Structured sparsity through convex optimization

Francis Bach
INRIA - Ecole Normale Supérieure, Paris, France

Joint work with R. Jenatton, J. Mairal, G. Obozinski IRISA - October 2012

Outline

- Tutorial: Sparse methods for machine learning
- Algorithms: Convex optimization
- Theory: high-dimensional inference
- Learning on matrices
- Classical approaches to structured sparsity
- Linear combinations of ℓ_{q}-norms
- Applications
- Structured sparsity through submodular functions
- Relaxation of the penalization of supports
- Unified algorithms and analysis

Sparsity in signal processing

- Let $x \in \mathbb{R}^{m}$ be a signal

- Let $D=\left[d_{1}, \ldots, d_{p}\right] \in \mathbb{R}^{m \times p}$ be a set of "basis vectors". $\mathrm{D}=$ dictionary

- D is "adapted" to x if it can represent it with a few basis vectors:
- there exists a sparse vector α in \mathbb{R}^{p} such that $x \approx D \alpha$.
$\alpha=$ sparse code

$$
\underbrace{(x)}_{x \in \mathbb{R}^{m}} \approx \underbrace{\left(\begin{array}{l}
d_{1}
\end{array}\left|d_{2}\right| \cdots\right.}_{D \in \mathbb{R}^{m \times p}} d_{p}) \underbrace{\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{p}
\end{array}\right)}_{\alpha \in \mathbb{R}^{p}, \text { sparse }}
$$

Sparsity in signal processing Sparse decomposition problem

$$
\min _{\alpha \in \mathbb{R}^{p}} \underbrace{\frac{1}{2} \| x-\left.D \alpha\right|_{2} ^{2}}_{\text {data fitting term }}+\underbrace{\lambda \psi(\alpha)}_{\begin{array}{c}
\text { sparsity-inducing } \\
\text { regularization }
\end{array}}
$$

- The term ψ induces sparsity
- the ℓ_{0} "pseudo-norm": $\|\alpha\|_{0} \triangleq \#\left\{i\right.$ s.t. $\left.\alpha_{i} \neq 0\right\}$ (NP-hard)
- the ℓ_{1} norm: $\|\alpha\|_{1} \triangleq \sum_{i=1}^{p}\left|\alpha_{i}\right|$ (convex)

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction as a linear function $w^{\top} \Phi(x)$ of features $\Phi(x) \in \mathcal{F}=\mathbb{R}^{p}$
- (regularized) empirical risk minimization: find \hat{w} solution of

$$
\begin{aligned}
& \min _{w \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} \Phi\left(x_{i}\right)\right)+\mu \Omega(w) \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y}=w^{\top} \Phi(x)$
- quadratic loss $\frac{1}{2}(y-\hat{y})^{2}=\frac{1}{2}\left(y-w^{\top} \Phi(x)\right)^{2}$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y}=w^{\top} \Phi(x)$
- quadratic loss $\frac{1}{2}(y-\hat{y})^{2}=\frac{1}{2}\left(y-w^{\top} \Phi(x)\right)^{2}$
- Classification : $y \in\{-1,1\}$, prediction $\hat{y}=\operatorname{sign}\left(w^{\top} \Phi(x)\right)$
- loss of the form $\ell\left(y \cdot w^{\top} \Phi(x)\right)$
- "True" cost: $\ell\left(y \cdot w^{\top} \Phi(x)\right)=1_{y \cdot w^{\top} \Phi(x)<0}$
- Usual convex costs:

Usual regularizers

- Goal: avoid overfitting
- (squared) Euclidean norm: $\|w\|_{2}^{2}=\sum_{j=1}^{p}\left|w_{j}\right|^{2}$
- Numerically well-behaved
- Representer theorem and kernel methods : $w=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$
- See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

Usual regularizers

- Goal: avoid overfitting
- (squared) Euclidean norm: $\|w\|_{2}^{2}=\sum_{j=1}^{p}\left|w_{j}\right|^{2}$
- Numerically well-behaved
- Representer theorem and kernel methods : $w=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$
- See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)
- Sparsity-inducing norms
- Main example: ℓ_{1}-norm $\|w\|_{1}=\sum_{j=1}^{p}\left|w_{j}\right|$
- Perform model selection as well as regularization
- Non-smooth optimization and structured sparsity
- See, e.g., Bach, Jenatton, Mairal, and Obozinski (2011)

Sparsity in supervised machine learning

- Observed data $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, n$
- Response vector $y=\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$
- Design matrix $X=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda \Omega(w)=\min _{w \in \mathbb{R}^{p}} L(y, X w)+\lambda \Omega(w)
$$

- Norm Ω to promote sparsity
- square loss $+\ell_{1}$-norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
- Proxy for interpretability
- Allow high-dimensional inference: $\log p=O(n)$

ℓ_{2}-norm vs. ℓ_{1}-norm

- ℓ_{1}-norms lead to interpretable models
- ℓ_{2}-norms can be run implicitly with very large feature spaces
- Algorithms:
- Smooth convex optimization vs. nonsmooth convex optimization
- Theory:
- better predictive performance?

Why ℓ_{1}-norms lead to sparsity?

- Example 1: quadratic problem in 1D, i.e. $\min _{x \in \mathbb{R}} \frac{1}{2} x^{2}-x y+\lambda|x|$
- Piecewise quadratic function with a kink at zero
- Derivative at $0+: g_{+}=\lambda-y$ and $0-: g_{-}=-\lambda-y$

$-x=0$ is the solution iff $g_{+} \geqslant 0$ and $g_{-} \leqslant 0$ (i.e., $|y| \leqslant \lambda$)
$-x \geqslant 0$ is the solution iff $g_{+} \leqslant 0$ (i.e., $y \geqslant \lambda$) $\Rightarrow x^{*}=y-\lambda$
$-x \leqslant 0$ is the solution iff $g_{-} \leqslant 0$ (i.e., $y \leqslant-\lambda$) $\Rightarrow x^{*}=y+\lambda$
- Solution $x^{*}=\operatorname{sign}(y)(|y|-\lambda)_{+}=$soft thresholding

Why ℓ_{1}-norms lead to sparsity?

