖2
2

)

,

for all u > 0. As β2 (Φ,Ψ) = max1!i,j!N
∑N

k=1

∣

∣

∣
aij

k

∣

∣

∣

2
then ‖aij‖2

2 ! β2 (Φ,Ψ) for all 1 ! i, j ! N ,

and the previous relation becomes

P (µ > u) ! 2N2 exp

(

−
u2

2β2 (Φ,Ψ)

)

,

for all u > 0. Taking u =
√

2β2 (Φ,Ψ) log (2N2/ε) terminates the proof.
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C. Sparse recovery with the spread spectrum technique

Combining Theorem 1 with the previous estimate on the mutual coherence, we can state the following

theorem:

Theorem 3. Let c ∈ CN , with N > 3, be a random Rademacher or Steinhaus sequence and C ∈ CN×N

the associated diagonal matrix. Let α ∈ CN be a s-sparse vector and y = AΩα ∈ Cm, with A = Φ∗CΨ.

For a universal constant C ′ > 0, if

m ! C ′ Nβ2 (Φ,Ψ) s log8(N), (10)

thenα is the unique minimizer of the "1-minimization problem (3) with probability at least 1−O
(

N− log3(N)
)

.

Proof: It is straightforward to check that C∗C = CC∗ = I where I is the identity matrix. The

matrix A = Φ∗CΨ is thus orthonormal and Theorem 1 applies. From Lemma 1, we know that the

coherence satisfies relation (9) with probality at least 1 − ε. Consequently, with probability at least
(

1 − N−γ log3(N)
)

(1 − ε), if

m ! 2C Nβ2 (Φ,Ψ) s log
(

2N2/ε
)

log4(N),

then α is the unique minimizer of the "1-minimization minimization problem (3). Taking ε = N− log3(N),

noticing that
(

1 − N−γ log3(N)
) (

1 − N− log3(N)
)

> 1 −O
(

N− log3(N)
)

, and that the previous relation

is satisfied if

m ! 4C Nβ2 (Φ,Ψ) s log8(N),

for N > 3, and taking C ′ = 4C terminates the proof.

Note that relation (10) also ensure the stability of the spread spectrum technique relative to noise and

compressibility by combination of Theorem 2 and Lemma 1.

D. Universal sensing bases with ideal modulus-coherence

Theorem 3 shows that the performance of the spread spectrum technique is driven by the modulus-

coherence β (Φ,Ψ). In general the spread spectrum technique is not universal and the number of mea-

surements required for accurate reconstructions depends on the value of this parameter. For example,

one can show that when both matrices Φ and Ψ are the Haar wavelet basis, then β (Φ,Ψ) = 2−1/2 (see

appendix A). In this particular case, the random modulation sightly reduces the mutual coherence from

µ = 1 to µ # 2−1/2, suggesting a slight improvement of the recovery results.
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Definition 1. (Universal sensing basis) An orthonormal basis Φ ∈ CN×N is called a universal sensing

basis if all its entries φki, 1 ! k, i ! N , are of equal complex magnitude.

For universal sensing bases, e.g. the Fourier transform, the Hadamard transform, or the noiselet

transform, we have |φki| = N−1/2 for all 1 ! k, i ! N . It follows that β (Φ,Ψ) = N−1/2 and µ " N−1/2,

i.e. its optimal value up to a logarithmic factor, whatever the sparsity matrix considered! For such sensing

matrices, the spread spectrum technique is thus a simple and efficient way to render a system incoherent

independently of the sparsity matrix.

Corollary 1. (Spread spectrum universality) Let c ∈ CN , with N > 3, be a random Rademacher or

Steinhaus sequence and C ∈ CN×N the associated diagonal matrix. Let α ∈ CN be a s-sparse vector

and y = AΩα ∈ Cm, with A = Φ∗CΨ. For universal sensing bases Φ ∈ CN×N and for a universal

constant C ′ > 0, if

m " C ′ s log8(N), (11)

thenα is the unique minimizer of the #1-minimization problem (3) with probability at least 1−O
(

N− log3(N)
)

.

For universal sensing bases, the spread spectrum technique is thus universal: the recovery condition

does not depend on the sparsity basis and the number of measurements needed to reconstruct sparse

signals is optimal in the sense that it is reduced to the sparsity level s. The technique is also efficient

as the pre-modulation only requires a sample-by-sample multiplication between x and c. Furthermore,

fast multiplication matrix algorithms are available for several universal sensing bases such as the Fourier,

Hadamard, or noiselet bases.

E. Sensing sparse Fourier vectors in the Fourier basis

In light of Corollary 1, one can notice that sampling sparse signals in the Fourier basis is a universal

encoding strategy whatever the sparsity basis Ψ - even if the original signal is itself sparse in the Fourier

basis! We will confirm these results experimentally in Section III.

For application such as radio interferometry and MRI, these results are of huge interest. The signal

being probed in the Fourier domain, introducing a simple modulation in the acquisition process can

reduce drastically the number of measurements needed for an accurate recovery.
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Fig. 2. Phase transition of the !1-minimization problem for different sparsity bases and random selection of Fourier

measurements without (left panels) and with (right panels) random modulation. The sparsity bases considered are the Dirac

basis (top), the Haar wavelet basis (center), and the Fourier basis (bottom). The dashed green line indicates the phase transition

of Donoho-Tanner [5]. The color bar goes from white to black indicating a probability of recovery from 0 to 1.

A. Settings

For the first experiment, we choose the Haar wavelet basis as both the sparsity matrix Ψ and the sensing

matrix Φ. We generate complex s-sparse signals of size N = 1024 with s = 10. The positions of the

non-zero coefficients are chosen uniformly at random in {1, . . . , N}, their phases are set by generating a

Steinhaus sequence, and their amplitudes follows a uniform distribution over [0, 1]. The signals are then

probed according to relation (1) in the conditions of Theorem 1 or 3 and reconstructed from different

number of measurements m ∈ {s, . . . ,N} by solving the !1-minimization problem (3) with the SPGL1
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Fig. 3. Phase transition of the !1-minimization problem for different sparsity bases and random selection of Hadamard

measurements without (left panels) and with (right panels) random modulation. The sparsity bases considered are the Dirac

basis (top), the Haar wavelet basis (center), and the Fourier basis (bottom). The dashed green line indicates the phase transition

of Donoho-Tanner [5]. The color bar goes from white to black indicating a probability of recovery from 0 to 1.

toolbox1 [21]. For each value of m, we compute the probability of recovery2 over 100 simulations.

For the second experiment, we consider the Dirac, Fourier and Haar wavelet bases as sparsity matrices

Ψ and chose the Fourier basis as the sensing matrix Φ. We generate complex sparse signals for several

values of s ∈ {1, . . . , N = 1024} in the same way as for the first experiment. The signals are then probed

according to relation (1) in the conditions of Theorem 1 or 3 for different number of measurements

m ∈ {s, . . . , 10s} and reconstructed by solving the !1-minimization problem (3). For each pair (m, s),

we compute the probability of recovery over 100 simulations in the presence and absence of the random

1available at http://www.cs.ubc.ca/labs/scl/spgl1
2perfect recovery is considered if the !2 norm between the original signal x and the reconstructed signal x! satisfy: ‖x −

x!‖2 ! 10
−3‖x‖2

February 23, 2011 DRAFT

16



⇢(x)

y(t) = p(t) · s(t) , ŷ(!) = p̂(!) ? ŝ(!)
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2 State-of-the-art

2.1 Magnetic resonance imaging

2.1.1 Standard magnetic resonance measurements

We denote by ⇥ the original two-dimensional image of interest which represents the magnetization induced
by resonance in the tissues to be imaged. Magnetic resonance measurements take the form of values of the
Fourier transform of the original image. In practice, the image acquired is always complex in nature due
imperfect experimental conditions, such as magnetic field inhomogeneities [8]. We denote the image as a
function ⇥ of the position x ⌅ R2, with components (x, y), representing the intensity of the magnetization.

In the standard setting, magnetic resonance measurements take the general form:

� (k) =
�

R2
⇥ (x) e�2i�k·x d2x. (1)

2.1.2 Magnetic resonance inverse problem

The function ⇥ considered is considered to be band limited. It is completely identified by its Nyquist-
Shannon sampling on a discrete uniform grid of N = N1/2 � N1/2 points xi ⌅ R2 in real, or image, space
with 1 � i � N . The sampled signal is denoted by a vector ⇥ ⌅ CN ⇥ {⇥i ⇥ ⇥(xi)}16i6N . The functions may
equivalently be described by its complex k-space coe⇤cients on a discrete uniform grid of N = N1/2�N1/2

spatial frequencies ki with 1 � i � N . This grid is limited at some maximum frequency defining the band
limit.

