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Linear Model

A convenient ortho basis

sparse coefficients

few active atoms

Redundant dictionary, fixed by signal properties (ex: union of

wavelets, curvelets, gabor ...) or data driven

Linear measurement system (compressed sensing)
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Sparse Signal Models

y=®Pxr+n Efficient model: coefficient vector is very sparse
OR contains few big entries
Example: MDCT /Gabor for audio signals

e =5 ——-F— - e E-a-g - % — E
s00f = = : : =
800} f i,_i. g :§ : _: - ':i
700} _ i_ '* == == —
0 —
500F :
awopy - 3§ = -
-
300

Challenge: Find “good” coefficients for the model
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Sparse Signal Models

y=®r+n Efficient model: coefficient vector is very sparse
OR contains few big entries
Example: MDCT /Gabor for audio signals

10 % coefficients
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Sparse Signal Models - solving

Recover x by promoting sparsity:
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Sparse Signal Models - solving

/ L0
Recover x by promoting sparsity: cfr. R. Gribonval

\331

‘ ‘ L ‘ ’ Struct
cfr. F. Bach

1
Ex: z* = argmin §Hy — ®x|]” + pl|z||-

If the model is an ortho basis it is easy to solve

In general models are embodied by dictionaries

Model coefficients can be recovered by families of algorithms, often solving
an optimization problem that promotes sparsity:
iterative shrinkage, greedy algorithms etc ...
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Sparsity Constrained Inverse Problems

Sparsity constrained recovery and inverse problems:

1
A argma}n 5”8 — (I)CU||2 + pllz(1
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Sparsity Constrained Inverse Problems

Sparsity constrained recovery and inverse problems:

1
o arg min §||3 — ®z|]? + pllz|

1
r* = arg min §||y —Udzx|” + plz] == s* = ¥z
oy

observed signal degrading operator
y = Us
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Sparsity constrained recovery and inverse problems:
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i argmxin §HS — ®z|)* + pl|z|

1
x* = arg min §Hy —Udzx|” + plz] == s* = ¥z
Coy

observed signal degrading operator
n=Us

I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




How to find a needle in a haystack ?

S Onginal Artist
Reproductionerights obtainable from

You were right: There's a needle in this haystack...

See tutorials of Rémi Gribonval and Francis
Bach on how to find a needle in a haystack
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Take Home Messages So Far

Many signals are sparse on some basis or dictionary
» zoology of fized “optimal” bases
» bases/dictionary learning

» data driven representation (link with Machine Learning)

Sparsity offers a lot of flexibility

» dimensionality reduction

> Ccompression

Algorithms to handle sparsity (provably correct)

» greedy, convex relaxation ...

Applications !

» in particular “compressive sensing”
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Sad Realization and Hopeful Wish

Sparse recovery techniques are great for processing data but ...

... you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !

y = Px
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Sad Realization and Hopeful Wish

Sparse recovery techniques are great for processing data but ...

... you acquire the whole signal, i.e dimension N and then ...

Can we estimate the sparse components from few measurements 7

4 )
threshold
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Sparse Recovery and Compressive Sensing

We measure an unknown signal y : s= Ay A cRMXN M <« N

But we know it comes from a model

arg min ||S _ A(I)CEHS » Try to fit the m.odel to
x

the observations
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Sparse Recovery and Compressive Sensing

We measure an unknown signal y : s= Ay A cRMXN M <« N

But we know it comes from a model

the observations

arg min ||S _ A(I)CEHS » Try to fit the m.odel to
x

The fit maybe hard to find BUT we know the model is sparse
argmin |s — A®z||5 + M|z

arg min ||z||; subject to ||y — A®x||5 < e

rERN

Sparsity constrained inverse problem

G
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Bring Home Key Concepts

12

e Sparsity / Compressibility
- large dimension but few degrees of freedom

e Linear (non adaptive !) measurements

- M = O(K log N/K)
See 2nd talk of
e Incoherence / Randomness R. Gribonval

- each measurement counts !
- universality, robustness, scalability
e Recovery

- provably correct algoS to solve inverse problem

|Candés, Romberg, Tao, Donoho]
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Applications

well, applications QEPFL really...
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Spread-Spectrum Compressive Sensing

A common sensing model: projections onto an ONB

Yy = W  Generative sparse model

S = (I)§<2£E Sensing model: randomly select few
projections onto an ONB

L
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Spread-Spectrum Compressive Sensing