- Example 1: quadratic problem in 1 D, i.e. $\min _{x \in \mathbb{R}} \frac{1}{2} x^{2}-x y+\lambda|x|$
- Piecewise quadratic function with a kink at zero
- Solution $x^{*}=\operatorname{sign}(y)(|y|-\lambda)_{+}=$soft thresholding

Why ℓ_{1}-norms lead to sparsity?

- Example 2: minimize quadratic function $Q(w)$ subject to $\|w\|_{1} \leqslant T$.
- coupled soft thresholding
- Geometric interpretation
- NB : penalizing is "equivalent" to constraining

A review of nonsmooth convex analysis and optimization

- Analysis: optimality conditions
- Convex duality
- Optimization: algorithms
- First-order methods
- Books: Boyd and Vandenberghe (2004), Bonnans et al. (2003), Bertsekas (1995), Borwein and Lewis (2000), Nesterov (2003)

A review of nonsmooth convex analysis and optimization

- Analysis: optimality conditions
- Convex duality
- Optimization: algorithms
- First-order methods
- Books: Boyd and Vandenberghe (2004), Bonnans et al. (2003), Bertsekas (1995), Borwein and Lewis (2000), Nesterov (2003)
- Simple techniques might not work!

Optimality conditions for smooth optimization Zero gradient

- Example: ℓ_{2}-regularization: $\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}$
- Gradient $\nabla J(w)=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) x_{i}+\lambda w$ where $\ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right)$ is the partial derivative of the loss w.r.t the second variable
- If square loss, $\sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)=\frac{1}{2}\|y-X w\|_{2}^{2}$
* gradient $=-X^{\top}(y-X w)+\lambda w$
* normal equations $\Rightarrow w=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y$

Optimality conditions for smooth optimization Zero gradient

- Example: ℓ_{2}-regularization: $\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}$
- Gradient $\nabla J(w)=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right) x_{i}+\lambda w$ where $\ell^{\prime}\left(y_{i}, w^{\top} x_{i}\right)$ is the partial derivative of the loss w.r.t the second variable
- If square loss, $\sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)=\frac{1}{2}\|y-X w\|_{2}^{2}$
* gradient $=-X^{\top}(y-X w)+\lambda w$
* normal equations $\Rightarrow w=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y$
- ℓ_{1}-norm is non differentiable!
- cannot compute the gradient of the absolute value
\Rightarrow Directional derivatives (or subgradient)

Directional derivatives - convex functions on \mathbb{R}^{p}

- Directional derivative in the direction Δ at w :

$$
\nabla J(w, \Delta)=\lim _{\varepsilon \rightarrow 0+} \frac{J(w+\varepsilon \Delta)-J(w)}{\varepsilon}
$$

- Always exist when J is convex and continuous
- Main idea: in non smooth situations, may need to look at all directions Δ and not simply p independent ones

- Proposition: J is differentiable at w, if and only if $\Delta \mapsto \nabla J(w, \Delta)$ is linear. Then, $\nabla J(w, \Delta)=\nabla J(w)^{\top} \Delta$

Optimality conditions for convex functions

- Unconstrained minimization (function defined on \mathbb{R}^{p}):
- Proposition: w is optimal if and only if $\forall \Delta \in \mathbb{R}^{p}, \nabla J(w, \Delta) \geqslant 0$
- Go up locally in all directions
- Reduces to zero-gradient for smooth problems

Directional derivatives for ℓ_{1}-norm regularization

- Function $J(w)=\sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda\|w\|_{1}=L(w)+\lambda\|w\|_{1}$
- ℓ_{1}-norm: $\|w+\varepsilon \Delta\|_{1}-\|w\|_{1}=\sum_{j, w_{j} \neq 0}\left\{\left|w_{j}+\varepsilon \Delta_{j}\right|-\left|w_{j}\right|\right\}+\sum_{j, w_{j}=0}\left|\varepsilon \Delta_{j}\right|$
- Thus,

$$
\begin{aligned}
\nabla J(w, \Delta) & =\nabla L(w)^{\top} \Delta+\lambda \sum_{j, w_{j} \neq 0} \operatorname{sign}\left(w_{j}\right) \Delta_{j}+\lambda \sum_{j, w_{j}=0}\left|\Delta_{j}\right| \\
& =\sum_{j, w_{j} \neq 0}\left[\nabla L(w)_{j}+\lambda \operatorname{sign}\left(w_{j}\right)\right] \Delta_{j}+\sum_{j, w_{j}=0}\left[\nabla L(w)_{j} \Delta_{j}+\lambda\left|\Delta_{j}\right|\right]
\end{aligned}
$$

- Separability of optimality conditions

Optimality conditions for ℓ_{1}-norm regularization

- General loss: w optimal if and only if for all $j \in\{1, \ldots, p\}$,

$$
\begin{aligned}
\operatorname{sign}\left(w_{j}\right) \neq 0 & \Rightarrow \nabla L(w)_{j}+\lambda \operatorname{sign}\left(w_{j}\right)=0 \\
\operatorname{sign}\left(w_{j}\right)=0 & \Rightarrow\left|\nabla L(w)_{j}\right| \leqslant \lambda
\end{aligned}
$$

- Square loss: w optimal if and only if for all $j \in\{1, \ldots, p\}$,

$$
\begin{aligned}
\operatorname{sign}\left(w_{j}\right) \neq 0 & \Rightarrow-X_{j}^{\top}(y-X w)+\lambda \operatorname{sign}\left(w_{j}\right)=0 \\
\operatorname{sign}\left(w_{j}\right)=0 & \Rightarrow\left|X_{j}^{\top}(y-X w)\right| \leqslant \lambda
\end{aligned}
$$