For the sake of simplicity, we assume that the spatial frequencies k probed belong to the discrete grid
of points ki, so that we can discard any regridding operation [8]. The k-space coverage provided by the M
spatial frequencies probed kb, with 1 � b � M , can simply be identified by a binary mask in k-space equal
to 1 for each spatial frequency probed and 0 otherwise. The measurements may be denoted by a vector
of M complex k-space coe⇤cients � ⌅ CM ⇥ {�b ⇥ �(kb)}16b6M , possibly a�ected by complex noise of
instrumental origin identified by the vector n ⌅ CM ⇥ {nb ⇥ n(kb)}16b6M .

In this discrete setting, we consider a noisy and incomplete k-space coverage in the perspective of accel-
erating acquisition time in comparison with a complete k-space coverage. An ill-posed inverse problem is
defined for the reconstruction of the image ⇥ from the measurements �:

� ⇥ �⇥ + n with � ⇥ MF, (2)

where the matrix � ⌅ CM⇥N identifies the complete linear relation between the signal and the measurements.
The unitary matrix F ⌅ CN⇥N ⇥ {Fij ⇥ e�2i�ui·xj /N1/2}16i,j6N implements the discrete Fourier transform.
The matrix M ⌅ RM⇥N ⇥ {Mbj}16b6M ;16j6N is the rectangular binary matrix implementing the mask.

In the perspective of the reconstruction of the signal ⇥, relation (2) represents the measurement constraint.
As M ⇤ N , many signals may formally satisfy the measurement constraint. A regularization scheme that
encompasses enough prior information on the original signal is needed in order to find a unique solution. All
image reconstruction algorithms will di�er through the kind of regularization considered.

3

Problem: accelerate MRI acquisition

Sensing Model: wide-band modulation
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Compressed Sensing in MRI
17

Keywords: magnetic resonance imaging, compressed sensing, spread spectrum, incoher-
ence.

2 State-of-the-art

2.1 Magnetic resonance imaging

2.1.1 Standard magnetic resonance measurements

We denote by ⇥ the original two-dimensional image of interest which represents the magnetization induced
by resonance in the tissues to be imaged. Magnetic resonance measurements take the form of values of the
Fourier transform of the original image. In practice, the image acquired is always complex in nature due
imperfect experimental conditions, such as magnetic field inhomogeneities [8]. We denote the image as a
function ⇥ of the position x ⌅ R2, with components (x, y), representing the intensity of the magnetization.

In the standard setting, magnetic resonance measurements take the general form:

� (k) =
�

R2
⇥ (x) e�2i�k·x d2x. (1)

2.1.2 Magnetic resonance inverse problem

The function ⇥ considered is considered to be band limited. It is completely identified by its Nyquist-
Shannon sampling on a discrete uniform grid of N = N1/2 � N1/2 points xi ⌅ R2 in real, or image, space
with 1 � i � N . The sampled signal is denoted by a vector ⇥ ⌅ CN ⇥ {⇥i ⇥ ⇥(xi)}16i6N . The functions may
equivalently be described by its complex k-space coe⇤cients on a discrete uniform grid of N = N1/2�N1/2

spatial frequencies ki with 1 � i � N . This grid is limited at some maximum frequency defining the band
limit.

For the sake of simplicity, we assume that the spatial frequencies k probed belong to the discrete grid
of points ki, so that we can discard any regridding operation [8]. The k-space coverage provided by the M
spatial frequencies probed kb, with 1 � b � M , can simply be identified by a binary mask in k-space equal
to 1 for each spatial frequency probed and 0 otherwise. The measurements may be denoted by a vector
of M complex k-space coe⇤cients � ⌅ CM ⇥ {�b ⇥ �(kb)}16b6M , possibly a�ected by complex noise of
instrumental origin identified by the vector n ⌅ CM ⇥ {nb ⇥ n(kb)}16b6M .

In this discrete setting, we consider a noisy and incomplete k-space coverage in the perspective of accel-
erating acquisition time in comparison with a complete k-space coverage. An ill-posed inverse problem is
defined for the reconstruction of the image ⇥ from the measurements �:

� ⇥ �⇥ + n with � ⇥ MF, (2)

where the matrix � ⌅ CM⇥N identifies the complete linear relation between the signal and the measurements.
The unitary matrix F ⌅ CN⇥N ⇥ {Fij ⇥ e�2i�ui·xj /N1/2}16i,j6N implements the discrete Fourier transform.
The matrix M ⌅ RM⇥N ⇥ {Mbj}16b6M ;16j6N is the rectangular binary matrix implementing the mask.

In the perspective of the reconstruction of the signal ⇥, relation (2) represents the measurement constraint.
As M ⇤ N , many signals may formally satisfy the measurement constraint. A regularization scheme that
encompasses enough prior information on the original signal is needed in order to find a unique solution. All
image reconstruction algorithms will di�er through the kind of regularization considered.

3

Problem: accelerate MRI acquisition

Sensing Model: wide-band modulation



⇢(x)

y(t) = p(t) · s(t) , ŷ(!) = p̂(!) ? ŝ(!)
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⌫(k) =
Z

R2
⇢(x)ei⇡w|x|2e�2i⇡k·xd2

x

⌫ ⌘ �(w)⇢ + n with �(w) ⌘MFC(w)

Spread Spectrum in MRI
18

CS has already been applied to MR [Lustig]

Here: Explore potential of spread-spectrum “conditioning”

Phase Scrambling
• well-known in MRI (high Dynamic, reduce aliasing)
• obtained through dedicated coils or RF pulses

Measurement model:

M/2 complex
Diagonal chirp 

matrix
FourierSub-sample

N-d real signal



Simulations - leakage
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Shepp-Logan phantom and chirp

Input SNR = 30dB, coverage 20%, sparsity basis = wavelets, 30 simulations

s=5 s=3 s=1 overall
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Figure 2. Top panels: reconstruction SNR as a function of the percentage of coverage in k-space in the range [4, 40] per cent, and for an input snr of
30 dB, both for wd = 0 (dot-dashed black curve) and wd = 1 (continuous red curve). Middle panels: reconstruction SNR as a function of the input snr
in the range [−30, 30] dB, for a k-space coverage of 20 per cent, both for wd = 0 (dot-dashed black curve) and wd = 1 (continuous red curve). Bottom
panels: reconstruction SNR as a function of the chirp rate wd in the range [0, 1.5], for a k-space coverage of 20 per cent, and for an input snr of 30 dB
(continuous red curve). The first, second, and third panels from the left respectively represent the SNR of reconstructions at the wavelet scales s = 5, s = 3,
and s = 1. The extreme right panels represent the SNR of the overall reconstruction. All SNR curves represent the mean SNR over 30 simulations, and
the vertical lines identify the error at 1 standard deviation.

the percentage of coverage in the range [4, 40] per cent, for
an input snr of 30 dB, and both for wd = 0 and wd = 1,
are reported in the top panel of Fig. 2, together with those
associated with each wavelet scale.
Firstly, as expected, for each coverage and noise level con-

sidered, the SNR for the overall reconstruction is significantly
larger for BPε1 than for BPε0. This is due to the spread
spectrum phenomenon related to the reduction of the mutual
coherence between the sensing basis and the sparsity basis in
the presence of the chirp modulation.
Secondly, for each coverage considered, the increase in the

reconstruction SNR is more important at large wavelet scales
s, in complete accordance with our previous discussion. In
particular, no significant increase is observed at s = 1, but
well at larger scales.
Finally, the enhancement in reconstruction quality for a

fixed number M/2 of complex measurements can be cast
in terms of a relative acceleration of the acquisition process
for a fixed reconstruction SNR. Under the conditions of our
simulations, a factor around 4 between the reconstructions

for wd = 0 and wd = 1 can be inferred from the graph
of the overall reconstruction SNR. Consequently, if a first
acceleration by a factor 2.5 (i.e. a k-space coverage of 40
per cent) is acceptable on the basis of the reconstruction SNR
at wd = 0, thanks to adequate regularization of the ill-posed
inverse problem in the context of compressed sensing, then the
acceleration is pushed to a factor 10 (i.e. a k-space coverage
of 10 per cent) at wd = 1 thanks to the spread spectrum
technique.3