A common sensing model: projections onto an ONB

Yy = W  Generative sparse model

S = (I)§<2£E Sensing model: randomly select few
projections onto an ONB

Recovery performance driven by the incoherence between the two bases:

t,J

L
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Spread-Spectrum Compressive Sensing
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Spread-Spectrum Compressive Sensing

Sparsity /Sensing in ONBs: CS results driven by mutual coherence

Introduce modulation aimed at decoherence

L
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Spread-Spectrum Compressive Sensing

Sparsity /Sensing in ONBs: CS results driven by mutual coherence

Introduce modulation aimed at decoherence

Theoretical Analysis of Recovery (joint with R. Gribonval):

Aq = d5CW e XN , W) = max JZ R

14,7 <N

modulation
1< B (P, W) \/2log (2N2/e) with probability at least 1 — €

m > C' NG3* (b, V) slog®(N)
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Spread-Spectrum Compressive Sensing

Sparsity /Sensing in ONBs: CS results driven by mutual coherence

Introduce modulation aimed at decoherence

Theoretical Analysis of Recovery (joint with R. Gribonval):

Aq = d5CW e XN , W) = max JZ R

14,7 <N

modulation
1< B (P, W) \/2log (2N2/e) with probability at least 1 — €

m > C' NG3* (b, V) slog®(N)

Universal Sensing Basis (Fourier, Hadamard, Noiselet ...)
| frs| = N=1/2 => B(O,W)=N"12and py ~ N~1/2

L
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Spread-Spectrum Compressive Sensing

Universal sensing bases give optimal sampling, independently of sparsity basis !

Sensing = Hadamard

Without pre-modulation

Sensing = Fourier

Without pre-modulation With pre-modulation

With pre-modulation
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Compressed Sensing in MRI

Problem: accelerate MRI acquisition

p(X)

Sensing Model: wide-band modulation

y(t) = p(t) - s(t) = §(w) = p(w) x 5(w)

I (
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Compressed Sensing in MRI

Problem: accelerate MRI acquisition

Sensing Model: wide-band modulation

y(t) =p(t) - s(t) < Jlw) = p(w) * 5(w)

L

ECOLE POLYTECHNIQUE
FEDERALE DF LAUSANNE




18

Spread Spectrum in MRI

CS has already been applied to MR |Lustig|

Here: Explore potential of spread-spectrum “conditioning”

V(k):/ p(xe_%”k'xdzx
RQ

Phase Scrambling
e well-known in MRI (high Dynamic, reduce aliasing)
@ obtained through dedicated coils or RF pulses

Measurement model:

v = ¢™p+n with ¢ = MFCW)

/ \ ' \\ Diagonal chirp

Sub-sample Fourier
M/2 complex

N-d real signal matrix

L
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Simulations - leakage
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Shepp-Logan phantom and chirp

Input SNR = 30dB, coverage 20%, sparsity basis = wavelets, 30 simulations
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Application: Fast MR Imaging

Real data acquisition, 7T MRIQEPFL
chirp pre-modulation implemented with a dedicated shim coil

Acceleration Acceleration Acceleration Enhanced
x 2 resolution

-
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Application: ULP bio-sensing

22
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Application: ULP bio-sensing

Societal motivation:
demography and life style conspire toward a global health care
crisis (lifestyle-induced diseases, NCDs)
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Application: ULP bio-sensing

Societal motivation:
demography and life style conspire toward a global health care
crisis (lifestyle-induced diseases, NCDs)

Access to care

Genetics

Health behaviors/
personal lifestyle

Determinants of health issues
(source: Institute for the future, Center for
disease control and prevention, 2006)

Environment

M L
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Application: ULP bio-sensing

Societal motivation:
demography and life style conspire toward a global health care
crisis (lifestyle-induced diseases, NCDs)

Access to care

Genetics

Health behaviors/
personal lifestyle

Determinants of health issues
(source: Institute for the future, Center for
disease control and prevention, 2006)

Expected at 75% in 2030!

Environment

L
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Typical modality: ECG

80 to 120 ms
> Normal Heartbeat

Fast Heartbeat

Qs

Typical components
QRS Complex yp P ’

Slow Heartbeat could be learned
| Often, wavelets are used

Irregular Heartbeat

Activation of the Activation of the Recovery wave
atna ventricles

Sampling rate few hundred Hz

I
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Low-power ECG ambulatory system

Problem: sense and transmit ECG (possibly multi-lead) from a low
power body-area network

Compression 7 Surely if we transmit less, we will waste less power in
communication.

Sure, but if we compress more we will waste energy using a complex
encoder !