- For $J \subset\{1, \ldots, p\}, X_{J} \in \mathbb{R}^{n \times|J|}=X(:, J)$ denotes the columns of X indexed by J, i.e., variables indexed by J

First order methods for convex optimization on \mathbb{R}^{p} Smooth optimization

- Gradient descent: $w_{t+1}=w_{t}-\alpha_{t} \nabla J\left(w_{t}\right)$
- with line search: search for a decent (not necessarily best) α_{t}
- fixed diminishing step size, e.g., $\alpha_{t}=a(t+b)^{-1}$
- Convergence of $f\left(w_{t}\right)$ to $f^{*}=\min _{w \in \mathbb{R}^{p}} f(w)$ (Nesterov, 2003)
- depends on condition number of the optimization problem (i.e., correlations within variables)
- Coordinate descent: similar properties

First order methods for convex optimization on \mathbb{R}^{p} Smooth optimization

- Gradient descent: $w_{t+1}=w_{t}-\alpha_{t} \nabla J\left(w_{t}\right)$
- with line search: search for a decent (not necessarily best) α_{t}
- fixed diminishing step size, e.g., $\alpha_{t}=a(t+b)^{-1}$
- Convergence of $f\left(w_{t}\right)$ to $f^{*}=\min _{w \in \mathbb{R}^{p}} f(w)$ (Nesterov, 2003)
- depends on condition number of the optimization problem (i.e., correlations within variables)
- Coordinate descent: similar properties
- Non-smooth objectives: not always convergent

Counter-example

Coordinate descent for nonsmooth objectives

Regularized problems - Proximal methods

- Gradient descent as a proximal method (differentiable functions)

$$
\begin{aligned}
-w_{t+1} & =\arg \min _{w \in \mathbb{R}^{p}} L\left(w_{t}\right)+\left(w-w_{t}\right)^{\top} \nabla L\left(w_{t}\right)+\frac{\mu}{2}\left\|w-w_{t}\right\|_{2}^{2} \\
-w_{t+1} & =w_{t}-\frac{1}{\mu} \nabla L\left(w_{t}\right)
\end{aligned}
$$

Regularized problems - Proximal methods

- Gradient descent as a proximal method (differentiable functions)

$$
\begin{aligned}
-w_{t+1} & =\arg \min _{w \in \mathbb{R}^{p}} L\left(w_{t}\right)+\left(w-w_{t}\right)^{\top} \nabla L\left(w_{t}\right)+\frac{\mu}{2}\left\|w-w_{t}\right\|_{2}^{2} \\
-w_{t+1} & =w_{t}-\frac{1}{\mu} \nabla L\left(w_{t}\right)
\end{aligned}
$$

- Problems of the form:

$$
\min _{w \in \mathbb{R}^{p}} L(w)+\lambda \Omega(w)
$$

$-w_{t+1}=\arg \min _{w \in \mathbb{R}^{p}} L\left(w_{t}\right)+\left(w-w_{t}\right)^{\top} \nabla L\left(w_{t}\right)+\lambda \Omega(w)+\frac{\mu}{2}\left\|w-w_{t}\right\|_{2}^{2}$

- Thresholded gradient descent $w_{t+1}=\operatorname{SoftThres}\left(w_{t}-\frac{1}{\mu} \nabla L\left(w_{t}\right)\right)$
- Similar convergence rates than smooth optimization
- Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)
- depends on the condition number of the loss

Cheap (and not dirty) algorithms for all losses

- Proximal methods

Cheap (and not dirty) algorithms for all losses

- Proximal methods
- Coordinate descent (Fu, 1998; Friedman et al., 2007)
- convergent here under reasonable assumptions! (Bertsekas, 1995)
- separability of optimality conditions
- equivalent to iterative thresholding

Cheap (and not dirty) algorithms for all losses

- Proximal methods
- Coordinate descent (Fu, 1998; Friedman et al., 2007)
- convergent here under reasonable assumptions! (Bertsekas, 1995)
- separability of optimality conditions
- equivalent to iterative thresholding
- " η-trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)
- Notice that $\sum_{j=1}^{p}\left|w_{j}\right|=\min _{\eta \geqslant 0} \frac{1}{2} \sum_{j=1}^{p}\left\{\frac{w_{j}^{2}}{\eta_{j}}+\eta_{j}\right\}$
- Alternating minimization with respect to η (closed-form $\left.\eta_{j}=\left|w_{j}\right|\right)$ and w (weighted squared ℓ_{2}-norm regularized problem)
- Caveat: lack of continuity around $\left(w_{i}, \eta_{i}\right)=(0,0)$: add ε / η_{j}

Cheap (and not dirty) algorithms for all losses

- Proximal methods
- Coordinate descent (Fu, 1998; Friedman et al., 2007)
- convergent here under reasonable assumptions! (Bertsekas, 1995)
- separability of optimality conditions
- equivalent to iterative thresholding
- " η-trick" (Rakotomamonjy et al., 2008; Jenatton et al., 2009b)
- Notice that $\sum_{j=1}^{p}\left|w_{j}\right|=\min _{\eta \geqslant 0} \frac{1}{2} \sum_{j=1}^{p}\left\{\frac{w_{j}^{2}}{\eta_{j}}+\eta_{j}\right\}$
- Alternating minimization with respect to η (closed-form $\left.\eta_{j}=\left|w_{j}\right|\right)$ and w (weighted squared ℓ_{2}-norm regularized problem)
- Caveat: lack of continuity around $\left(w_{i}, \eta_{i}\right)=(0,0)$: add ε / η_{i}
- Dedicated algorithms that use sparsity (active sets/homotopy)