3For large coverages, the overall reconstruction quality and the reconstruc-
tion quality at each wavelet scale also appear to be more stable around the
mean SNR values in the presence of the chirp modulation. This phenomenon
is probably related to the fact that the number of pairs of antipodal spatial
frequencies {kb ,−kb} contained in the mask M, designed from purely a
random selection of frequencies, is more variable for large k-space coverage.
For real images, which enjoy a symmetry property in k-space, taking a
measurement in −kb adds no information about the signal to that available
from kb , but only reduces the noise level. The reconstruction quality therefore
gets affected in proportion of the number of antipodal pairs. The chirp
modulation, which is complex, breaks this symmetry, so that all points
provide the same amount of information about the modulated signal and the
reconstruction quality is not affected by the number of antipodal pairs.

flexibility



Application: Fast MR Imaging
Real data acquisition, 7T MRI@EPFL

chirp pre-modulation implemented with a dedicated shim coil

Acceleration
x 4

Acceleration
x 2

Acceleration
x 1

Enhanced
resolution
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Application: ULP bio-sensing
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Application: ULP bio-sensing
Societal motivation: 
demography and life style conspire toward a global health care 
crisis (lifestyle-induced diseases, NCDs)

Environment 

Genetics 
Access to care 

Health behaviors/
personal lifestyle 

Determinants of health issues  
(source: Institute for the future, Center for 

disease control and prevention, 2006) 

Expected at 75% in 2030!
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Typical modality: ECG
23

80 to 120 ms

Sampling rate few hundred Hz

Typical components, 
could be learned
Often, wavelets are used



Low-power ECG ambulatory system
24

Problem: sense and transmit ECG (possibly multi-lead) from a low 
power body-area network

Compression ? Surely if we transmit less, we will waste less power in 
communication. 

Sure, but if we compress more we will waste energy using a complex 
encoder !

Can CS offer an interesting trade-off ?

Can everything be real-time ?



l State-of-the-art
- Wavelet transform, followed by thresholding, 

quantization and entropy coding
- Pros: excellent compression results, signals nicely sparse 

(at least ventricular part)
- Cons: Full wavelet transform must be implemented on 

the sensing node
l Can a light compressive sensing encoder achieve a 

good trade-off compression/power consumption ?

25
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What is a good sensing matrix for low-power sensing ?

Surely not gaussian ! (dense, complex to apply to signal and even 
complex to generate ...)

Sparse matrices, binary entries (ex: expander graphs)

generate binary vector
with d non-zero elements

generate full matrix by
random permutations
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vectors αS . It is worthwhile mentioning that coefficient 0,
corresponding to the mean of the ECG vector x, was separately
encoded.
3) Huffman coding: Since the N -dimensional vector αS

is exactly S-sparse; we can either directly encode it or only
encode its S nonzero entries and their corresponding indices.
The latter approach requires different codebooks for the coef-
ficients and indices, whereas the former obviously avoids the
index codebook. Our simulation results (omitted for lack of
space) showed that the first approach has better performance
for higher compression ratios thanks to the larger number
of zeros in the coefficient vector, which are more efficiently
encoded. The complete implementation of the thresholding-
based DWT compression requires 4.6 kB of RAM memory
and 10 kB of Flash memory, 5 kB of which is used for
Huffman codebook storage.

C. CS-Based Compression Algorithm
1) Linear transformation: The implementation of Gaussian

random sensing with matrix Φ ∈ RM×N , requires the imple-
mentation of a Gaussian-distributed random number generator
on the embedded platform and the computation of a large
matrix multiplication. This is too complex, time consuming
and certainly not real-time task for the MSP430. To address
this problem, we explored three different approaches to the
implementation of the random sensing matrix Φ.

a) Quantized Gaussian random sensing: We imple-
mented an 8-bit quantized version of a normal random number
generator to form Φ. Our simulations showed no meaningful
loss in signal quality between the quantized and the original
floating-point normal random number generation. While this
quantized version can be implemented on the MSP430, it was
discarded for its important drawbacks: (1) it uses the complex
log and sqrt functions; (2) for each input ECG vector, it
requires the generation of and the multiplication by a large
number of normal random numbers; (3) it is clearly not real-
time, as it requires over 1 minute to process a 2-second ECG
vector (i.e., N = 512 samples @ 256 Hz).

b) Pseudo-random sensing: We try to circumvent the on-
board generation of the normal random numbers by storing
them on the platform. Due to the memory constraints which
make it impossible to store the full Gaussian sensing matrix
of size (M×N ), we instead store one normal random column
vector and generate the other columns of our sensing matrix
by shuffling the positions of the entries of this vector. The
shuffling process is as follows: The generated random vector
is sorted, and the sorted index vector is used for successively
re-ordering the original vector. Unfortunately, this process is
also time consuming as it summons a sorting algorithm in
each iteration; a 2-second ECG vector is processed in 16
seconds. This is why we end up generating a random index
vector for shuffling the original vector. Interestingly, since both
approaches use the same (but shuffled) entries in each column,
the norm of each column of the sensing matrix is constant (vs.
the original approach where each column had to be normalized
on the platform), and the normalization can be moved to
the reconstruction side. Furthermore, this implementation does

not need an embedded Gaussian number generator and its
underlying complex and time-consuming functions such as
log and sqrt. Although this sub-optimal procedure can lead to
repeated or missed entries, it was verified that the output signal
quality is unchanged while the execution time is significantly
improved. More specifically, a 2-second ECG vector now takes
1.9 seconds to be CS sampled; which amounts to more than
90% of CPU execution time.

c) Sparse binary sensing: To address the shortcomings
of the previous two approaches, we herein introduce an in-
novative approach to CS implementation on embedded sensor
platforms. As aforementioned in Subsection II-B, it is possible
to use sub-Gaussian random matrices such as the one formed
by ±1 entries. To further decrease execution time, we explore
sparse binary sensing. For a sparse and binary matrix Φ (i.e.,
each column has exactly d nonzero entries equal to 1, with
d # N ), the RIP property of (4) is not valid. However, such
a sensing matrix satisfies a different form of this property, so-
called RIPp property. An M ×N matrix, Φ is said to satisfy
RIPp, if for any S-sparse vector α, we have:

(1− δ) ||α||p ≤ ||ΦΨα||p ≤ (1 + δ) ||α||p , (10)

it was proven in Theorem 2 of [38] that the RIP1 property of
a sparse binary sensing matrix with exactly d ones on each row
suffices to guarantee a good sparse approximation recovery by
a linear program.
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Fig. 3. Mutual coherence µ(Φ,Ψ) vs. d

Since sparse sensing matrices are amenable to very fast
and efficient implementation of the large matrix multiplication
required by the CS, we herein explore the use of sparse
sensing matrices to decrease execution time. We consider two
alternatives: (1) sparse sensing matrices with non-zero entries
equal to ±1/

√
d; (2) sparse sensing matrices with nonzero

entries equal to 1/
√
d. Figure 3 plots the mutual coherence of

these two alternatives with the used Daubechies db10 wavelet
basis (i.e., sparsity basis), as defined in (3). As a baseline, the
mutual coherence corresponding to Gaussian sensing matrices
is also reported. The mutual coherence is plotted vs. the
number of non-zero elements d for the two sparse sensing
alternatives. The positions of the d non-zero elements are
randomly chosen to keep the incoherence between the columns
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of the sensing matrix. Obviously, the choice of the number
of non-zero elements depends on the sparsity of the signal.
Figure 3 shows that there is hardly any difference between the
two sparse sensing modalities, and these sub-optimal solutions
fast approach the optimal Gaussian sensing modalities as d
increases. The second sparse sensing modality corresponding
to a sparse sensing matrix Φ with exactly d non-zero entries
equal to 1/

√
d on each column will thus be retained thanks

to its simple implementation. This sensing modality will be
subsequently referred to as sparse binary sensing. Further-
more, we are interested in identifying the minimum value of
d that strikes the optimal trade-off between execution time and
(signal) recovery/reconstruction error. To do so, sparse binary
sensing matrices are applied to all the records of the MIT-BIH
Arrhythmia ECG database, and the output SNR of the recon-
structed signals is measured. Figure 4 reports the resulting
average output SNR versus the number of non-zero elements
d in the sparse binary sensing matrix Φ. Clearly, the output
SNR saturates after d = 12 non-zero elements, which is the
value retained for the rest of our hardware implementation
on the ShimmerTM. As aforementioned, all our experimental
results have been generated using the SPGL1 solver [31] in
combination with the SPARCO toolbox [39] in Matlab c© to
solve the sparse recovery problem of (6). Figure 5 shows the
average output SNR vs. different compression ratios (CR)
for the three different approaches to the implementation of the
random sensing matrix Φ explored in this subsection, namely,
(1) Gaussian random sensing: the double-precision Matlab
version; (2) Pseudo-random sensing: the version based on
the generation of a random index vector implemented on the
MSP430; (3) Sparse binary sensing: the version with d = 12
and all non-zero entries equal to 1/

