Emerging Applications of Sparse Representations

Pierre Vandergheynst

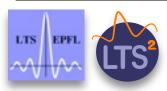
Signal Processing Lab

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Workshop Sparse Models and Machine Learning, INRIA, 15-16 Oct. 2012

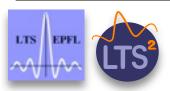


2010: 980 exabytes of new digital information Big Data



2010: 980 exabytes of new digital information Big Data

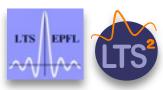
48 hrs video/minute on Youtube (6 years/day)



2010: 980 exabytes of new digital information Big Data

48 hrs video/minute on Youtube (6 years/day)

Hyperspectral imaging



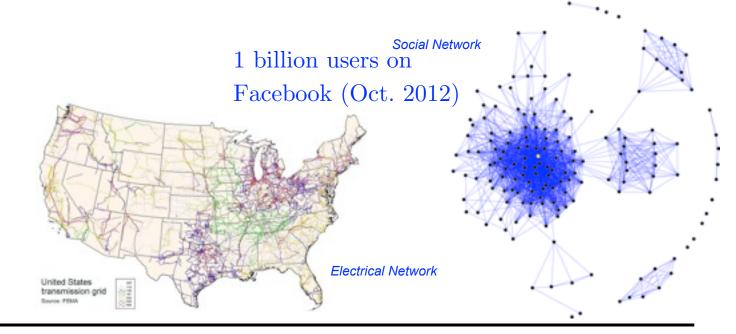
2010: 980 exabytes of new digital information Big Data

48 hrs video/minute on Youtube (6 years/day)

Hyperspectral imaging

LTS

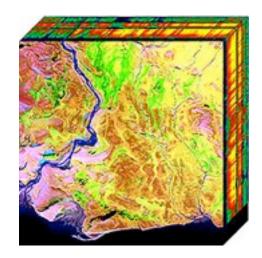
EPFL



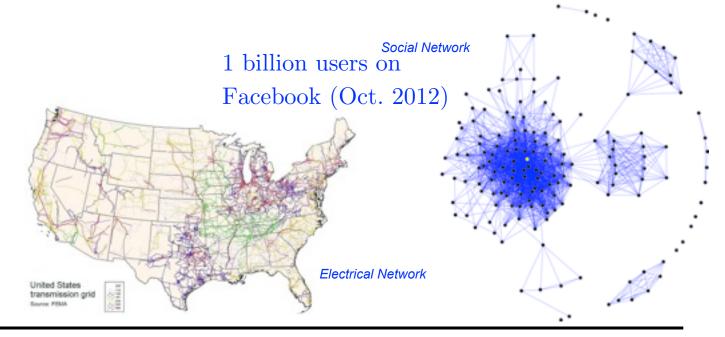
2010: 980 exabytes of new digital information Big Data

48 hrs video/minute on Youtube (6 years/day)