Special case of square loss

- Quadratic programming formulation: minimize

$$
\frac{1}{2}\|y-X w\|^{2}+\lambda \sum_{j=1}^{p}\left(w_{j}^{+}+w_{j}^{-}\right) \text {s.t. } w=w^{+}-w^{-}, w^{+} \geqslant 0, w^{-} \geqslant 0
$$

Special case of square loss

- Quadratic programming formulation: minimize

$$
\frac{1}{2}\|y-X w\|^{2}+\lambda \sum_{j=1}^{p}\left(w_{j}^{+}+w_{j}^{-}\right) \text {s.t. } w=w^{+}-w^{-}, w^{+} \geqslant 0, w^{-} \geqslant 0
$$

- generic toolboxes \Rightarrow very slow
- Main property: if the sign pattern $s \in\{-1,0,1\}^{p}$ of the solution is known, the solution can be obtained in closed form
- Lasso equivalent to minimizing $\frac{1}{2}\left\|y-X_{J} w_{J}\right\|^{2}+\lambda s_{J}^{\top} w_{J}$ w.r.t. w_{J} where $J=\left\{j, s_{j} \neq 0\right\}$.
- Closed form solution $w_{J}=\left(X_{J}^{\top} X_{J}\right)^{-1}\left(X_{J}^{\top} y-\lambda s_{J}\right)$
- Algorithm: "Guess" s and check optimality conditions

Optimality conditions for ℓ_{1}-norm regularization

- General loss: w optimal if and only if for all $j \in\{1, \ldots, p\}$,

$$
\begin{aligned}
\operatorname{sign}\left(w_{j}\right) \neq 0 & \Rightarrow \nabla L(w)_{j}+\lambda \operatorname{sign}\left(w_{j}\right)=0 \\
\operatorname{sign}\left(w_{j}\right)=0 & \Rightarrow\left|\nabla L(w)_{j}\right| \leqslant \lambda
\end{aligned}
$$

- Square loss: w optimal if and only if for all $j \in\{1, \ldots, p\}$,

$$
\begin{aligned}
\operatorname{sign}\left(w_{j}\right) \neq 0 & \Rightarrow-X_{j}^{\top}(y-X w)+\lambda \operatorname{sign}\left(w_{j}\right)=0 \\
\operatorname{sign}\left(w_{j}\right)=0 & \Rightarrow\left|X_{j}^{\top}(y-X w)\right| \leqslant \lambda
\end{aligned}
$$

- For $J \subset\{1, \ldots, p\}, X_{J} \in \mathbb{R}^{n \times|J|}=X(:, J)$ denotes the columns of X indexed by J, i.e., variables indexed by J

Optimality conditions for the sign vector s (Lasso)

- For $s \in\{-1,0,1\}^{p}$ sign vector, $J=\left\{j, s_{j} \neq 0\right\}$ the nonzero pattern
- potential closed form solution: $w_{J}=\left(X_{J}^{\top} X_{J}\right)^{-1}\left(X_{J}^{\top} y-\lambda s_{J}\right)$ and $w_{J^{c}}=0$
- s is optimal if and only if
- active variables: $\quad \operatorname{sign}\left(w_{J}\right)=s_{J}$
- inactive variables: $\left\|X_{J c}^{\top}\left(y-X_{J} w_{J}\right)\right\|_{\infty} \leqslant \lambda$
- Active set algorithms (Lee et al., 2007; Roth and Fischer, 2008)
- Construct J iteratively by adding variables to the active set
- Only requires to invert small linear systems

Homotopy methods for the square loss (Markowitz, 1956; Osborne et al., 2000; Efron et al., 2004)

- Goal: Get all solutions for all possible values of the regularization parameter λ
- Same idea as before: if the sign vector is known,

$$
w_{J}^{*}(\lambda)=\left(X_{J}^{\top} X_{J}\right)^{-1}\left(X_{J}^{\top} y-\lambda s_{J}\right)
$$

valid, as long as,

- sign condition:

$$
\operatorname{sign}\left(w_{J}^{*}(\lambda)\right)=s_{J}
$$

- subgradient condition: $\left\|X_{J c}^{\top}\left(X_{J} w_{J}^{*}(\lambda)-y\right)\right\|_{\infty} \leqslant \lambda$
- this defines an interval on λ : the path is thus piecewise affine
- Simply need to find break points and directions

Piecewise linear paths

Gaussian hare vs. Laplacian tortoise

- Coord. descent and proximal: $O(p n)$ per iterations for ℓ_{1} and ℓ_{2}
- "Exact" algorithms: $O(k p n)$ for ℓ_{1} vs. $O\left(p^{2} n\right)$ for ℓ_{2}

Additional methods - Softwares

- Many contributions in signal processing, optimization, mach. learning
- Extensions to stochastic setting (Bottou and Bousquet, 2008)
- Extensions to other sparsity-inducing norms
- Computing proximal operator
- F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1-106, 2011.
- Softwares
- Many available codes
- SPAMS (SPArse Modeling Software) http://www.di.ens.fr/willow/SPAMS/

Empirical comparison: small scale ($n=200, p=200$)

Empirical comparison: medium scale ($n=2000, p=10000$)

reg: high

Empirical comparison: conclusions

- Lasso
- Generic methods very slow
- LARS/homotopy fastest in low dimension or for high correlation
- Proximal methods competitive
- especially larger setting with weak corr. + weak reg.
- Coordinate descent (CD)
- Dominated by LARS/homotopy
- Would benefit from an offline computation of the matrix
- Smooth Losses
- LARS/homotopy not available \rightarrow CD and proximal methods good candidates

Outline

- Tutorial: Sparse methods for machine learning
- Algorithms: Convex optimization
- Theory: high-dimensional inference
- Learning on matrices
- Classical approaches to structured sparsity
- Linear combinations of ℓ_{q}-norms
- Applications
- Structured sparsity through submodular functions
- Relaxation of the penalization of supports
- Unified algorithms and analysis