√
12 also implemented

on the MSP430. These results were obtained for an input
vector of N = 512 samples and a 12-bit resolution for the
input vector x and the measurement vector y. Interestingly,
the obtained results validate that there is no meaningful
performance difference between these three approaches, while
sparse binary sensing offers the shortest execution time (a 2-
second vector is now CS-sampled in 82 ms), the simplest
operation and the smallest memory footprint, and as such will

50 55 60 65 70 75 80
4

6

8

10

12

14

16

18

20

22

Compression Ratio (CR)

O
ut

pu
t S
N
R

 (a
ve

ra
ge

d 
ov

er
 a

ll D
at

a)

 

 
Pseudo−random sensing (MSP)
Gaussian sensing (Matlab)
Sparse sensing (MSP)

Fig. 5. Performance comparison between various CS implementation
approaches
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Fig. 6. a) Mean and variance (around each entry) of the measurement vector
y over 1296 consecutive measurement windows; b) Pdf of the difference signal
between two consecutive measurement vectors

be our implementation of choice. Note that Figure 5 also
illustrates that CS exhibits excellent robustness with respect
to quantization errors, unlike DWT (See Figure 2).
2) Inter-packet redundancy removal: The use of a fixed

binary sensing matrix, combined with the periodic nature of
the ECG signal, yields to very similar consecutive measure-
ment vectors y. This is confirmed by Figure 6(a), which

coherence quickly approaches “optimal case” SNR saturates after d=12 non-zero elements
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of the sensing matrix. Obviously, the choice of the number
of non-zero elements depends on the sparsity of the signal.
Figure 3 shows that there is hardly any difference between the
two sparse sensing modalities, and these sub-optimal solutions
fast approach the optimal Gaussian sensing modalities as d
increases. The second sparse sensing modality corresponding
to a sparse sensing matrix Φ with exactly d non-zero entries
equal to 1/

√
d on each column will thus be retained thanks

to its simple implementation. This sensing modality will be
subsequently referred to as sparse binary sensing. Further-
more, we are interested in identifying the minimum value of
d that strikes the optimal trade-off between execution time and
(signal) recovery/reconstruction error. To do so, sparse binary
sensing matrices are applied to all the records of the MIT-BIH
Arrhythmia ECG database, and the output SNR of the recon-
structed signals is measured. Figure 4 reports the resulting
average output SNR versus the number of non-zero elements
d in the sparse binary sensing matrix Φ. Clearly, the output
SNR saturates after d = 12 non-zero elements, which is the
value retained for the rest of our hardware implementation
on the ShimmerTM. As aforementioned, all our experimental
results have been generated using the SPGL1 solver [31] in
combination with the SPARCO toolbox [39] in Matlab c© to
solve the sparse recovery problem of (6). Figure 5 shows the
average output SNR vs. different compression ratios (CR)
for the three different approaches to the implementation of the
random sensing matrix Φ explored in this subsection, namely,
(1) Gaussian random sensing: the double-precision Matlab
version; (2) Pseudo-random sensing: the version based on
the generation of a random index vector implemented on the
MSP430; (3) Sparse binary sensing: the version with d = 12
and all non-zero entries equal to 1/

√
12 also implemented

on the MSP430. These results were obtained for an input
vector of N = 512 samples and a 12-bit resolution for the
input vector x and the measurement vector y. Interestingly,
the obtained results validate that there is no meaningful
performance difference between these three approaches, while
sparse binary sensing offers the shortest execution time (a 2-
second vector is now CS-sampled in 82 ms), the simplest
operation and the smallest memory footprint, and as such will
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be our implementation of choice. Note that Figure 5 also
illustrates that CS exhibits excellent robustness with respect
to quantization errors, unlike DWT (See Figure 2).
2) Inter-packet redundancy removal: The use of a fixed

binary sensing matrix, combined with the periodic nature of
the ECG signal, yields to very similar consecutive measure-
ment vectors y. This is confirmed by Figure 6(a), which

Hardly any difference between proposed sensing and 
gaussian sensing

2 s of signal are sensed in 82 ms
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of the sensing matrix. Obviously, the choice of the number
of non-zero elements depends on the sparsity of the signal.
Figure 3 shows that there is hardly any difference between the
two sparse sensing modalities, and these sub-optimal solutions
fast approach the optimal Gaussian sensing modalities as d
increases. The second sparse sensing modality corresponding
to a sparse sensing matrix Φ with exactly d non-zero entries
equal to 1/

√
d on each column will thus be retained thanks

to its simple implementation. This sensing modality will be
subsequently referred to as sparse binary sensing. Further-
more, we are interested in identifying the minimum value of
d that strikes the optimal trade-off between execution time and
(signal) recovery/reconstruction error. To do so, sparse binary
sensing matrices are applied to all the records of the MIT-BIH
Arrhythmia ECG database, and the output SNR of the recon-
structed signals is measured. Figure 4 reports the resulting
average output SNR versus the number of non-zero elements
d in the sparse binary sensing matrix Φ. Clearly, the output
SNR saturates after d = 12 non-zero elements, which is the
value retained for the rest of our hardware implementation
on the ShimmerTM. As aforementioned, all our experimental
results have been generated using the SPGL1 solver [31] in
combination with the SPARCO toolbox [39] in Matlab c© to
solve the sparse recovery problem of (6). Figure 5 shows the
average output SNR vs. different compression ratios (CR)
for the three different approaches to the implementation of the
random sensing matrix Φ explored in this subsection, namely,
(1) Gaussian random sensing: the double-precision Matlab
version; (2) Pseudo-random sensing: the version based on
the generation of a random index vector implemented on the
MSP430; (3) Sparse binary sensing: the version with d = 12
and all non-zero entries equal to 1/

√
12 also implemented

on the MSP430. These results were obtained for an input
vector of N = 512 samples and a 12-bit resolution for the
input vector x and the measurement vector y. Interestingly,
the obtained results validate that there is no meaningful
performance difference between these three approaches, while
sparse binary sensing offers the shortest execution time (a 2-
second vector is now CS-sampled in 82 ms), the simplest
operation and the smallest memory footprint, and as such will
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be our implementation of choice. Note that Figure 5 also
illustrates that CS exhibits excellent robustness with respect
to quantization errors, unlike DWT (See Figure 2).
2) Inter-packet redundancy removal: The use of a fixed

binary sensing matrix, combined with the periodic nature of
the ECG signal, yields to very similar consecutive measure-
ment vectors y. This is confirmed by Figure 6(a), which

difference between successive sensing vectors
Compression Ration: 20%

Gaussian RD theory
9 bits quantizer
Huffman coding
1.5 kB codebook stored on platform

Total memory footprint of CS implementation:
6.5 kB of RAM for computations
7.5 kB of Flash
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Fig. 7. Output SNR vs. CR for CS and DWT before and after inter-packet
redundancy removal and Huffman coding

plots the measured mean and variance on each of the 103
entries of 1296 consecutive measurement vectors y in 12-bit
resolution, for a compression ratio of CR = 20%. Clearly,
there is a large inter-packet redundancy that must be removed
prior to encoding and wireless transmission. Consequently, the
redundancy removal module computes the difference between
consecutive vectors, and only this difference is further pro-
cessed. Furthermore, Figure 6(b) shows the pdf of the differ-
ence signal between two consecutive measurement vectors. It
is thus sufficient to represent the difference signal using 9 bits,
instead of the 12 bits required for the measurement vector. This
observation translates into a larger compression performance.
3) Huffman Coding: Interestingly, Figure 6(b) shows that

the distribution of the difference signal at the output of the re-
dundancy removal module are far from uniform. Consequently,
Huffman encoding can be used for further compression. Since
the range of the difference signal just before encoding is
between [−256 : 255], a complete Huffman codebook of size
512 is needed with a maximum codeword length of 16 bits,
for a given compression ratio. The storage of such an offline-
generated codebook requires 1 kB for the codebook itself
and 512 B for its corresponding codeword lengths. The CS
implementation requires 6.5 kB of RAM memory and 7.5 kB
of Flash, 1.5 kB of which are for Huffman codebook storage.