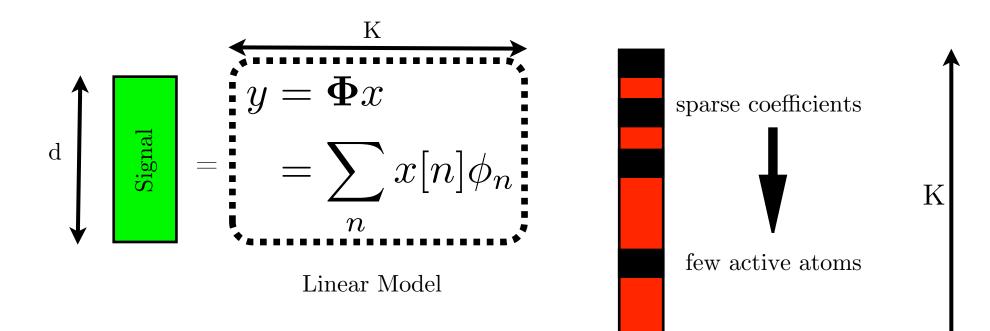
Ubiquitous sensing



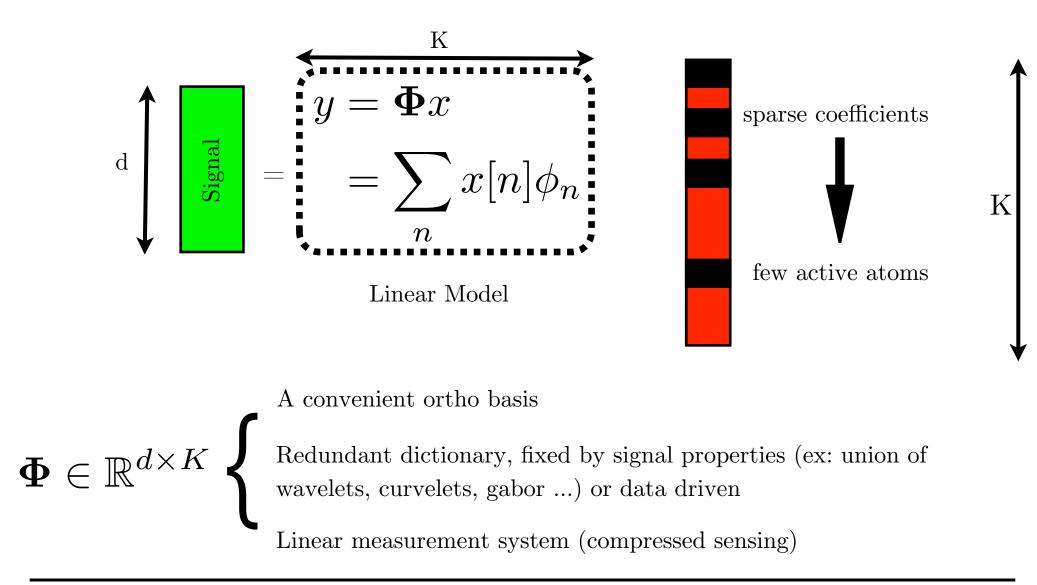
Hyperspectral imaging



Some notations



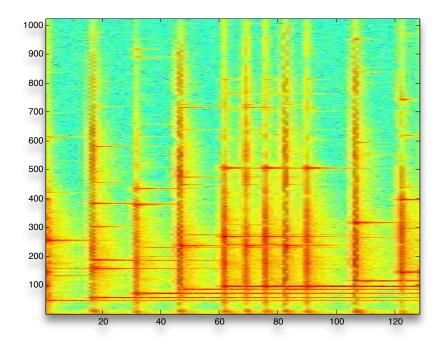
Some notations

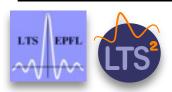


$$y = \mathbf{\Phi}x + n$$

Efficient model: coefficient vector is very sparse OR contains few big entries

Example: MDCT/Gabor for audio signals

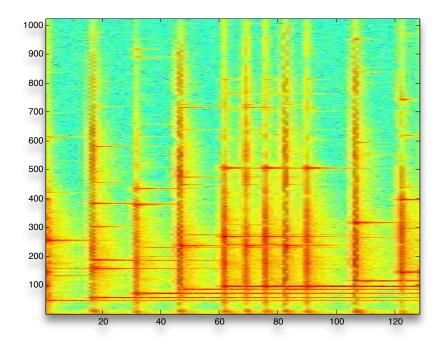


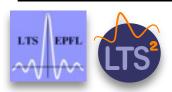


$$y = \mathbf{\Phi}x + n$$

Efficient model: coefficient vector is very sparse OR contains few big entries

Example: MDCT/Gabor for audio signals

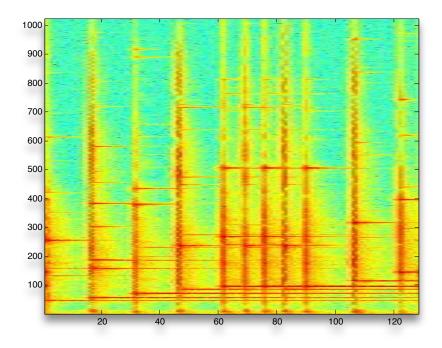




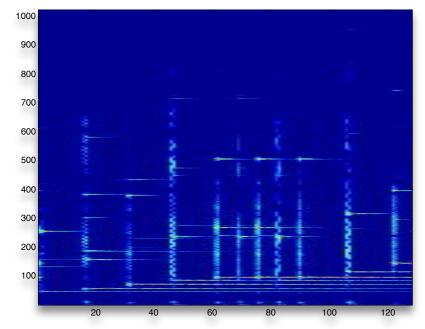
$$y = \mathbf{\Phi}x + n$$

Efficient model: coefficient vector is very sparse OR contains few big entries

Example: MDCT/Gabor for audio signals



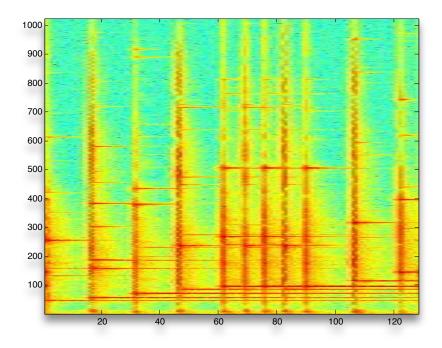
10~% coefficients



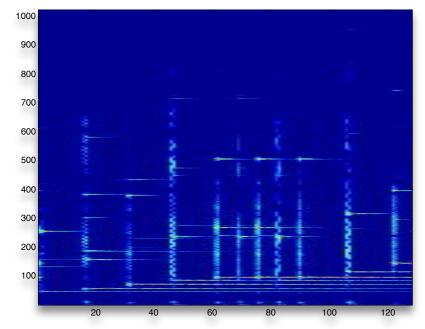
$$y = \mathbf{\Phi}x + n$$

Efficient model: coefficient vector is very sparse OR contains few big entries

Example: MDCT/Gabor for audio signals

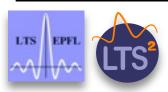


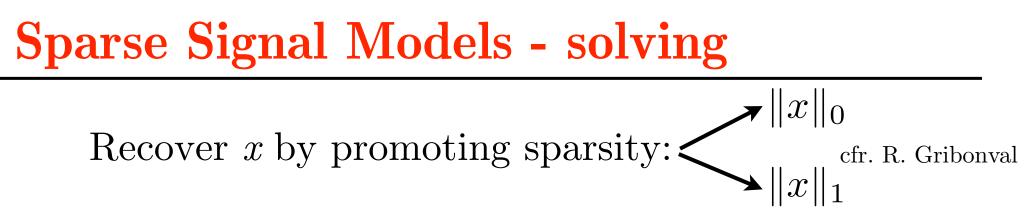
10~% coefficients

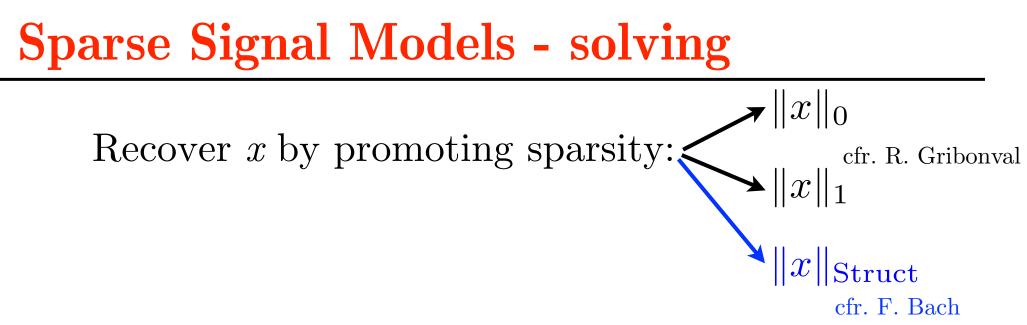


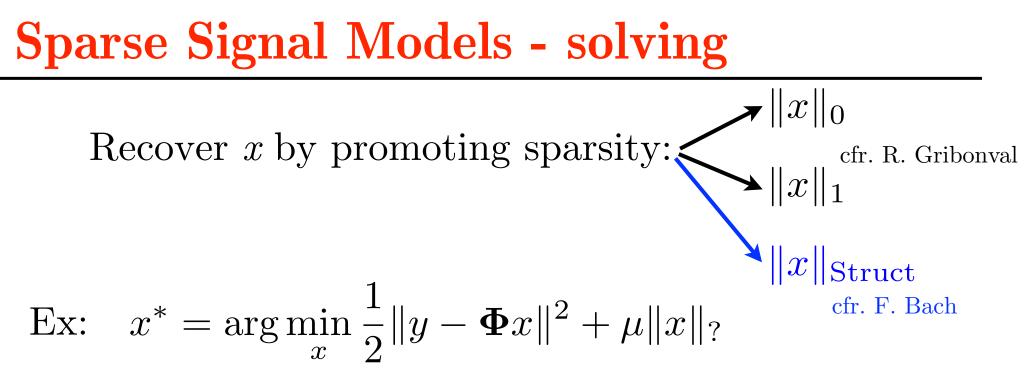
Sparse Signal Models - solving

Recover x by promoting sparsity:









If the model is an ortho basis it is easy to solve

In general models are embodied by dictionaries

Model coefficients can be recovered by families of algorithms, often solving an optimization problem that promotes sparsity: iterative shrinkage, greedy algorithms etc ...



Sparsity constrained recovery and inverse problems:

$$x^* = \arg\min_{x} \frac{1}{2} \|s - \Phi x\|^2 + \mu \|x\|_1$$

Sparsity constrained recovery and inverse problems:

$$x^{*} = \arg\min_{x} \frac{1}{2} \|s - \Phi x\|^{2} + \mu \|x\|_{1}$$

$$x^{*} = \arg\min_{x} \frac{1}{2} \|y - \mathbf{U} \Phi x\|^{2} + \mu \|x\|_{1} \Longrightarrow s^{*} = \Phi x^{*}$$
observed signal
$$\tilde{y} = \mathbf{U}s$$

Sparsity constrained recovery and inverse problems:

$$x^{*} = \arg\min_{x} \frac{1}{2} \|s - \Phi x\|^{2} + \mu \|x\|_{1}$$

$$x^{*} = \arg\min_{x} \frac{1}{2} \|y - \mathbf{U} \Phi x\|^{2} + \mu \|x\|_{1} \Longrightarrow s^{*} = \Phi x^{*}$$
observed signal degrading operator
$$\tilde{y} = \mathbf{U}s$$

Sparsity constrained recovery and inverse problems:

$$x^* = \arg\min_{x} \frac{1}{2} \|s - \Phi x\|^2 + \mu \|x\|_1$$

$$x^* = \arg\min_{x} \frac{1}{2} \|y - \mathbf{U} \Phi x\|^2 + \mu \|x\|_1 \longrightarrow s^* = \Phi x^*$$
observed signal degrading operator
$$\tilde{y} = \mathbf{U}s$$

New perspective: Sparsity as a regularizer (ex: TV - sparsity of gradients)



How to find a needle in a haystack ?

You were right: There's a needle in this haystack...

See tutorials of Rémi Gribonval and Francis Bach on how to find a needle in a haystack

Take Home Messages So Far

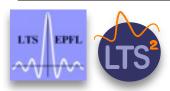
- Many signals are sparse on some basis or dictionary
 - zoology of fixed "optimal" bases
 - bases/dictionary learning
 - data driven representation (link with Machine Learning)
- Sparsity offers a lot of flexibility
 - dimensionality reduction
 - compression
- Algorithms to handle sparsity (provably correct)
 - ▶ greedy, convex relaxation ...
- Applications !
 - in particular "compressive sensing"

Sparse recovery techniques are great for processing data but ...

 \ldots you acquire the whole signal, i.e dimension N and then \ldots

you trash most of it because you know it is sparse on some good basis !

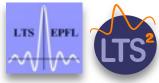
$$y = \mathbf{\Phi} x$$



Sparse recovery techniques are great for processing data but you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !

$$y = \mathbf{\Phi} x$$

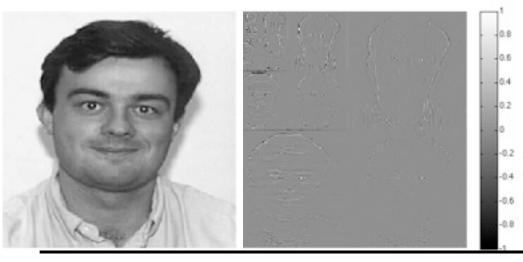


Sparse recovery techniques are great for processing data but ...

... you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !

 $y = \mathbf{\Phi} x$



Sparse recovery techniques are great for processing data but ...

... you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !

 $y = \mathbf{\Phi} x$

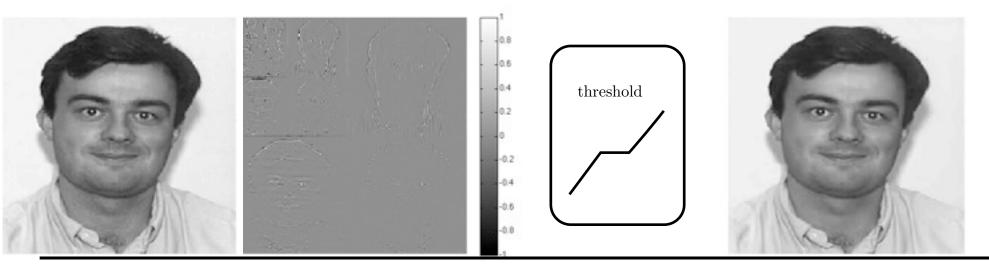


Sparse recovery techniques are great for processing data but ...

... you acquire the whole signal, i.e dimension N and then ...

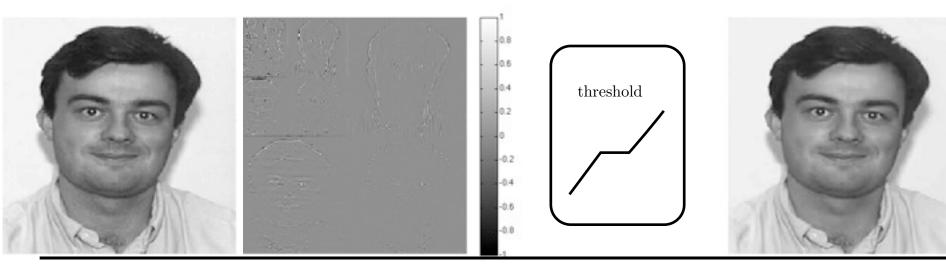
you trash most of it because you know it is sparse on some good basis !

 $y = \mathbf{\Phi} x$



Sparse recovery techniques are great for processing data but you acquire the whole signal, i.e dimension N and then ...

Can we estimate the sparse components from few measurements ?



Sparse Recovery and Compressive Sensing

We measure an unknown signal $y: s = \mathbf{A}y \quad \mathbf{A} \in \mathbb{R}^{M \times N} \quad M \ll N$

But we know it comes from a model

Sparse Recovery and Compressive Sensing

We measure an unknown signal $y: s = \mathbf{A}y \quad \mathbf{A} \in \mathbb{R}^{M \times N} \quad M \ll N$

But we know it comes from a model

$$\arg\min_{x} \|s - \mathbf{A} \Phi x\|_{2}^{2} \longrightarrow \qquad \text{Try to fit the model to} \\ \text{the observations}$$

The fit maybe hard to find BUT we know the model is sparse

$$\arg\min_{x} \|s - \mathbf{A}\mathbf{\Phi}x\|_{2}^{2} + \lambda \|x\|_{1}$$
$$\arg\min_{x \in \mathbb{R}^{N}} \|x\|_{1} \text{ subject to } \|y - \mathbf{A}\mathbf{\Phi}x\|_{2}^{2} \le \epsilon$$

Sparsity constrained inverse problem

Bring Home Key Concepts

- Sparsity / Compressibility
 - large dimension but few degrees of freedom
- Linear (non adaptive !) measurements
 - $M = \mathcal{O}(K \log N/K)$
- Incoherence / Randomness

See 2nd talk of R. Gribonval

- each measurement counts !
- universality, robustness, scalability
- Recovery
 - provably correct algoS to solve inverse problem

[Candès, Romberg, Tao, Donoho]



Applications

well, applications @EPFL really...

Spread-Spectrum Compressive Sensing

A common sensing model: projections onto an ONB

- $y = \Psi x$ Generative sparse model
- $s = \Phi_{\Omega}^* x$ Sensing model: randomly select few projections onto an ONB



Spread-Spectrum Compressive Sensing

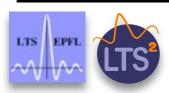
A common sensing model: projections onto an ONB

- $y = \Psi x$ Generative sparse model
- $s = \Phi_{\Omega}^* x$ Sensing model: randomly select few projections onto an ONB

Recovery performance driven by the incoherence between the two bases:

$$\mu = \max_{i,j} |\langle \phi_i, \psi_j \rangle|$$

Spread-Spectrum Compressive Sensing



Sparsity/Sensing in ONBs: CS results driven by mutual coherence Introduce modulation aimed at decoherence

Sparsity/Sensing in ONBs: CS results driven by mutual coherence Introduce modulation aimed at decoherence

Theoretical Analysis of Recovery (joint with R. Gribonval): $A_{\Omega} = \Phi_{\Omega}^{*} C \Psi \in \mathbb{C}^{m \times N} \qquad \beta(\Phi, \Psi) = \max_{1 \leq i, j \leq N} \sqrt{\sum_{k=1}^{N} |\phi_{ki}^{*} \psi_{kj}|^{2}}$ modulation $\mu \leq \beta(\Phi, \Psi) \sqrt{2 \log (2N^{2}/\epsilon)} \quad \text{with probability at least } 1 - \epsilon$ $m \geq C' N \beta^{2}(\Phi, \Psi) s \log^{8}(N)$

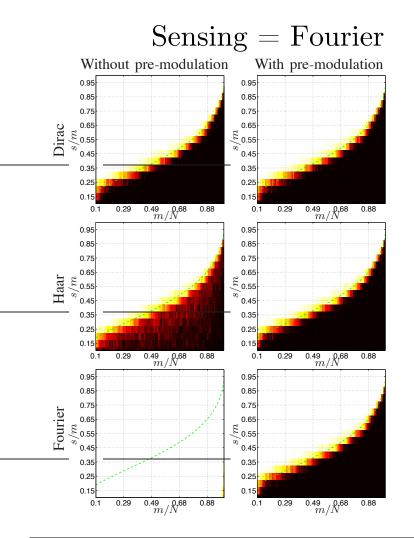
Sparsity/Sensing in ONBs: CS results driven by mutual coherence Introduce modulation aimed at decoherence

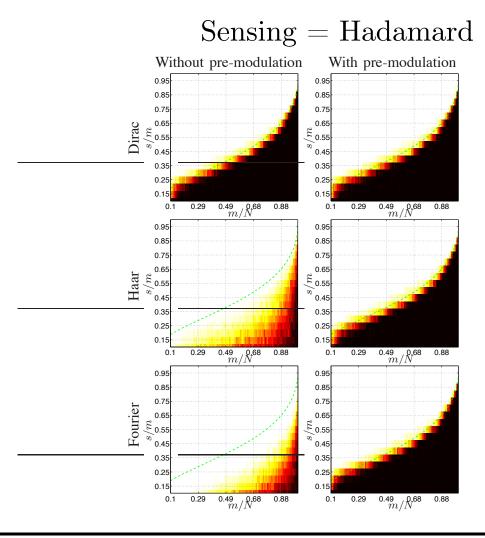
Theoretical Analysis of Recovery (joint with R. Gribonval): $A_{\Omega} = \Phi_{\Omega}^{*} C \Psi \in \mathbb{C}^{m \times N} \qquad \beta(\Phi, \Psi) = \max_{1 \leq i, j \leq N} \sqrt{\sum_{k=1}^{N} |\phi_{ki}^{*} \psi_{kj}|^{2}}$ modulation $\mu \leq \beta(\Phi, \Psi) \sqrt{2 \log (2N^{2}/\epsilon)} \quad \text{with probability at least } 1 - \epsilon$ $m \geq C' N \beta^{2}(\Phi, \Psi) s \log^{8}(N)$

Universal Sensing Basis (Fourier, Hadamard, Noiselet ...)

$$|\phi_{ki}| = N^{-1/2} \square \beta(\Phi, \Psi) = N^{-1/2} \text{ and } \mu \simeq N^{-1/2}$$

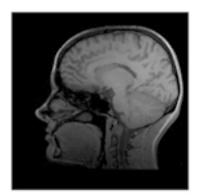
Universal sensing bases give optimal sampling, independently of sparsity basis !