Theoretical results - Square loss

- Main assumption: data generated from a certain sparse w
- Three main problems:

1. Regular consistency: convergence of estimator \hat{w} to \mathbf{w}, i.e., $\|\hat{w}-\mathbf{w}\|$ tends to zero when n tends to ∞
2. Model selection consistency: convergence of the sparsity pattern of \hat{w} to the pattern \mathbf{w}
3. Efficiency: convergence of predictions with \hat{w} to the predictions with w, i.e., $\frac{1}{n}\|X \hat{w}-X \mathbf{w}\|_{2}^{2}$ tends to zero

- Main results:
- Condition for model consistency (support recovery)
- High-dimensional inference

Model selection consistency (Lasso)

- Assume w sparse and denote $\mathbf{J}=\left\{j, \mathbf{w}_{j} \neq 0\right\}$ the nonzero pattern
- Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

where $\mathbf{Q}=\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J}=\operatorname{Supp}(\mathbf{w})$

Model selection consistency (Lasso)

- Assume \mathbf{w} sparse and denote $\mathbf{J}=\left\{j, \mathbf{w}_{j} \neq 0\right\}$ the nonzero pattern
- Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J} \mathbf{J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

where $\mathbf{Q}=\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J}=\operatorname{Supp}(\mathbf{w})$

- Condition depends on \mathbf{w} and \mathbf{J} (may be relaxed)
- may be relaxed by maximizing out $\operatorname{sign}(\mathbf{w})$ or \mathbf{J}
- Valid in low and high-dimensional settings
- Requires lower-bound on magnitude of nonzero \mathbf{w}_{j}

Model selection consistency (Lasso)

- Assume \mathbf{w} sparse and denote $\mathbf{J}=\left\{j, \mathbf{w}_{j} \neq 0\right\}$ the nonzero pattern
- Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

where $\mathbf{Q}=\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J}=\operatorname{Supp}(\mathbf{w})$

- The Lasso is usually not model-consistent
- Selects more variables than necessary (see, e.g., Lv and Fan, 2009)
- Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed Lasso (Meinshausen, 2008), thresholding (Lounici, 2008), Bolasso (Bach, 2008a), stability selection (Meinshausen and Bühlmann, 2008), Wasserman and Roeder (2009)

Adaptive Lasso and concave penalization

- Adaptive Lasso (Zou, 2006; Huang et al., 2008)
- Weighted ℓ_{1}-norm: $\min _{w \in \mathbb{R}^{p}} L(w)+\lambda \sum_{j=1}^{p} \frac{\left|w_{j}\right|}{\left|\hat{w}_{j}\right|^{\alpha}}$
- \hat{w} estimator obtained from ℓ_{2} or ℓ_{1} regularization
- Reformulation in terms of concave penalization

$$
\min _{w \in \mathbb{R}^{p}} L(w)+\sum_{j=1}^{p} g\left(\left|w_{j}\right|\right)
$$

- Example: $g\left(\left|w_{j}\right|\right)=\left|w_{j}\right|^{1 / 2}$ or $\log \left|w_{j}\right|$. Closer to the ℓ_{0} penalty
- Concave-convex procedure: replace $g\left(\left|w_{j}\right|\right)$ by affine upper bound
- Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li, 2008; Zhang, 2008b)

Bolasso (Bach, 2008a)

- Property: for a specific choice of regularization parameter $\lambda \approx \sqrt{n}$:
- all variables in J are always selected with high probability
- all other ones selected with probability in $(0,1)$
- Use the bootstrap to simulate several replications
- Intersecting supports of variables
- Final estimation of w on the entire dataset

Model selection consistency of the Lasso/Bolasso

- probabilities of selection of each variable vs. regularization param. μ

LASSO

BOLASSO

Support recovery condition satisfied

not satisfied

High-dimensional inference
 Going beyond exact support recovery

- Theoretical results usually assume that non-zero \mathbf{w}_{j} are large enough, i.e., $\left|\mathbf{w}_{j}\right| \geqslant \sigma \sqrt{\frac{\log p}{n}}$
- May include too many variables but still predict well
- Oracle inequalities
- Predict as well as the estimator obtained with the knowledge of \mathbf{J}
- Assume i.i.d. Gaussian noise with variance σ^{2}
- We have:

$$
\frac{1}{n} \mathbb{E}\left\|X \hat{w}_{\text {oracle }}-X \mathbf{w}\right\|_{2}^{2}=\frac{\sigma^{2}|J|}{n}
$$

High-dimensional inference
 Variable selection without computational limits

- Approaches based on penalized criteria (close to BIC)

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{\|}\|y-X w\|_{2}^{2}+C \sigma^{2}\|w\|_{0}\left(1+\log \frac{p}{\|w\|_{0}}\right)
$$

- Oracle inequality if data generated by w with k non-zeros (Massart, 2003; Bunea et al., 2007):

$$
\frac{1}{n}\|X \hat{w}-X \mathbf{w}\|_{2}^{2} \leqslant C \frac{k \sigma^{2}}{n}\left(1+\log \frac{p}{k}\right)
$$

- Gaussian noise - No assumptions regarding correlations
- Scaling between dimensions: $\frac{k \log p}{n}$ small

High-dimensional inference (Lasso)

- Main result: we only need $k \log p=O(n)$
- if \mathbf{w} is sufficiently sparse
- and input variables are not too correlated

High-dimensional inference (Lasso)

- Main result: we only need $k \log p=O(n)$
- if \mathbf{w} is sufficiently sparse
- and input variables are not too correlated
- Precise conditions on covariance matrix $\mathbf{Q}=\frac{1}{n} X^{\top} X$.
- Mutual incoherence (Lounici, 2008)
- Restricted eigenvalue conditions (Bickel et al., 2009)
- Sparse eigenvalues (Meinshausen and Yu, 2008)
- Null space property (Donoho and Tanner, 2005)
- Links with signal processing and compressed sensing (Candès and Wakin, 2008)
- Slow rate for predictions if no assumptions: $\sqrt{\frac{k \log p}{n}}$