D. Comparison between two algorithms
Figures 7 and 8 compare the output SNR and PRD,

averaged over all database records, for CS and DWT-based
compression before and after inter-packet redundancy removal
and Huffman coding for different compression ratios. They
confirm the crucial role of the redundancy removal module
and the careful design of the Huffman encoding. These figures
show the average quality metrics, but there is large variance
between the individual records. Alternatively, Figures 9(a)
and 9(b) show the box plots for both algorithms. On each
box, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, and the whiskers extend to
the most extreme data points not considered outliers. Record
107 produces the best results for both CS and DWT: ”very

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Compression Ratio (CR)

O
ut

pu
t P
R
D

 (a
ve

ra
ge

d 
ov

er
 a

ll D
at

a)

 

 
CS (before)
CS (after)
DWT (before)
DWT (after)

Fig. 8. Output PRD vs. CR for CS and DWT before and after inter-packet
redundancy removal and Huffman coding

good” signal reconstruction quality (corresponding to PRD
below 2%, See Table I) can be reached for compression ratios
of up to 61% and 75% for CS and DWT respectively, while
”good” signal recovery is reached for compression ratios of
up to 74% and 90%. On average, ”very good” quality of
reconstruction for DWT-based compression is achieved up
to CR = 73%, and up to CR = 51% for CS. Moreover,
”good” reconstruction quality is reached on average for up to
CR = 90% and CR = 71% for DWT and CS, respectively.
As expected, the signal-adaptive DWT-based compression
outperforms the adaptive CS-based compression. However, the
measured performance of CS compression reported for the first
time in this work is certainly promising in view of its very low
computational complexity and limited resource needs. In fact,
this measured performance is strikingly promising since the
sparse reconstruction algorithm used in this work is the default
basis pursuit denoise, where no attempt has been made to
exploit the highly structured nature of the ECG signal. Finally,
it is worthwhile mentioning that the used metrics PRD and
SNR may not always reflect the reconstruction quality. To
illustrate their shortcoming, Figure 10 plots a fragment of the
original record 232 and its corresponding CS-compressed and
reconstructed signal. The PRD value corresponding to each
512-sample window is shown underneath, while the related
reconstruction error is plotted above. It is easily seen that
window 19 exhibits a very large PRD value (i.e., very bad
reconstruction). In fact, this window contains no ECG rhythm,
just background noise that does not fulfill our sparsity assump-
tion. Consequently, while bearing no relevant information, this
window leads to a detrimental reduction of the measured signal
quality in terms of PRD and SNR.

V. POWER AND ENERGY CONSUMPTION MEASUREMENTS

The previous section described in details the characteristics
of the embedded implementations of the two considered ECG
compression algorithms, and carefully motivated the various
underlying trade-offs and implementation choices. It also
proposed a comparative study of these algorithms in terms
of the signal reconstruction metrics (i.e., PRD and SNR)
and their embedded memory usage. The present section further

very good

good

In terms of pure compression performance, an optimized DWT encoder is 
clearly (and obviously) better than the non-adaptive CS scheme
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Consumption measured on the platform in real-life use

Code execution time: 95ms for CS, 580ms for DWT
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The reported results show that DWT-based compression fails
to achieve any lifetime extension, compared to the default al-
ternative of streaming uncompressed ECG data. Alternatively,
CS shows a 7.12 % and 12.9 % extension in node lifetime for
”very good” and ”good” reconstruction quality, respectively.
CS manages to achieve limited lifetime extension thanks to

TABLE II
AVERAGE POWER CHARACTERIZATION OF SHIMMERTM

Radio reception 84.6 mW
Radio transmission 64.35 mW
Sampling with microcontroller idle 6.60 mW
Beacon duration 2.7 ms
Full packet duration (transmission) 4.2 ms
Reception duration after radio transmission 2.7 ms

TABLE III
NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4

TABLE IV
NODE LIFE TIME FOR ”GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 90 71 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 2968.8 1023.7 296.9
Beacon Interval (ms) 11875 4094 1187
Energy Consumption (mJ) 8.78 7.46 8.37
Life time (h) (280 mAh@3.7 V ) 113.76 133.95 119.4
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its shorter processing time. These disappointing results are
in fact due the fact that the MSP430 is not optimized for
ultra-low-power digital signal processing (DSP) operations,
and as such limits the achievable node lifetime extension
through embedded signal pre-processing and reduction prior
to wireless communication. To investigate the full potential of
CS to extend node lifetime, we consider its implementation on
more competitive state-of-the-art ultra-low-power processors.
Figure 13 shows the node lifetime for the MSP430 and the re-
cently introduced ultra-low-power DSP/MCUs icyflex1 [42]
and icyflex2 [43], by the Swiss Center for Electronics and
Microtechnology (CSEM). These processors are designed in
technologies that are more power efficient and are customized
for DSP applications. The reported results for embedded CS
on icyflex series are calculated based on their published
specification, while wireless transceiver consumption is the
same as in Subsection V-B. Strikingly, Figure 13 shows that
the node lifetime can be extended by 76 % and 46 % for
”good” and ”very good” reconstruction quality, respectively,
on the currently available icyflex1. Furthermore, the lifetime
extension is further increased up to 92 % and 54 % by
the upcoming icyflex265nm for ”good” and ”very good”
reconstruction quality, respectively. These results establish the
relevance of energy-aware embedded ECG compression on
sensor motes as a powerful mean to extend their autonomy.

VI. CONCLUSIONS
This paper proposed a complete system-level compari-

son between a new CS-based and the state-of-the-art DWT-
based embedded ECG compression algorithms. As expected,
nonadaptive CS-based compression was found to exhibit
inferior compression performance compared to its signal-
adaptive DWT-based counterpart for a given reconstructed
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The reported results show that DWT-based compression fails
to achieve any lifetime extension, compared to the default al-
ternative of streaming uncompressed ECG data. Alternatively,
CS shows a 7.12 % and 12.9 % extension in node lifetime for
”very good” and ”good” reconstruction quality, respectively.
CS manages to achieve limited lifetime extension thanks to

TABLE II
AVERAGE POWER CHARACTERIZATION OF SHIMMERTM

Radio reception 84.6 mW
Radio transmission 64.35 mW
Sampling with microcontroller idle 6.60 mW
Beacon duration 2.7 ms
Full packet duration (transmission) 4.2 ms
Reception duration after radio transmission 2.7 ms

TABLE III
NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4
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Packet Ready every ... (ms) 2968.8 1023.7 296.9
Beacon Interval (ms) 11875 4094 1187
Energy Consumption (mJ) 8.78 7.46 8.37
Life time (h) (280 mAh@3.7 V ) 113.76 133.95 119.4
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its shorter processing time. These disappointing results are
in fact due the fact that the MSP430 is not optimized for
ultra-low-power digital signal processing (DSP) operations,
and as such limits the achievable node lifetime extension
through embedded signal pre-processing and reduction prior
to wireless communication. To investigate the full potential of
CS to extend node lifetime, we consider its implementation on
more competitive state-of-the-art ultra-low-power processors.
Figure 13 shows the node lifetime for the MSP430 and the re-
cently introduced ultra-low-power DSP/MCUs icyflex1 [42]
and icyflex2 [43], by the Swiss Center for Electronics and
Microtechnology (CSEM). These processors are designed in
technologies that are more power efficient and are customized
for DSP applications. The reported results for embedded CS
on icyflex series are calculated based on their published
specification, while wireless transceiver consumption is the
same as in Subsection V-B. Strikingly, Figure 13 shows that
the node lifetime can be extended by 76 % and 46 % for
”good” and ”very good” reconstruction quality, respectively,
on the currently available icyflex1. Furthermore, the lifetime
extension is further increased up to 92 % and 54 % by
the upcoming icyflex265nm for ”good” and ”very good”
reconstruction quality, respectively. These results establish the
relevance of energy-aware embedded ECG compression on
sensor motes as a powerful mean to extend their autonomy.