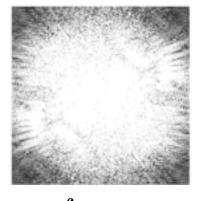




Compressed Sensing in MRI

Problem: accelerate MRI acquisition





$$ho(\mathbf{x})$$

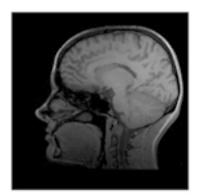
$$\nu\left(\boldsymbol{k}\right) = \int_{\mathbb{R}^2} \rho\left(\boldsymbol{x}\right) \mathrm{e}^{-2\mathrm{i}\boldsymbol{\pi}\boldsymbol{k}\cdot\boldsymbol{x}} \mathrm{d}^2\boldsymbol{x}.$$

Sensing Model: wide-band modulation

$$y(t) = p(t) \cdot s(t) \Leftrightarrow \hat{y}(\omega) = \hat{p}(\omega) \star \hat{s}(\omega)$$

Compressed Sensing in MRI

Problem: accelerate MRI acquisition



$$ho(\mathbf{x})$$

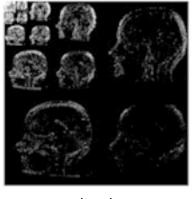
$$\nu(\boldsymbol{k}) = \int_{\mathbb{R}^2} \rho(\boldsymbol{x}) e^{-2i\pi \boldsymbol{k} \cdot \boldsymbol{x}} d^2 \boldsymbol{x}.$$

Sensing Model: wide-band modulation

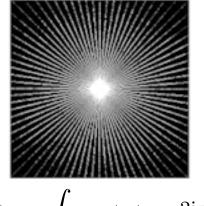
$$y(t) = p(t) \cdot s(t) \Leftrightarrow \hat{y}(\omega) = \hat{p}(\omega) \star \hat{s}(\omega)$$

Compressed Sensing in MRI

Problem: accelerate MRI acquisition



 $\rho(\mathbf{x})$



$$\nu(\mathbf{k}) = \int_{\mathbb{R}^2} \rho(\mathbf{x}) e^{-2i\pi \mathbf{k} \cdot \mathbf{x}} d^2 \mathbf{x}.$$

Sensing Model: wide-band modulation

$$y(t) = p(t) \cdot s(t) \Leftrightarrow \hat{y}(\omega) = \hat{p}(\omega) \star \hat{s}(\omega)$$

Spread Spectrum in MRI

CS has already been applied to MR [Lustig]

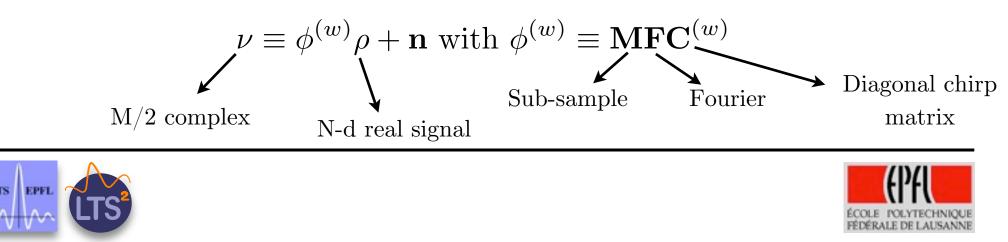
Here: Explore potential of spread-spectrum "conditioning"

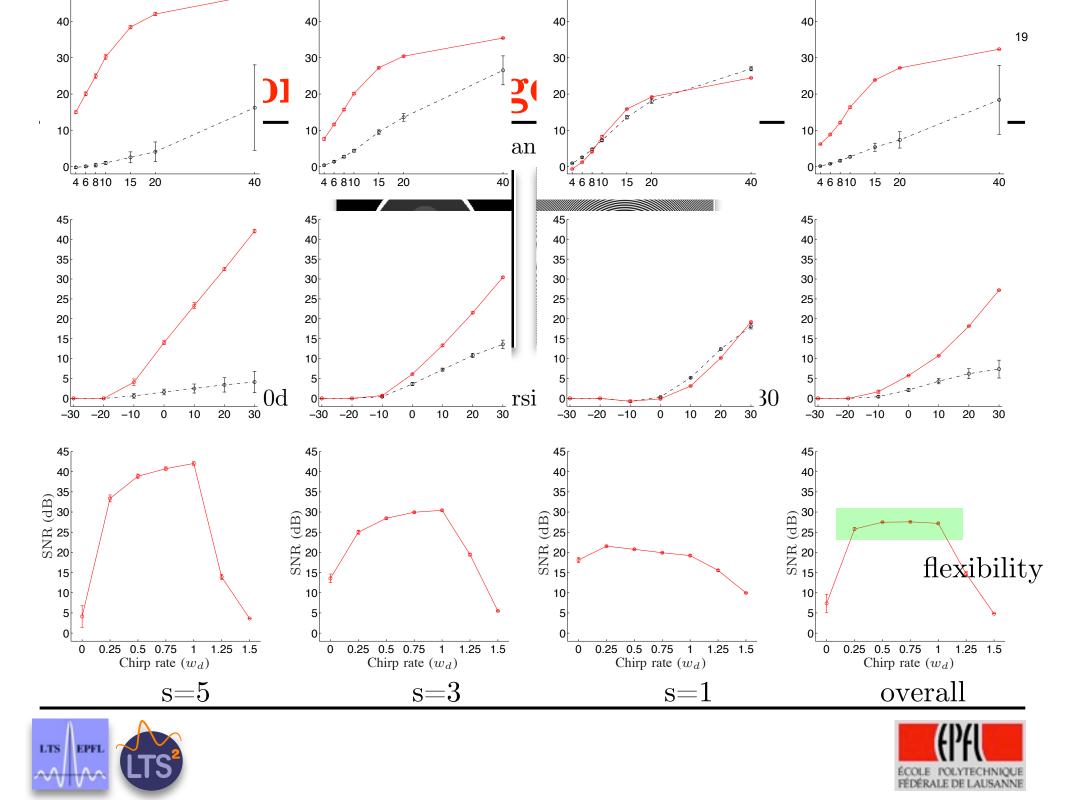
$$\nu(\mathbf{k}) = \int_{\mathbb{R}^2} \rho(\mathbf{x}) e^{i\pi w |\mathbf{x}|^2} e^{-2i\pi \mathbf{k} \cdot \mathbf{x}} d^2 \mathbf{x}$$

Phase Scrambling

- well-known in MRI (high Dynamic, reduce aliasing)
- obtained through dedicated coils or RF pulses

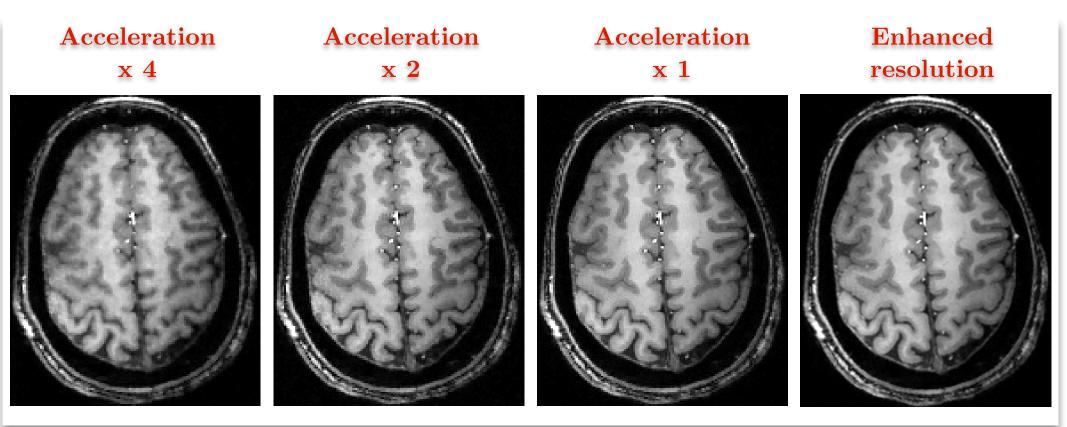
Measurement model:

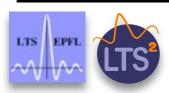




Application: Fast MR Imaging

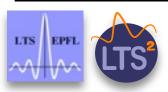
Real data acquisition, 7T MRI@EPFL chirp pre-modulation implemented with a dedicated shim coil





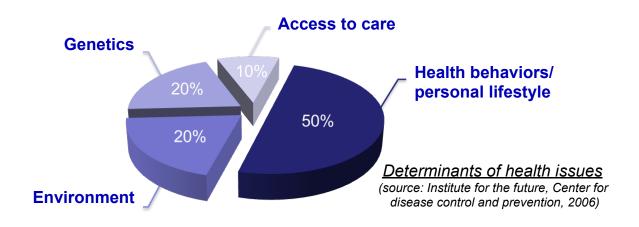
Societal motivation:

demography and life style conspire toward a global health care crisis (lifestyle-induced diseases, NCDs)