Mutual incoherence (uniform low correlations)

- Theorem (Lounici, 2008):
$-y_{i}=\mathbf{w}^{\top} x_{i}+\varepsilon_{i}, \varepsilon$ i.i.d. normal with mean zero and variance σ^{2}
$-\mathbf{Q}=X^{\top} X / n$ with unit diagonal and cross-terms less than $\frac{1}{14 k}$
- if $\|\mathbf{w}\|_{0} \leqslant k$, and $A^{2}>8$, then, with $\lambda=A \sigma \sqrt{n \log p}$

$$
\mathbb{P}\left(\|\hat{w}-\mathbf{w}\|_{\infty} \leqslant 5 A \sigma\left(\frac{\log p}{n}\right)^{1 / 2}\right) \geqslant 1-p^{1-A^{2} / 8}
$$

- Model consistency by thresholding if $\min _{j, \mathbf{w}_{j} \neq 0}\left|\mathbf{w}_{j}\right|>C \sigma \sqrt{\frac{\log p}{n}}$
- Mutual incoherence condition depends strongly on k
- Improved result by averaging over sparsity patterns (Candès and Plan, 2009)

Restricted eigenvalue conditions

- Theorem (Bickel et al., 2009):
- assume $\kappa(k)^{2}=\min _{|J| \leqslant k} \min _{\Delta,\left\|\Delta_{J c}\right\|_{1} \leqslant\left\|\Delta_{J}\right\|_{1}} \frac{\Delta^{\top} \mathbf{Q} \Delta}{\left\|\Delta_{J}\right\|_{2}^{2}}>0$
- assume $\lambda=A \sigma \sqrt{n \log p}$ and $A^{2}>8$
- then, with probability $1-p^{1-A^{2} / 8}$, we have

$$
\begin{array}{ll}
\text { estimation error } & \|\hat{w}-\mathbf{w}\|_{1} \leqslant \frac{16 A}{\kappa^{2}(k)} \sigma k \sqrt{\frac{\log p}{n}} \\
\text { prediction error } & \frac{1}{n}\|X \hat{w}-X \mathbf{w}\|_{2}^{2} \leqslant \frac{16 A^{2}}{\kappa^{2}(k)} \frac{\sigma^{2} k}{n} \log p
\end{array}
$$

- Condition imposes a potentially hidden scaling between (n, p, k)
- Condition always satisfied for $\mathbf{Q}=I$

Checking sufficient conditions

- Most of the conditions are not computable in polynomial time
- Random matrices
- Sample $X \in \mathbb{R}^{n \times p}$ from the Gaussian ensemble
- Conditions satisfied with high probability for certain (n, p, k)
- Example from Wainwright (2009): $\quad \theta=\frac{n}{2 k \log p}>1$

Sparse methods
 Common extensions

- Removing bias of the estimator
- Keep the active set, and perform unregularized restricted estimation (Candès and Tao, 2007)
- Better theoretical bounds
- Potential problems of robustness
- Elastic net (Zou and Hastie, 2005)
- Replace $\lambda\|w\|_{1}$ by $\lambda\|w\|_{1}+\varepsilon\|w\|_{2}^{2}$
- Make the optimization strongly convex with unique solution
- Better behavior with heavily correlated variables

Relevance of theoretical results

- Most results only for the square loss
- Extend to other losses (Van De Geer, 2008; Bach, 2009)
- Most results only for ℓ_{1}-regularization
- May be extended to other norms (see, e.g., Huang and Zhang, 2009; Bach, 2008b)
- Condition on correlations
- very restrictive, far from results for BIC penalty
- Non sparse generating vector
- little work on robustness to lack of sparsity
- Estimation of regularization parameter
- No satisfactory solution \Rightarrow open problem

Alternative sparse methods
 Greedy methods

- Forward selection
- Forward-backward selection
- Non-convex method
- Harder to analyze
- Simpler to implement
- Problems of stability
- Positive theoretical results (Zhang, 2009, 2008a)
- Similar sufficient conditions than for the Lasso

Alternative sparse methods Bayesian methods

- Lasso: minimize $\sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|_{1}$
- Equivalent to MAP estimation with Gaussian likelihood and factorized Laplace prior $p(w) \propto \prod_{j=1}^{p} e^{-\lambda\left|w_{j}\right|}$ (Seeger, 2008)
- However, posterior puts zero weight on exact zeros
- Heavy-tailed distributions as a proxy to sparsity
- Student distributions (Caron and Doucet, 2008)
- Generalized hyperbolic priors (Archambeau and Bach, 2008)
- Instance of automatic relevance determination (Neal, 1996)
- Mixtures of "Diracs" and another absolutely continuous distributions, e.g., "spike and slab" (Ishwaran and Rao, 2005)
- Less theory than frequentist methods

Comparing Lasso and other strategies for linear regression

- Compared methods to reach the least-square solution
- Ridge regression: $\min _{w \in \mathbb{R}^{p}} \frac{1}{2}\|y-X w\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}$
- Lasso: $\quad \min _{w \in \mathbb{R}^{p}} \frac{1}{2}\|y-X w\|_{2}^{2}+\lambda\|w\|_{1}$
- Forward greedy:
* Initialization with empty set
* Sequentially add the variable that best reduces the square loss
- Each method builds a path of solutions from 0 to ordinary leastsquares solution
- Regularization parameters selected on the test set

Simulation results

- i.i.d. Gaussian design matrix, $k=4, n=64, p \in[2,256], \mathrm{SNR}=1$
- Note stability to non-sparsity and variability

Sparse

Rotated (non sparse)