VI. CONCLUSIONS
This paper proposed a complete system-level compari-

son between a new CS-based and the state-of-the-art DWT-
based embedded ECG compression algorithms. As expected,
nonadaptive CS-based compression was found to exhibit
inferior compression performance compared to its signal-
adaptive DWT-based counterpart for a given reconstructed
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The reported results show that DWT-based compression fails
to achieve any lifetime extension, compared to the default al-
ternative of streaming uncompressed ECG data. Alternatively,
CS shows a 7.12 % and 12.9 % extension in node lifetime for
”very good” and ”good” reconstruction quality, respectively.
CS manages to achieve limited lifetime extension thanks to

TABLE II
AVERAGE POWER CHARACTERIZATION OF SHIMMERTM

Radio reception 84.6 mW
Radio transmission 64.35 mW
Sampling with microcontroller idle 6.60 mW
Beacon duration 2.7 ms
Full packet duration (transmission) 4.2 ms
Reception duration after radio transmission 2.7 ms

TABLE III
NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4
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Compression Ratio (%) 90 71 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 2968.8 1023.7 296.9
Beacon Interval (ms) 11875 4094 1187
Energy Consumption (mJ) 8.78 7.46 8.37
Life time (h) (280 mAh@3.7 V ) 113.76 133.95 119.4
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its shorter processing time. These disappointing results are
in fact due the fact that the MSP430 is not optimized for
ultra-low-power digital signal processing (DSP) operations,
and as such limits the achievable node lifetime extension
through embedded signal pre-processing and reduction prior
to wireless communication. To investigate the full potential of
CS to extend node lifetime, we consider its implementation on
more competitive state-of-the-art ultra-low-power processors.
Figure 13 shows the node lifetime for the MSP430 and the re-
cently introduced ultra-low-power DSP/MCUs icyflex1 [42]
and icyflex2 [43], by the Swiss Center for Electronics and
Microtechnology (CSEM). These processors are designed in
technologies that are more power efficient and are customized
for DSP applications. The reported results for embedded CS
on icyflex series are calculated based on their published
specification, while wireless transceiver consumption is the
same as in Subsection V-B. Strikingly, Figure 13 shows that
the node lifetime can be extended by 76 % and 46 % for
”good” and ”very good” reconstruction quality, respectively,
on the currently available icyflex1. Furthermore, the lifetime
extension is further increased up to 92 % and 54 % by
the upcoming icyflex265nm for ”good” and ”very good”
reconstruction quality, respectively. These results establish the
relevance of energy-aware embedded ECG compression on
sensor motes as a powerful mean to extend their autonomy.

VI. CONCLUSIONS
This paper proposed a complete system-level compari-

son between a new CS-based and the state-of-the-art DWT-
based embedded ECG compression algorithms. As expected,
nonadaptive CS-based compression was found to exhibit
inferior compression performance compared to its signal-
adaptive DWT-based counterpart for a given reconstructed
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Fig. 1: Block diagram of CS sampling and reconstruction. x is the original signal being sampled, y is linear measurements
collected using sensing matrix �.  is the signal basis under which x is sparse, and ↵ is the resulting coefficients and ↵̂ the
sparse solution found in optimization and x̂ is the reconstructed signal.

space using a sensing matrix �. Since the introduction of CS,
several hardware implementations have been proposed in the
literature. Some of these implementations are purely digital:
CS is used as a simple compression technique that does not
require a complex transform. In these cases, CS is applied
after Nyquist sampling. More interesting for us is the analog
version of CS, where linear measurement y are collected in
the analog domain prior to digitization. Since AD conversion
is often the dominant source of power consumption [4],
analog implementations of CS can offer interesting low power
alternatives since they inherently allow using low rate ADCs.

In this work our main focus is therefore on the analog
implementation of compressed sensing. In this section we
first describe a model for sparse signals. We then review
the Random Demodulator (RD) architecture, which was the
first proposed hardware implementation for CS. We discuss
extensions of RD and highlight the main difficulties arising
for hardware implementation and limits to their performances.

A. Signal Model

Suppose our analog signal x has a sparse representation in
some basis or dictionary as mentioned before, i.e. the signal
can be represented using S parameters per unit of time in some
continuous-time basis. More concretely, let the analog signal
x(t) be expanded via a basis  n(t), n 2 {1, 2, . . . , N}

x(t) =
NX

n=1

↵n n(t), for t 2 [0, 1). (4)

with t,↵n 2 R and N is analogous to the signal bandwidth.
Sparsity means that only a fraction S << N of the entries
of ↵ are nonzero, i.e the signal in each time frame is only
composed of a few waveforms.

According to the sampling theorem, we should sample
signals of the forml 4 by sampling at twice the band-
width.However these signals have only few degrees of
freedom. In consequence, it is reasonable to expect that
we can acquire them by sampling at roughly the sparsity
level S. Stirling’s approximation shows that there are about
exp{S log(

N
S ) + O(S)} ways to select S distinct integers in

the range of {1, 2, . . . , N}. Therefore, it takes O(S log(

N
S ))

bits to encode the non-zeros elements in the coefficient vector
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Fig. 2: Block diagram of Random demodulator (RM). The
system includes a pseudo-random number generator, an analog
anti aliasing filter and a sampler.

↵. Ideally this is our bound for the necessary amount of
measurements M to solve (3) and reconstruct the S-sparse
approximation of the original signal x(t).

B. Random Demodulator

Let us now describe the random demodulator (RD) archi-
tecture for sampling an analog sparse signal [5], as depicted
in Figure 2. The first stage is a demodulator whose input
signal x(t) is multiplied by a continuous time sequence of
pseudo-random numbers Pc(t) to obtain a continuous time
demodulated signal z(t). Starting with a sequence of pseudo
random numbers of dn = {d0, d1, . . . , dN�1} that take values
±1 with equal probability, it is used to create a continuous
chipping sequence:

Pc(t) = dn, t 2
h n
N

,
(n+ 1)

N

⌘
and n = 0, 1, . . . , N � 1.

(5)
This (ideal) demodulation signal takes values ±1 over each

time frame and switches between the levels randomly at or
faster than the Nyquist rate of the input signal x. The final
stage is a standard ADC to sample the signal. A low-pass
filter is used prior to ADC to prevent aliasing.

The demodulator

z(t) = x(t) · Pc(t), t 2 [0, 1) (6)

acts by spreading the frequency content of the signal so that
it is not destroyed when it is low pass filtered prior to sampling
at rate M ⌧ N . The low pass filter is used as a simple
accumulator that sums the demodulated signal for duration

4

Clock

Fig. 3: Block diagram of Random demodulator pre-Integrator.

of 1
M . The filtered signal y(t) is sampled every 1

M seconds
to obtain the measurements vector y. After each sample, the
low pass filter is reset. In summary:

y[m] =

R1
�1 x(⌧)Pc(⌧)h(t� ⌧)d⌧

���
t= m

M

m 2 {0, 1, . . . ,M � 1}. (7)

This approach is called sample and dump sampling. Inserting
the signal model (4), we can further simplify and write:

y[m] =

NX

n=1

↵n

Z (m+1)
M

m
M

 n(⌧)Pc(⌧)h(
m

M
� ⌧)d⌧. (8)

It is now clear that we can rewrite this equation in CS matrix
form. Concatenating the sampling matrix and basis V = � ,
V 2 RM⇥N then element Vn,m for row m and column n
reads:

Vn,m =

Z (m+1)
M

m
M

 n(⌧)Pc(⌧)h(
m

M
� ⌧)d⌧. (9)

C. Random Demodulation pre-Integrator

The Random Demodulator pre-Integrator (RMPI) is a vari-
ant of the RD architecture, which is composed of parallel
channels of RD. Each block on Figure 3 represents a RD
channel. The input signal x is fed into channels in parallel
and in each channel it is demodulated with a unique sequence
of pseudo random numbers. Then, as in a normal RD structure,
it is low pass filtered and sampled. Here again the continuous
time pseudo random signals Pc(t) are chipping signals that
take values ±1 and simply just invert the input signal polarity.
The alternating frequency of Pc(t) is at the Nyquist rate and
the sequences are independent for each channel but share the
same clock to be synchronized. The RMPI structure allows
to further reduce the ADC rate but it needs more (one for
each channel) multiplexers or switches (for implementing the
demodulator section), each of them operating at the Nyquist
rate.