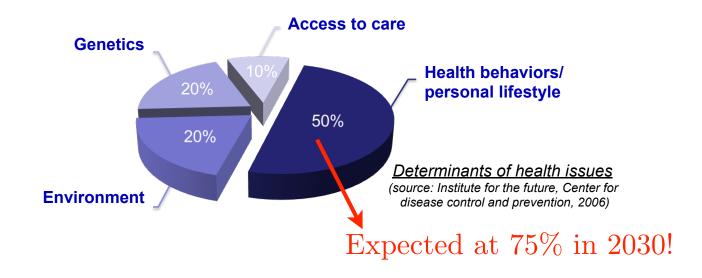
Societal motivation:

demography and life style conspire toward a global health care crisis (lifestyle-induced diseases, NCDs)

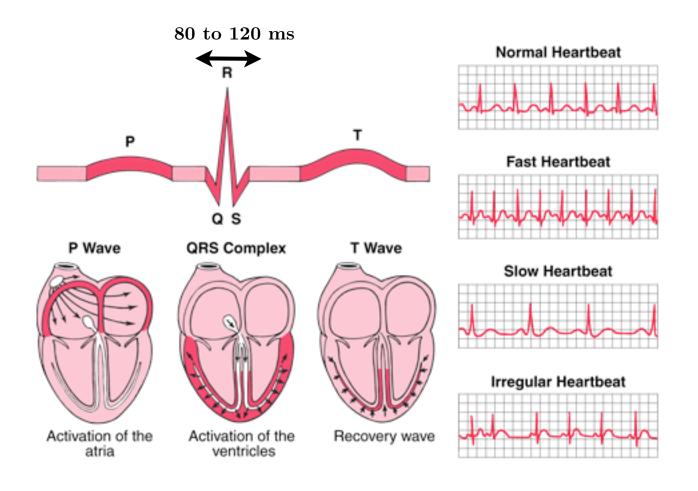


Societal motivation:

demography and life style conspire toward a global health care crisis (lifestyle-induced diseases, NCDs)



Typical modality: ECG



Typical components, could be learned Often, wavelets are used

Sampling rate few hundred Hz

Low-power ECG ambulatory system

Problem: sense and transmit ECG (possibly multi-lead) from a low power body-area network

Compression ? Surely if we transmit less, we will waste less power in communication.

Sure, but if we compress more we will waste energy using a complex encoder !

Can CS offer an interesting trade-off ?

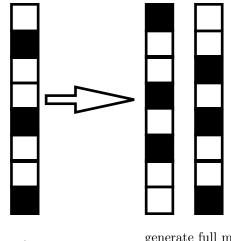
Can everything be real-time ?



- State-of-the-art
 - Wavelet transform, followed by thresholding, quantization and entropy coding
 - Pros: excellent compression results, signals nicely sparse (at least ventricular part)
 - Cons: Full wavelet transform must be implemented on the sensing node
- Can a light compressive sensing encoder achieve a good trade-off compression/power consumption ?

What is a good sensing matrix for low-power sensing ?

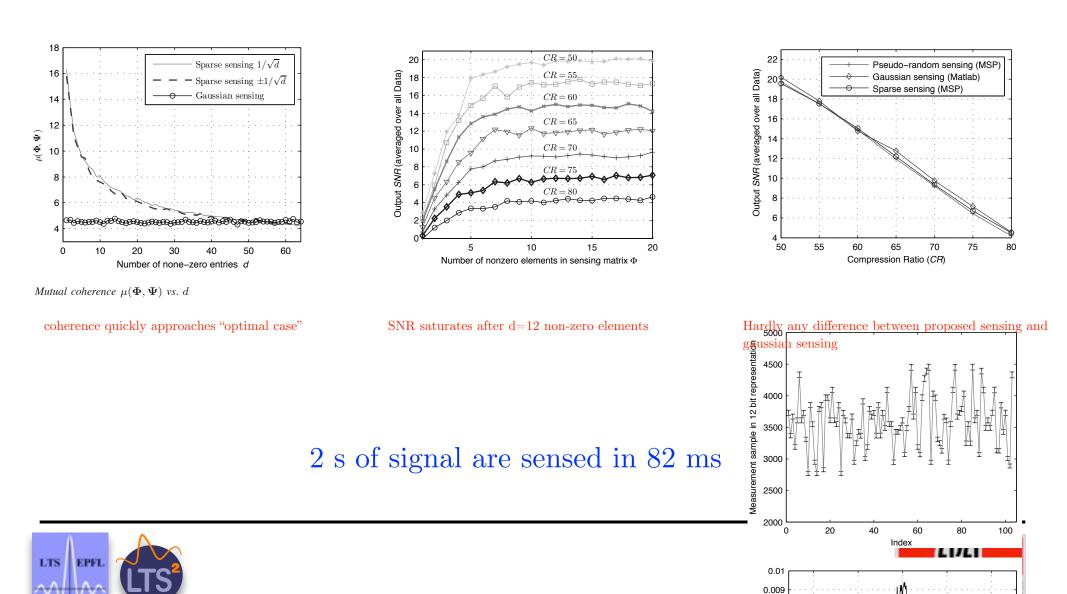
- Surely not gaussian ! (dense, complex to apply to signal and even complex to generate ...)
- Sparse matrices, binary entries (ex: expander graphs)



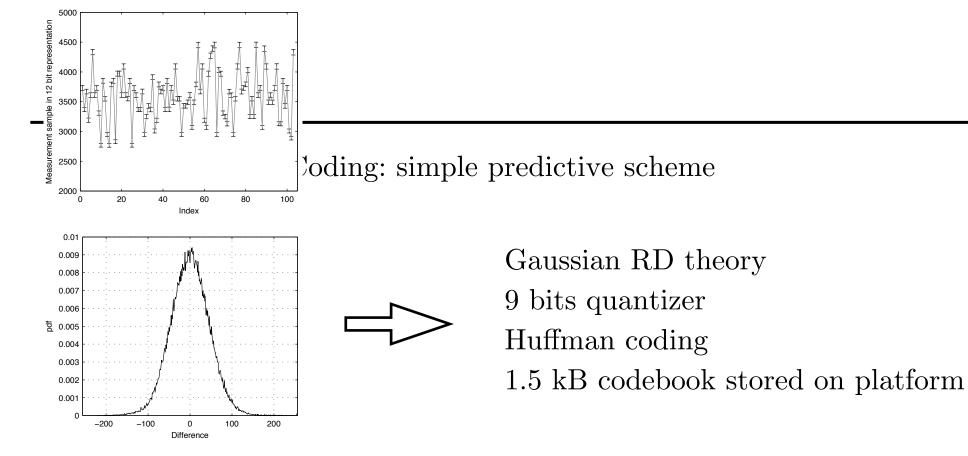
generate binary vector with d non-zero elements