Summary ℓ_{1}-norm regularization

- ℓ_{1}-norm regularization leads to nonsmooth optimization problems
- analysis through directional derivatives or subgradients
- optimization may or may not take advantage of sparsity
- ℓ_{1}-norm regularization allows high-dimensional inference
- Interesting problems for ℓ_{1}-regularization
- Stable variable selection
- Weaker sufficient conditions (for weaker results)
- Estimation of regularization parameter (all bounds depend on the unknown noise variance σ^{2})

Extensions

- Sparse methods are not limited to the square loss
- logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van De Geer, 2008; Bach, 2009)
- Sparse methods are not limited to supervised learning
- Learning the structure of Gaussian graphical models (Meinshausen and Bühlmann, 2006; Banerjee et al., 2008)
- Sparsity on matrices (next part of the tutorial)
- Sparse methods are not limited to variable selection in a linear model
- Multiple kernel learning

Going beyond the Lasso Non-linearity - Multiple kernel learning

- Multiple kernel learning
- Learn sparse combination of matrices $k\left(x, x^{\prime}\right)=\sum_{j=1}^{p} \eta_{j} k_{j}\left(x, x^{\prime}\right)$
- Mixing positive aspects of ℓ_{1}-norms and ℓ_{2}-norms
- Equivalent to group Lasso
- p multi-dimensional features $\Phi_{j}(x)$, where

$$
k_{j}\left(x, x^{\prime}\right)=\Phi_{j}(x)^{\top} \Phi_{j}\left(x^{\prime}\right)
$$

- learn predictor $\sum_{j=1}^{p} w_{j}^{\top} \Phi_{j}(x)$
- Penalization by $\sum_{j=1}^{p}\left\|w_{j}\right\|_{2}$ (Bach et al., 2004)

Going beyond the Lasso Structured set of features

- Dealing with exponentially many features
- Can we design efficient algorithms for the case $\log p \approx n$?
- Use structure to reduce the number of allowed patterns of zeros
- Recursivity, hierarchies and factorization
- Prior information on sparsity patterns
- Grouped variables with overlapping groups

Outline

- Tutorial: Sparse methods for machine learning
- Algorithms: Convex optimization
- Theory: high-dimensional inference
- Learning on matrices
- Classical approaches to structured sparsity
- Linear combinations of ℓ_{q}-norms
- Applications
- Structured sparsity through submodular functions
- Relaxation of the penalization of supports
- Unified algorithms and analysis

Learning on matrices - Image denoising

- Simultaneously denoise all patches of a given image
- Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009e)

Learning on matrices - Collaborative filtering

- Given $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and $n_{\mathcal{Y}}$ "customers" $\mathbf{y} \in \mathcal{Y}$,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of customer \mathbf{y} for movie \mathbf{x}
- Training data: large $n_{\mathcal{X}} \times n_{\mathcal{Y}}$ incomplete matrix \mathbf{Z} that describes the known ratings of some customers for some movies
- Goal: complete the matrix.

Learning on matrices - Source separation

- Single microphone (Benaroya et al., 2006; Févotte et al., 2009)

Signal x

Log-power spectrogram

Learning on matrices - Multi-task learning

- k linear prediction tasks on same covariates $\mathbf{x} \in \mathbb{R}^{p}$
- k weight vectors $\mathbf{w}_{j} \in \mathbb{R}^{p}$
- Joint matrix of predictors $\mathbf{W}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right) \in \mathbb{R}^{p \times k}$
- Classical application
- Multi-category classification (one task per class) (Amit et al., 2007)
- Share parameters between tasks
- Joint variable selection (Obozinski et al., 2009)
- Select variables which are predictive for all tasks
- Joint feature selection (Pontil et al., 2007)
- Construct linear features common to all tasks

Matrix factorization - Dimension reduction

- Given data matrix $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{p \times n}$
- Principal component analysis:

$$
\mathbf{x}_{i} \approx \mathbf{D} \boldsymbol{\alpha}_{i} \Rightarrow \mathbf{X}=\mathbf{D A}
$$

- K-means: $\quad \mathbf{x}_{i} \approx \mathbf{d}_{k} \Rightarrow \mathbf{X}=\mathbf{D A}$

$$
\begin{array}{ll}
+ & +{ }^{+} \\
+{ }^{+} & ++ \\
++_{+}^{++} & ++_{+}^{+} \\
+ & + \\
+
\end{array}
$$

Two types of sparsity for matrices $\mathbf{M} \in \mathbb{R}^{n \times p}$ I - Directly on the elements of M

- Many zero elements: $\mathbf{M}_{i j}=0$

- Many zero rows (or columns): $\left(\mathbf{M}_{i 1}, \ldots, \mathbf{M}_{i p}\right)=0$

M

Two types of sparsity for matrices $\mathbf{M} \in \mathbb{R}^{n \times p}$ II - Through a factorization of $\mathrm{M}=\mathrm{UV}^{\top}$

- Matrix $\mathbf{M}=\mathbf{U V}^{\top}, \mathbf{U} \in \mathbb{R}^{n \times k}$ and $\mathbf{V} \in \mathbb{R}^{p \times k}$
- Low rank: m small

- Sparse decomposition: U sparse

Structured sparse matrix factorizations

- Matrix $\mathbf{M}=\mathbf{U V}^{\top}, \mathbf{U} \in \mathbb{R}^{n \times k}$ and $\mathbf{V} \in \mathbb{R}^{p \times k}$
- Structure on U and/or V
- Low-rank: \mathbf{U} and \mathbf{V} have few columns
- Dictionary learning / sparse PCA: \mathbf{U} has many zeros
- Clustering (k-means): $\mathbf{U} \in\{0,1\}^{n \times m}, \mathbf{U} 1=\mathbf{1}$
- Pointwise positivity: non negative matrix factorization (NMF)
- Specific patterns of zeros (Jenatton et al., 2010)
- Low-rank + sparse (Candès et al., 2009)
- etc.
- Many applications
- Many open questions (Algorithms, identifiability, etc.)