Suppose we have C channels and Mc =

{M0,M1, . . . ,MC�1} measurements for channel c. We
can again using equation (11), and the element of row m and
column n of the equivalent CS matrix for channel c reads:

V c
n,m =

Z (m+1)
Mc

m
Mc

 n(⌧)Pc(⌧)hc(
m

M
� ⌧)d⌧, (10)

where we have V c 2 RMc⇥N , and the CS matrix for the whole
system is:

V =

0

BBB@

V

0 2 RM0⇥N

V

1 2 RM1⇥N

· · ·
V

C�1 2 RMC�1⇥N

1

CCCA
(11)

In a recent work [23] comparing power consumption profiles
for both digital and analog CS, the power efficiency of the
RMPI architectures are questioned. The authors claim that
their results shows that a digital CS implementation can
ultimately outperform analog implementations in terms of
overall energy efficiency for data compression in wireless
sensors due to the power consumption of analog switches. In
the RMPI architecture the internal modulators should work at
the Nyquist rate. This implies that reducing the sampling rate
of the ADC in RMPI or RD structures is done at the expense of
using a large number of fast switches (i.e., equal to the number
of channels). Although from the circuit viewpoint building the
switch blocks is easy and far simpler than a high rate ADC,
this costs a lot in terms of overall power consumption. Thus
the application of RMPI seems limited to cases where the
signal bandwidth puts unbearable constrains for state-of-the-
art ADCs. However, there is a whole realm of applications
where signals have moderate bandwidth but traditional ADC
designs are still too power hungry. Analog CS might offer an
interesting alternative there as well, provided we modify the
present implementations.

IV. SPREAD SPECTRUM RANDOM MODULATION
PRE-INTEGRATOR

To overcome these problems of the RMPI architecture, we
propose a new architecture called Spread Spectrum Random
Modulator Pre-Integrator (SRMPI), which includes an initial
pre-modulation block as fundamental change with respect to
the RMPI architecture. Figure 4 shows the block diagram
of the SRMPI architecture. This new pre-modulation block
modulates the original signal x(t) with a random sequence
r(t), similar to what is done in the RD structure. Hence, based
on the same principle, this modulator block should operate at
a rate least equal to Nyquist range and the information of
the signal is thus spread over the whole frequency spectrum.
The random-modulated signal is then fed to a regular RMPI
structure. Thanks to the pre-modulation block and the signal
sparsity features, it is possible to lower the internal channel
modulators’ working frequency in the SRMPI design signifi-
cantly below the Nyquist rate. In fact, the limit to reduce the
internal modulators clock depends on the signal sparsity. In
this paper we show the results for the SRMPI architecture (cf.
Section VI) having the internal modulators working at half the
Nyquist rate.

V. EXPERIMENTAL SETUP

In this section we present our setup to explore the analog
CS design space. The setup is a circuit level implementation of
both RMPI and SRMPI as described in Section III-C and IV.
Our hardware implementation consists of a signal acquisition
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Fig. 1: Block diagram of CS sampling and reconstruction. x is the original signal being sampled, y is linear measurements
collected using sensing matrix �.  is the signal basis under which x is sparse, and ↵ is the resulting coefficients and ↵̂ the
sparse solution found in optimization and x̂ is the reconstructed signal.

space using a sensing matrix �. Since the introduction of CS,
several hardware implementations have been proposed in the
literature. Some of these implementations are purely digital:
CS is used as a simple compression technique that does not
require a complex transform. In these cases, CS is applied
after Nyquist sampling. More interesting for us is the analog
version of CS, where linear measurement y are collected in
the analog domain prior to digitization. Since AD conversion
is often the dominant source of power consumption [4],
analog implementations of CS can offer interesting low power
alternatives since they inherently allow using low rate ADCs.

In this work our main focus is therefore on the analog
implementation of compressed sensing. In this section we
first describe a model for sparse signals. We then review
the Random Demodulator (RD) architecture, which was the
first proposed hardware implementation for CS. We discuss
extensions of RD and highlight the main difficulties arising
for hardware implementation and limits to their performances.

A. Signal Model

Suppose our analog signal x has a sparse representation in
some basis or dictionary as mentioned before, i.e. the signal
can be represented using S parameters per unit of time in some
continuous-time basis. More concretely, let the analog signal
x(t) be expanded via a basis  n(t), n 2 {1, 2, . . . , N}

x(t) =
NX

n=1

↵n n(t), for t 2 [0, 1). (4)

with t,↵n 2 R and N is analogous to the signal bandwidth.
Sparsity means that only a fraction S << N of the entries
of ↵ are nonzero, i.e the signal in each time frame is only
composed of a few waveforms.

According to the sampling theorem, we should sample
signals of the forml 4 by sampling at twice the band-
width.However these signals have only few degrees of
freedom. In consequence, it is reasonable to expect that
we can acquire them by sampling at roughly the sparsity
level S. Stirling’s approximation shows that there are about
exp{S log(

N
S ) + O(S)} ways to select S distinct integers in

the range of {1, 2, . . . , N}. Therefore, it takes O(S log(

N
S ))

bits to encode the non-zeros elements in the coefficient vector
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Fig. 2: Block diagram of Random demodulator (RM). The
system includes a pseudo-random number generator, an analog
anti aliasing filter and a sampler.

↵. Ideally this is our bound for the necessary amount of
measurements M to solve (3) and reconstruct the S-sparse
approximation of the original signal x(t).

B. Random Demodulator

Let us now describe the random demodulator (RD) archi-
tecture for sampling an analog sparse signal [5], as depicted
in Figure 2. The first stage is a demodulator whose input
signal x(t) is multiplied by a continuous time sequence of
pseudo-random numbers Pc(t) to obtain a continuous time
demodulated signal z(t). Starting with a sequence of pseudo
random numbers of dn = {d0, d1, . . . , dN�1} that take values
±1 with equal probability, it is used to create a continuous
chipping sequence:

Pc(t) = dn, t 2
h n
N

,
(n+ 1)

N

⌘
and n = 0, 1, . . . , N � 1.

(5)
This (ideal) demodulation signal takes values ±1 over each

time frame and switches between the levels randomly at or
faster than the Nyquist rate of the input signal x. The final
stage is a standard ADC to sample the signal. A low-pass
filter is used prior to ADC to prevent aliasing.

The demodulator

z(t) = x(t) · Pc(t), t 2 [0, 1) (6)

acts by spreading the frequency content of the signal so that
it is not destroyed when it is low pass filtered prior to sampling
at rate M ⌧ N . The low pass filter is used as a simple
accumulator that sums the demodulated signal for duration
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Fig. 4: Block diagram of Spread Spectrum Random demodu-
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Fig. 5: Analog compressed sensing data acquisition board.

V. EXPERIMENTAL SETUP

In this section we present our setup to explore the analog
CS design space. The setup is a circuit level implementation of
both RMPI and SRMPI as described in Section III-C and IV.
Our hardware implementation consists of a signal acquisition
board and a PC with a Data Acquisition Card (DAC). The
signal acquisition board is a circuit level implementation of an
analog CS system with 8 channels (Figure 5). It consists of a
main board with 8 slots (one per channel) supporting daughter
boards implementing each channel architecture. The main
board also has a slot for the DAC card. The communication
with the PC is done through this card. Each channel includes
a modulator at the beginning of the line and a low-pass filter.
Each channel has a unique ADC which samples the output
of the low-pass filter. The difference between the RMPI and
SRMPI structure in our hardware implementation lies on the
common modulator on the main input signal line. To test both
architectures, this modulator is implemented on the main board
and can be bypassed to give the possibility of testing both
architectures.

A. Modulator

In both architectures, one of the essential blocks is the
random modulator. Since the modulation alternates between
values of ±1 with equal probability, it is simply implemented
by changing the polarity of the input signal. In recent works,
different circuits have been proposed to implement such
modulators [7], [11]. However, the main concern about the
implementation of mixers is that the transient time (switching
time) should be significantly low compared to the sampling pe-
riod. The output of the modulation is subsequently integrated
(filtered) and any distortion in the switching transient time is
treated as additive random noise. Since in our platform the
signal bandwidth is in the hertz range, this is not a challenge
for the proposed SRMPI implementation. The modulators for
both architectures have been implemented using the single
pole, double throw (SPDT) CMOS Switch ADG636 from
Analog Devices. The chip is capable of fast switching between
the input lines, and the typical transient time is measured at
about 270 nsec.

In many cases, specially in RF applications with higher
sampling frequency, the implementation and calibration of fast
mixers with these properties is a crucial part in the design. In
these cases, an architecture like SRMPI can drastically ease
the problem by reducing the number of high frequency mixers
with respect to RMPI without affecting the performance of the
overall system as we shall see below.

B. Integrator

Another block in both architectures is the integrator, which
is used to integrate the output signal after modulation. An
integration in the time domain is equivalent to a filter with
frequency response H(S) = 1

S
. But building an ideal inte-

grator is not realizable, and instead we use a low pass filter
as integrator. The exact characteristics of this filter must be
precisely known at the decoder to implement the full sensing
matrix. The only constraint is to have a filter that prevents
aliasing before sampling. From an implementation viewpoint,
the characteristics of the filter should also be stable over time
(i.e., time invariant).