Can CS offer an interesting trade-off 7

Can everything be real-time 7

L
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e State-of-the-art

- Wayvelet transtform, followed by thresholding,
quantization and entropy coding

- Pros: excellent compression results, signals nicely sparse
(at least ventricular part)

- Cons: Full wavelet transform must be implemented on
the sensing node

e Can a light compressive sensing encoder achieve a
good trade-off compression/power consumption 7

(P
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What is a good sensing matrix for low-power sensing 7

Surely not gaussian ! (dense, complex to apply to signal and even
complex to generate ...)

Sparse matrices, binary entries (ex: expander graphs)

generate full matrix by

generate binary vector .
random permutations

with d non-zero elements

L
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Performance indexes for sensing mechanism

18 r r
Sparse sensing 1/v/d 22 ——+—— Pseudo-random sensing (MSP) | |
16 1 ) .
— — — Sparse sensing +1/vd 20§ —<—— Gaussian sensing (Matlab) i
. . —©—— Sparse sensing (MSP)
14} L .| —©—— Gaussian sensing ] 18 — — — -

) )
g 8
© T
0 9]
8 3 16
8 3
g g 14
2 9]
3 & 12
g x
3 2 10
3 328
= >
o
© 6
H H H H H H 0% + + . 4
0 10 20 80 40 50 60 Numbe5r of nonzero e:e(:nents in sens1i: matrix ® ° %0 % % -65 i I ® 8
Number of none-zero entries d 9 Compression Ratio (CR)
Mutual coherence u(®,¥) vs. d
coherence quickly approaches “optimal case” SNR saturates after d=12 non-zero elements Hardly any difference between proposed sensing and

gausslan sensing

2 s of signal are sensed in 82 ms

LTS | EPFL

M L

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

ravaw ravas




28

Coding: simple predictive scheme

| Gaussian RD theory
o] | 9 bits quantizer
" | ::> Huffman coding
1.5 kB codebook stored on platform

-200 -100 0 100 200
Difference

difference between successive sensing vectors
Compression Ration: 20%

Total memory footprint of CS implementation:
6.5 kB of RAM for computations
7.5 kB of Flash

L
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Comparisons - Quality vs Compression

50 :
,“?45_ +CS(before) ........ Y ......
= — & — CS (after) : : /
2 40 L DWT (before) SR Y - I .......
© — & — . .
§ 35| ' DWT(aftér) RERERERRS ARLARRREE
o .
- 30
@
(o)
© 25
o
>
8 20
Q
T 15
5
o 104
S

5

‘? 1 1 1 1

0 20 40 60 80 100

Compression Ratio (CR)

good

very good

In terms of pure compression performance, an optimized DW'T encoder is

clearly (and obviously) better than the non-adaptive CS scheme

L
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Comparisons - Power consumption
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Consumption measured on the platform in real-life use

Code execution time: 95ms for CS, 580ms for DW'T

Node consumption Radio consumption

300

Beacon Reception
Pl Reception

Code execution time

Transmission

vV [mv]

v [mV]

P[mW]
mAl PImW]
4 1tmA]

e NG ' J R R R R
Time [ms] Time [ms]
MSP430 idle and CS code running dic “Ding”
sampling till buffer full periodic “ping

Note: contrary to what is usually assumed in literature, optimized
antennas are really low power !

transmission
& reception

L
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Comparisons - Power consumption

Final results: it is important to know your architecture VERY well

700

M o compression Light Compressive
600 [ very good .
00— 8¢ sensing encoder on

embedded system

400

300

Life time (in hours)

200 |

100- I_‘
0

MSP430  icyflex! icyflex2ff%°" icyflex2 65"

State-of-the-arf low-power
micro-controllers

CS decoder (iterative soft thresholding) running

¢ real-time on an iphone

92% lifetime extension, 6 times better than MSP430

(il
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Going further: Full compressive DAC

Data processing

Radio communication

Sensing an
sampling

Energy consumption breakdown

=58
N
h(t) _/_>.y1 " x(t) = Z QP (t), for t € [0,1).
t = % n=1
p1
o N
h(t) _/_»y y[m] = Z ay, /m ¢n<T)PC(T)h<% — T)dT.

> . . ~
. t=nC mingery |||
) |[2¥a —yl|l, <o

I (
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Going further: Full compressive DAC

Data processing

Radio communication

Sensing an
sampling

Energy consumption breakdown

t= % With off-the-shelf components and
Val y1[n] a simple CS-based AFE:
h(t) —
-
P1
y2[n]
h(t) —P-/—b-
2(t D2 %
() e
r(t
yoln
T N

0
Nyquist Sampling RMPI SRMPI

e
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e Big advantage of direct samples
- they are easily interpreted
- they can be processed
e Can we process signals in the compressed domain?