generate full matrix by random permutations

Performance indexes for sensing mechanism



0.008

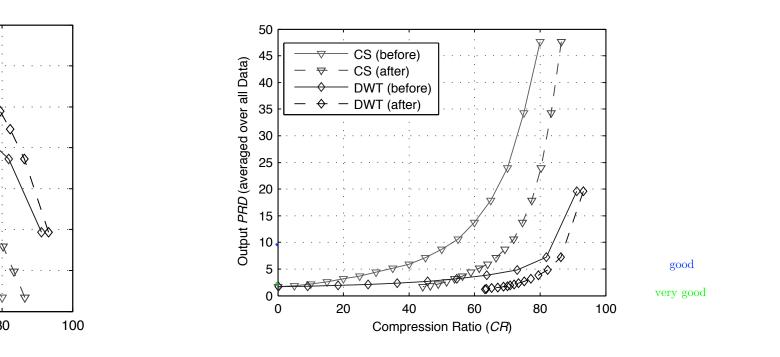


difference between successive sensing vectors Compression Ration: 20%

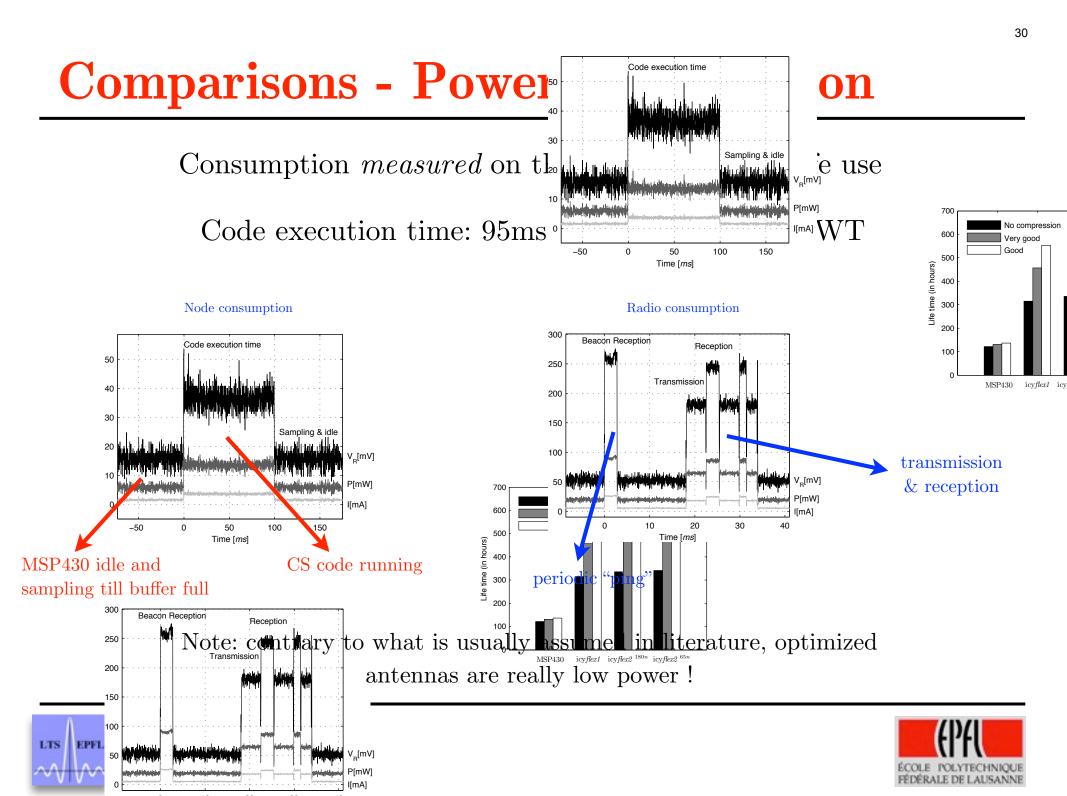
Total memory footprint of CS implementation:6.5 kB of RAM for computations7.5 kB of Flash

28

Comparisons - Quality vs Compression

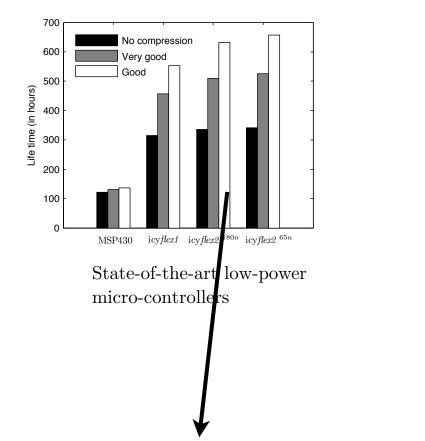


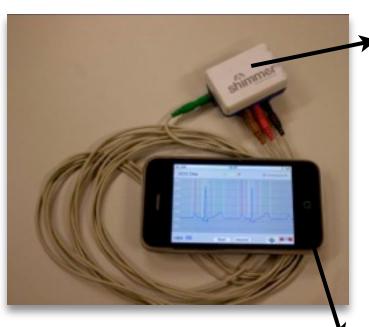
In terms of pure compression performance, an optimized DWT encoder is clearly (and obviously) better than the non-adaptive CS scheme



Comparisons - Power consumption

Final results: it is important to know your architecture VERY well

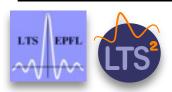


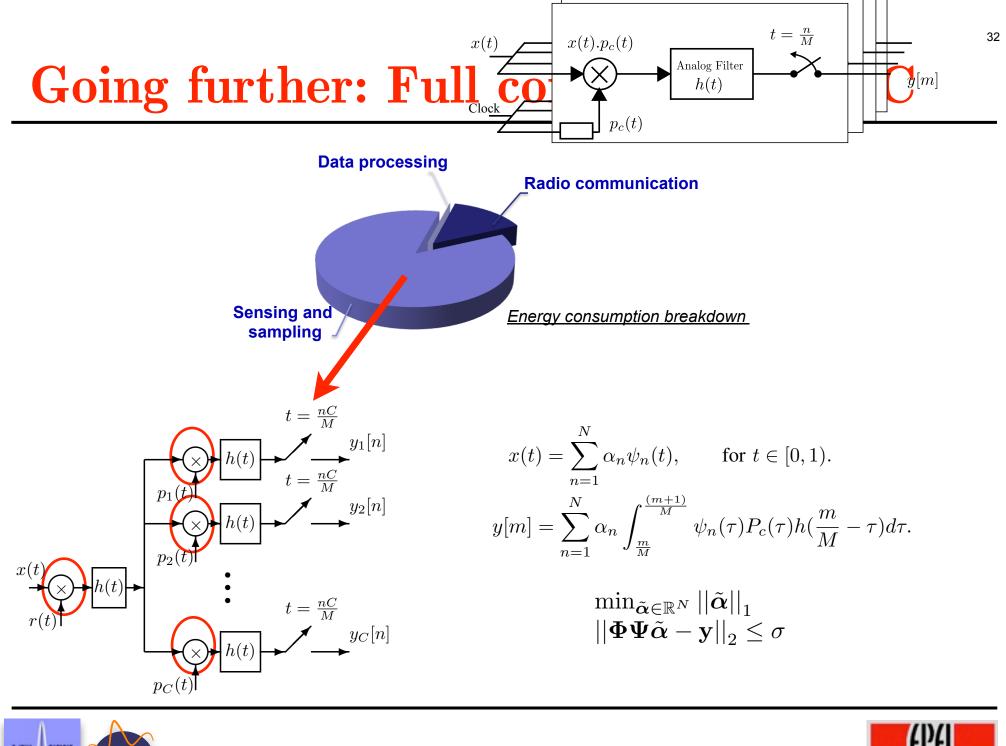


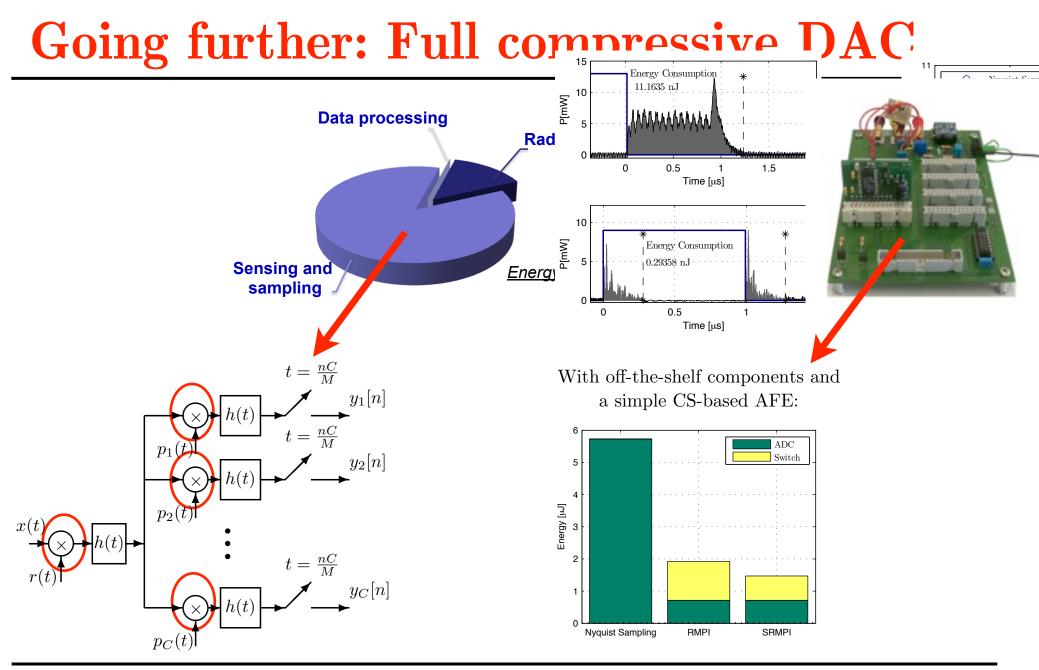
Light Compressive sensing encoder on embedded system