In this work, we have used a single-pole filter with cus-
tom cut-off frequency fc ∈ [9.52 497.7]Hz with 256
steps. It was implemented via a configurable potentiometer
MAX5387NAUD with 256 steps. The transfer function of a
single-pole filter is H(S) = 1/(S + a). The pole indicates the
time constant of the impulse response h(t) = e−at. The ideal
integrator corresponds to a = 0 and if a is large the impulse
response h(t) will decay very rapidly and the filter will quickly
forget the past time information. The main concern is to push
the pole close to zero. Many options are possible : in [11]
for instance, an implementation of multi-pole and single-pole
filters have been discussed for sampling radar pulses.

In both architectures, when a sample is taken, the integrator
is reseted. In our platform, this is done by resetting the filter
by de-charging its capacitance. A reset control circuit is added
to the design to precisely control the timing of this operation.
The filter transient time should be small enough compared
to the ADC sampling period not to affect the integration.
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Fig. 4: Block diagram of Spread Spectrum Random demodu-
lator pre-integrator (SRMPI)

Fig. 5: Analog compressed sensing data acquisition board.

V. EXPERIMENTAL SETUP

In this section we present our setup to explore the analog
CS design space. The setup is a circuit level implementation of
both RMPI and SRMPI as described in Section III-C and IV.
Our hardware implementation consists of a signal acquisition
board and a PC with a Data Acquisition Card (DAC). The
signal acquisition board is a circuit level implementation of an
analog CS system with 8 channels (Figure 5). It consists of a
main board with 8 slots (one per channel) supporting daughter
boards implementing each channel architecture. The main
board also has a slot for the DAC card. The communication
with the PC is done through this card. Each channel includes
a modulator at the beginning of the line and a low-pass filter.
Each channel has a unique ADC which samples the output
of the low-pass filter. The difference between the RMPI and
SRMPI structure in our hardware implementation lies on the
common modulator on the main input signal line. To test both
architectures, this modulator is implemented on the main board
and can be bypassed to give the possibility of testing both
architectures.

A. Modulator

In both architectures, one of the essential blocks is the
random modulator. Since the modulation alternates between
values of ±1 with equal probability, it is simply implemented
by changing the polarity of the input signal. In recent works,
different circuits have been proposed to implement such
modulators [7], [11]. However, the main concern about the
implementation of mixers is that the transient time (switching
time) should be significantly low compared to the sampling pe-
riod. The output of the modulation is subsequently integrated
(filtered) and any distortion in the switching transient time is
treated as additive random noise. Since in our platform the
signal bandwidth is in the hertz range, this is not a challenge
for the proposed SRMPI implementation. The modulators for
both architectures have been implemented using the single
pole, double throw (SPDT) CMOS Switch ADG636 from
Analog Devices. The chip is capable of fast switching between
the input lines, and the typical transient time is measured at
about 270 nsec.

In many cases, specially in RF applications with higher
sampling frequency, the implementation and calibration of fast
mixers with these properties is a crucial part in the design. In
these cases, an architecture like SRMPI can drastically ease
the problem by reducing the number of high frequency mixers
with respect to RMPI without affecting the performance of the
overall system as we shall see below.

B. Integrator

Another block in both architectures is the integrator, which
is used to integrate the output signal after modulation. An
integration in the time domain is equivalent to a filter with
frequency response H(S) = 1

S
. But building an ideal inte-

grator is not realizable, and instead we use a low pass filter
as integrator. The exact characteristics of this filter must be
precisely known at the decoder to implement the full sensing
matrix. The only constraint is to have a filter that prevents
aliasing before sampling. From an implementation viewpoint,
the characteristics of the filter should also be stable over time
(i.e., time invariant).

In this work, we have used a single-pole filter with cus-
tom cut-off frequency fc ∈ [9.52 497.7]Hz with 256
steps. It was implemented via a configurable potentiometer
MAX5387NAUD with 256 steps. The transfer function of a
single-pole filter is H(S) = 1/(S + a). The pole indicates the
time constant of the impulse response h(t) = e−at. The ideal
integrator corresponds to a = 0 and if a is large the impulse
response h(t) will decay very rapidly and the filter will quickly
forget the past time information. The main concern is to push
the pole close to zero. Many options are possible : in [11]
for instance, an implementation of multi-pole and single-pole
filters have been discussed for sampling radar pulses.

In both architectures, when a sample is taken, the integrator
is reseted. In our platform, this is done by resetting the filter
by de-charging its capacitance. A reset control circuit is added
to the design to precisely control the timing of this operation.
The filter transient time should be small enough compared
to the ADC sampling period not to affect the integration.

With off-the-shelf components and 
a simple CS-based AFE:
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Nyquist sampling, RMPI and SRMPI architectures for 8

channels.

sensing, radar systems and communication signal processing,
etc.).

In this paper we have first presented a complete system-
level analysis and comparison between state-of-the-art CS-
based signal acquisition systems and then introduced the
Spread Spectrum Random Modulator Pre-Integrator (SRMPI),
which is a new design architecture for CS-based Analog-to-
Information (A2I) readout systems. Our experimental results
confirm that SRMPI exhibits significantly better overall energy
efficiency for a given output quality than any state-of-the-
art CS-based signal acquisition systems. Moreover, SRMPI
reduces the complexity of the design and final calibration of
the system with respect to other CS-based A2I systems. To the
best of our knowledge, the results in this work have provided
the first system-level power characterization of different analog
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Fig. 12: Energy consumption for traditional Nyquist sampling,
RMPI and SRMPI architectures for 8, 16, 32 and 64 channels.

CS architectures on a real platform. These results also validate
the suitability of using CS-based A2I systems over traditional
sampling techniques for highly sparse signals with low-power
operation requirements.
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l Big advantage of direct samples
- they are easily interpreted
- they can be processed

l Can we process signals in the compressed domain?
- detection, recognition, classification
- segmentation
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y = SATEach pixel is a weighted combination of source spectra:

Hyper Spectral Imaging



Hyper Spectral Imaging
Very high dimensional data (thousands of channels) 
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Typical problem: Source Separation 

Given the dictionary of spectra A and the data y
y = SATRecover the source abundances, factorizing 
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Typical problem: Source Separation 

Given the dictionary of spectra A and the data y
y = SATRecover the source abundances, factorizing 

y = A
�
SAT

�
Can this be achieved even when:

Indirect/degraded observations

The dictionary of spectra A is unknown 



Hyper Spectral Imaging
HSI Compressive Blind Source Separation (CS-BSS)

arg min

S,A

��y �A(SAT
)

��2

`2

subject to

P⇢
j kSjkTV  ⌧

P⇢
i=1[S]i,j = 1

[S]i,j � 0

k T
1DAk`1  �

[A]i,j � 0.

Source image 
constraints

Spectral signature 
constraints

- Bi-convex minimization 

Algorithm: alternating convex minimization

 1- Initialize A at random

 2- Source recovery given A

 3- Mixture recovery given S

 4- Repeat 2-3 until convergence 
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Goal: Compute source maps directly from compressed measurements
Separation or Segmentation in the compressed domain
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Hyper-Spectral Imaging
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Hyper-Spectral Imaging



Hyper-Spectral Imaging
39

(a) Ground truth

(e) SS-TV-decorr, source reconstruction SNR: 8.64 dB

Other applications: Mass spectrometry (MALDI), ...

From 3% of the original data:
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Detecting and Following People
- Locate group of people occluding each other
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- With a network of cameras



Detecting and Following People
- Locate group of people occluding each other

- With a network of cameras

- Given extracted foreground silhouettes only
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Problem Formulation
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Problem Formulation

y     -  Q(Dx)
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Outlook 
l Significant challenges ahead in signal processing
- Big Data
- Ubiquitous but Cheap Sensing (i.e dirty signals)

l Need new models, algorithms 
- Hardware/Software co-design
- New sensor designs

l Where do we go from here in terms of applications ?
- Structured notions of sparsity for specific applications
- More data driven approaches
- Non-linearities ?
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Application focus
l Big Data
- Too big for sparsity ?

l What can we hope from Sparsity+Machine Learning?
- Better algos ?
- Better models ?

l What new application fields ?
- Beyond restoration ?

l What’s missing ?
- Time/Space variant operators
- Non-Linearities
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