- detection, recognition, classification

- segmentation

L
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Hyper Spectral Imaging

35

S: Sources (element abundancies)

S eR’”lX”

I(I’ﬂI
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Hyper Spectral Imaging

S: SOUTCGS (element abundancies) S < Rm Xp

1A

—src 1
> ——src2
——src3
" ———src4
*7 ———srch
rc 6
8 0.61 ‘
c
E n
3 0.5 1 H
2 U
& 041 ‘ |
0.3 1 _
0.2 | ] - :
01 ol fon—
|
0 T
05 1 15 > o5
Wavelength (um)
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Hyper Spectral Imaging

S: SOUTCGS (element abundancies) S < Rm Xp

1A

—src 1
> ——src2
——src3
" ———src4
*7 ———srch
rc 6
8 0.61 ‘
c
E n
3 0.5 1 H
2 U
& 041 ‘ |
0.3 1 _
0.2 | ] - :
01 ol fon—
|
0 T
05 1 15 > o5
Wavelength (um)

Each pixel is a weighted combination of source spectra: y = SAT

I(I’ﬂI
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Hyper Spectral Imaging

Very high dimensional data (thousands of channels)
Typical problem: Source Separation

Given the dictionary of spectra A and the data y

Recover the source abundances, factorizing y = SA”
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Hyper Spectral Imaging

Very high dimensional data (thousands of channels)
Typical problem: Source Separation

Given the dictionary of spectra A and the data y

Recover the source abundances, factorizing y = SA”
Can this be achieved even when:

Yy = A(SAT) Indirect /degraded observations

The dictionary of spectra A is unknown

ECOLE POLYTECHNIQUE
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Hyper Spectral Imaging

HSI Compressive Blind Source Separation (CS-BSS)

_ 7|2
wepk o ASADlL,
subject to Zp HS] HTV < 7_ - Bi-convex minimization
0 Algorithm: alternating convex minimization

? IS = —1: Source image
; 1- Initialize A at random
S]i,; = 0 | constraints

ossiiiiiiinniinniiiiiiiiiisiiie 2- Source recovery given A

..................................

T
||\IJIDA||£1 <7 Spectral Slgnature 3- Mixture recovery given S
(AL > 0.
e HJ— ............. constraints 4- Repeat 2-3 until convergence

Goal: Compute source maps directly from compressed measurements
Separation or Segmentation in the compressed domain

L
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Hyper-Spectral Imaging
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Hyper-Spectral Imaging

c 0 100 150 200 .' £

S-es13 S-estd Recunstrunction Ermrror

o L
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Hyper-Spectral Imaging

(a) Ground truth

From 3% of the original data:
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(e) SS-TV-decorr, source reconstruction SNR: 8.64 dB

Other applications: Mass spectrometry (MALDI), ...

L
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Detecting and Following People
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Detecting and Following People
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Detecting and Following People

Locate group of people occluding each other

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Detecting and Following People

Locate group of people occluding each other

With a network of cameras

S~
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Detecting and Following People

Locate group of people occluding each other

With a network of cameras

Given extracted foreground silhouettes only
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Problem Formulation

%] Use a dictionary D associating to z a certain configuration of silhouettes in y

' z
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Problem Formulation

%] Use a dictionary D associating to z a certain configuration of silhouettes in y

' z
Ho
> . Y

argmin ||z]lo s.t. |y — Q(Dx)||5 < ¢

re{0,1}N

I
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¥i We want:




Results

* Ground Truth ®Located positions
Cameras Panel

Alexandre Alahi, Mohammad Golbabaee
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Outlook

e Significant challenges ahead in signal processing
- Big Data
- Ubiquitous but Cheap Sensing (i.e dirty signals)
e Need new models, algorithms
- Hardware/Software co-design
- New sensor designs
e Where do we go from here in terms of applications ?

- Structured notions of sparsity for specific applications
- More data driven approaches

- Non-linearities ?
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Application focus

e Big Data
- Too big for sparsity 7

e What can we hope from Sparsity-+Machine Learning?
- Better algos 7

- Better models 7

e What new application fields 7
- Beyond restoration 7

e What’s missing 7
- Time/Space variant operators

- Non-Linearities

l(l’ﬂ.

l‘H\ l Il