CS decoder (iterative soft thresholding) running real-time on an iphone

92% lifetime extension, 6 times better than MSP430



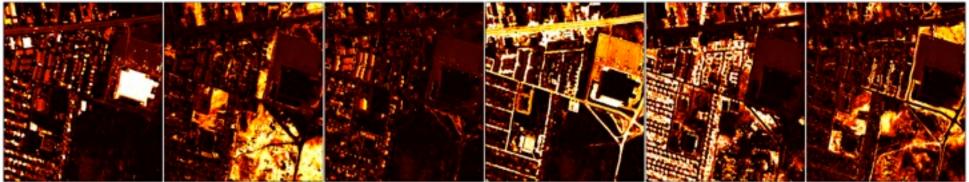




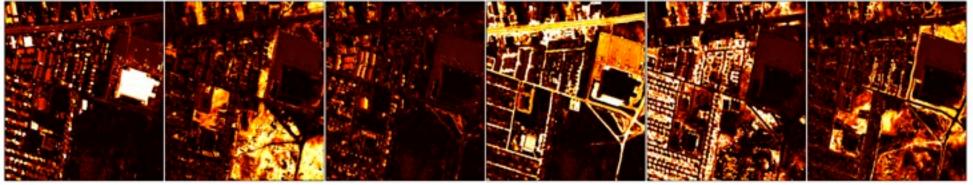
- Big advantage of direct samples
 - they are easily interpreted
 - they can be processed
- Can we process signals in the compressed domain?
 - detection, recognition, classification
 - segmentation



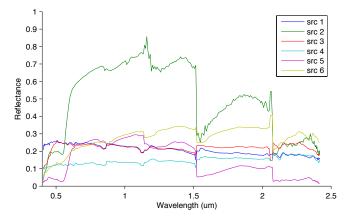
S: Sources (element abundancies) $\mathbf{S} \in \mathbb{R}^{n_1 \times \rho}$



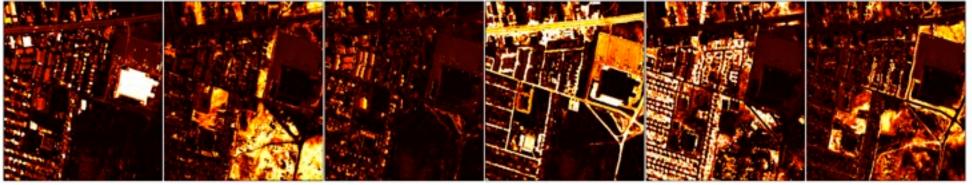
S: Sources (element abundancies) $\mathbf{S} \in \mathbb{R}^{n_1 \times \rho}$



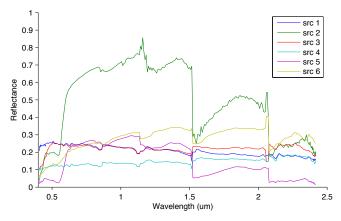
A: Spectra (depending on modality) $\mathbf{A} \in \mathbb{R}^{n_2 \times \rho}$



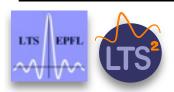
S: Sources (element abundancies) $\mathbf{S} \in \mathbb{R}^{n_1 \times \rho}$



A: Spectra (depending on modality) $\mathbf{A} \in \mathbb{R}^{n_2 \times \rho}$



Each pixel is a weighted combination of source spectra: $y = \mathbf{S}\mathbf{A}^T$



Very high dimensional data (thousands of channels)

Typical problem: Source Separation

Given the dictionary of spectra A and the data yRecover the source abundances, factorizing $y = \mathbf{S}\mathbf{A}^T$

Very high dimensional data (thousands of channels)

Typical problem: Source Separation

Given the dictionary of spectra A and the data yRecover the source abundances, factorizing $y = \mathbf{S}\mathbf{A}^T$

Can this be achieved even when:

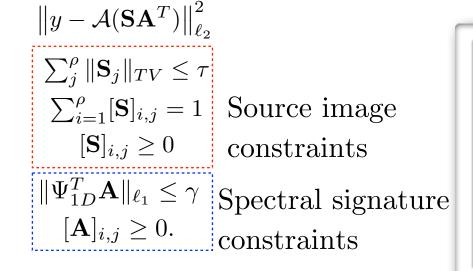
 $y = \mathcal{A}(\mathbf{S}\mathbf{A}^T)$ Indirect/degraded observations

The dictionary of spectra ${\bf A}$ is unknown



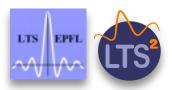
HSI Compressive Blind Source Separation (CS-BSS)

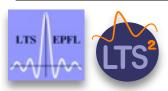
 $\begin{array}{c} \arg\min \\ \mathbf{S}, \mathbf{A} \\ \text{subject to} \end{array}$

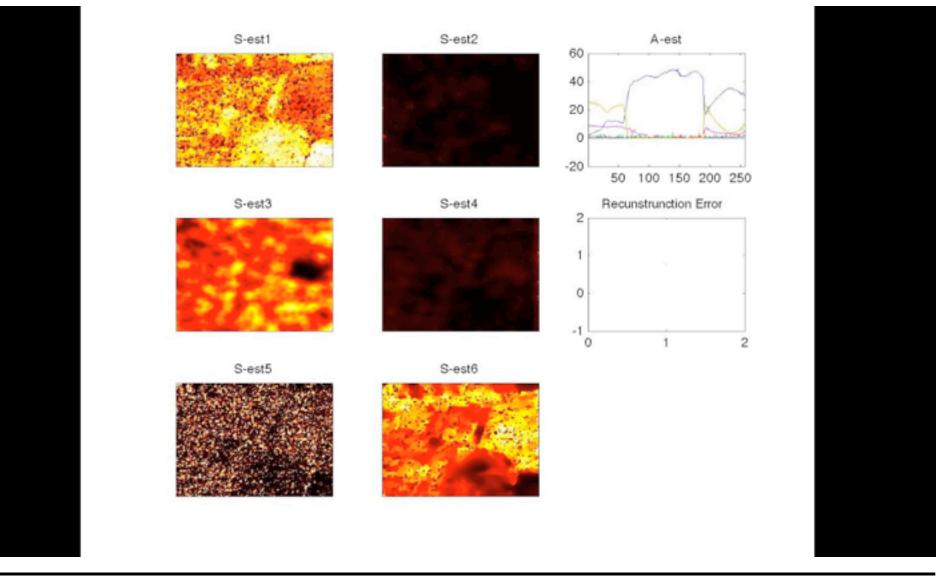


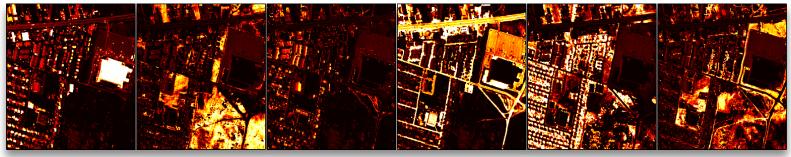
Bi-convex minimization
Algorithm: alternating convex minimization
1- Initialize A at random
2- Source recovery given A
3- Mixture recovery given S
4- Repeat 2-3 until convergence

Goal: Compute source maps directly from compressed measurements Separation or Segmentation in the compressed domain



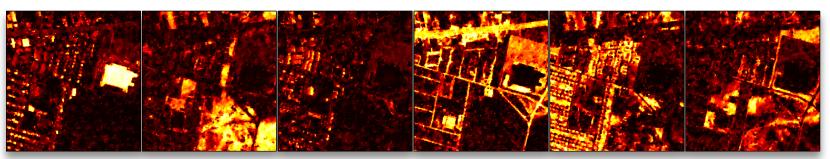






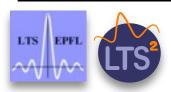
(a) Ground truth

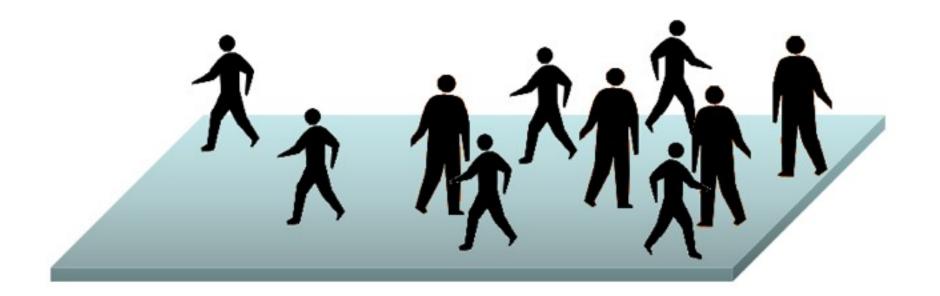
From 3% of the original data:



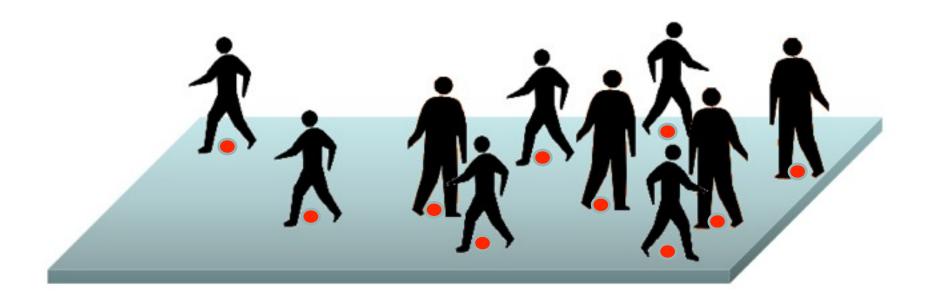
(e) SS-TV-decorr, source reconstruction SNR: 8.64 dB

Other applications: Mass spectrometry (MALDI), ...

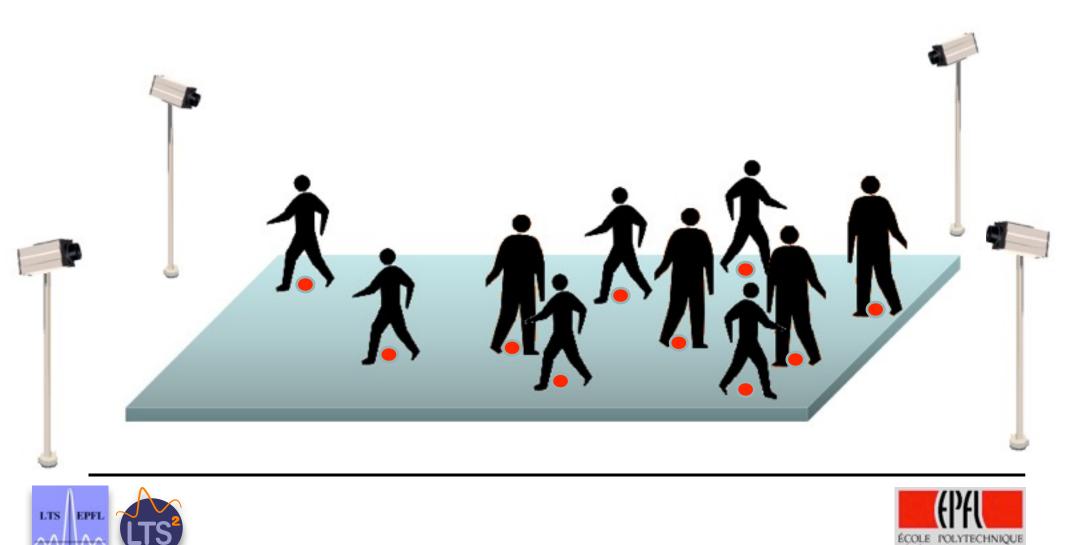




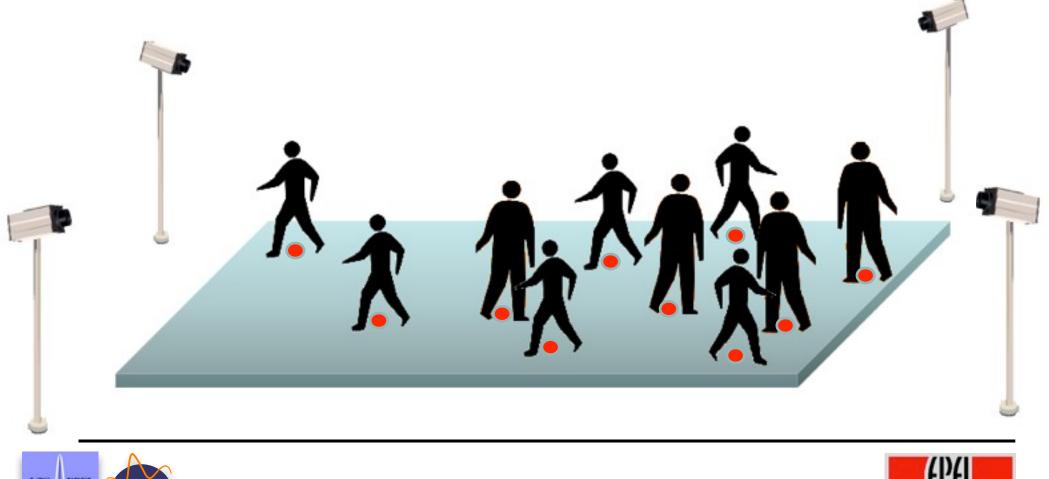
- Locate <u>group</u> of people <u>occluding</u> each other



- Locate group of people <u>occluding</u> each other
- With a <u>network</u> of cameras

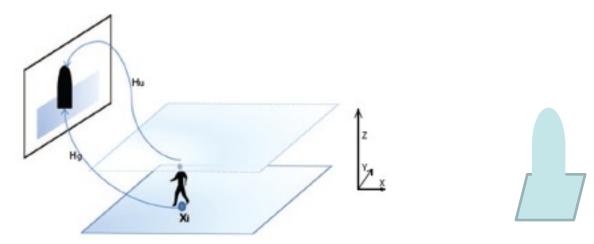


- Locate group of people <u>occluding</u> each other
- With a <u>network</u> of cameras
- Given extracted foreground silhouettes <u>only</u>



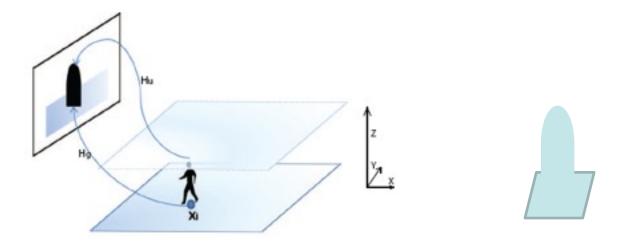
Problem Formulation

 \blacksquare Use a dictionary *D* associating to *x* a certain configuration of silhouettes in *y*



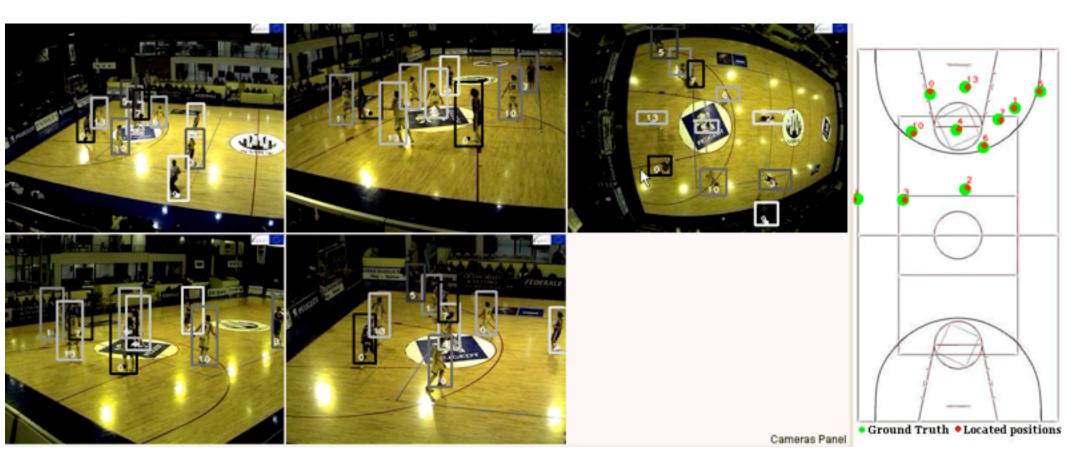
Problem Formulation

 \blacksquare Use a dictionary D associating to x a certain configuration of silhouettes in y

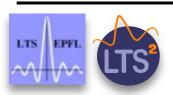


We want:

arg min $||x||_0$ s.t. $||y - Q(Dx)||_2^2 < \varepsilon$ $x \in \{0,1\}^N$

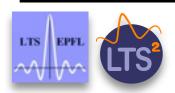


Alexandre Alahi, Mohammad Golbabaee



Outlook

- Significant challenges ahead in signal processing
 - Big Data
 - Ubiquitous but Cheap Sensing (i.e dirty signals)
- Need new models, algorithms
 - Hardware/Software co-design
 - New sensor designs
- Where do we go from here in terms of applications ?
 - Structured notions of sparsity for specific applications
 - More data driven approaches
 - Non-linearities ?



Application focus

- Big Data
 - Too big for sparsity ?
- What can we hope from Sparsity+Machine Learning?
 - Better algos ?
 - Better models ?
- What new application fields ?
 - Beyond restoration ?
- What's missing ?
 - Time/Space variant operators
 - Non-Linearities