Multi-task learning

- Joint matrix of predictors $W=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{p \times k}$
- Joint variable selection (Obozinski et al., 2009)
- Penalize by the sum of the norms of rows of W (group Lasso)
- Select variables which are predictive for all tasks

Multi-task learning

- Joint matrix of predictors $W=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{p \times k}$
- Joint variable selection (Obozinski et al., 2009)
- Penalize by the sum of the norms of rows of W (group Lasso)
- Select variables which are predictive for all tasks
- Joint feature selection (Pontil et al., 2007)
- Penalize by the trace-norm (see later)
- Construct linear features common to all tasks
- Theory: allows number of observations which is sublinear in the number of tasks (Obozinski et al., 2008; Lounici et al., 2009)
- Practice: more interpretable models, slightly improved performance

Low-rank matrix factorizations Trace norm

- Given a matrix $\mathbf{M} \in \mathbb{R}^{n \times p}$
- Rank of \mathbf{M} is the minimum size m of all factorizations of \mathbf{M} into $\mathbf{M}=\mathbf{U V}^{\top}, \mathbf{U} \in \mathbb{R}^{n \times m}$ and $\mathbf{V} \in \mathbb{R}^{p \times m}$
- Singular value decomposition: $\mathbf{M}=\mathbf{U} \operatorname{Diag}(\mathbf{s}) \mathbf{V}^{\top}$ where \mathbf{U} and \mathbf{V} have orthonormal columns and $\mathbf{s} \in \mathbb{R}_{+}^{m}$ are singular values
- Rank of \mathbf{M} equal to the number of non-zero singular values

Low-rank matrix factorizations Trace norm

- Given a matrix $\mathbf{M} \in \mathbb{R}^{n \times p}$
- Rank of \mathbf{M} is the minimum size m of all factorizations of \mathbf{M} into $\mathbf{M}=\mathbf{U V}^{\top}, \mathbf{U} \in \mathbb{R}^{n \times m}$ and $\mathbf{V} \in \mathbb{R}^{p \times m}$
- Singular value decomposition: $\mathbf{M}=\mathbf{U} \operatorname{Diag}(\mathbf{s}) \mathbf{V}^{\top}$ where \mathbf{U} and \mathbf{V} have orthonormal columns and $\mathbf{s} \in \mathbb{R}_{+}^{m}$ are singular values
- Rank of \mathbf{M} equal to the number of non-zero singular values
- Trace-norm (a.k.a. nuclear norm) $=$ sum of singular values
- Convex function, leads to a semi-definite program (Fazel et al., 2001)
- First used for collaborative filtering (Srebro et al., 2005)
- Multi-category classif. (Amit et al., 2007; Harchaoui et al., 2012)

Sparse principal component analysis

- Given data $\mathbf{X}=\left(\mathbf{x}_{1}^{\top}, \ldots, \mathbf{x}_{n}^{\top}\right) \in \mathbb{R}^{p \times n}$, two views of PCA:
- Analysis view: find the projection $\mathbf{d} \in \mathbb{R}^{p}$ of maximum variance (with deflation to obtain more components)
- Synthesis view: find the basis $\mathbf{d}_{1}, \ldots, \mathbf{d}_{k}$ such that all \mathbf{x}_{i} have low reconstruction error when decomposed on this basis
- For regular PCA, the two views are equivalent

Sparse principal component analysis

- Given data $\mathbf{X}=\left(\mathbf{x}_{1}^{\top}, \ldots, \mathbf{x}_{n}^{\top}\right) \in \mathbb{R}^{p \times n}$, two views of PCA:
- Analysis view: find the projection $\mathbf{d} \in \mathbb{R}^{p}$ of maximum variance (with deflation to obtain more components)
- Synthesis view: find the basis $\mathbf{d}_{1}, \ldots, \mathbf{d}_{k}$ such that all \mathbf{x}_{i} have low reconstruction error when decomposed on this basis
- For regular PCA, the two views are equivalent
- Sparse extensions
- Interpretability
- High-dimensional inference
- Two views are differents
- For analysis view, see d'Aspremont, Bach, and El Ghaoui (2008)

Sparse principal component analysis Synthesis view

- Find $\mathbf{d}_{1}, \ldots, \mathbf{d}_{k} \in \mathbb{R}^{p}$ sparse so that

$$
\sum_{i=1}^{n} \min _{\boldsymbol{\alpha}_{i} \in \mathbb{R}^{m}}\left\|\mathbf{x}_{i}-\sum_{j=1}^{k}\left(\boldsymbol{\alpha}_{i}\right)_{j} \mathbf{d}_{j}\right\|_{2}^{2}=\sum_{i=1}^{n} \min _{\boldsymbol{\alpha}_{i} \in \mathbb{R}^{m}}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2} \text { is small }
$$

- Look for $\mathbf{A}=\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}\right) \in \mathbb{R}^{k \times n}$ and $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{k}\right) \in \mathbb{R}^{p \times k}$ such that \mathbf{D} is sparse and $\|\mathbf{X}-\mathbf{D A}\|_{F}^{2}$ is small

Sparse principal component analysis Synthesis view

- Find $\mathbf{d}_{1}, \ldots, \mathbf{d}_{k} \in \mathbb{R}^{p}$ sparse so that

$$
\sum_{i=1}^{n} \min _{\boldsymbol{\alpha}_{i} \in \mathbb{R}^{m}}\left\|\mathbf{x}_{i}-\sum_{j=1}^{k}\left(\boldsymbol{\alpha}_{i}\right)_{j} \mathbf{d}_{j}\right\|_{2}^{2}=\sum_{i=1}^{n} \min _{\boldsymbol{\alpha}_{i} \in \mathbb{R}^{m}}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2} \text { is small }
$$

- Look for $\mathbf{A}=\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n}\right) \in \mathbb{R}^{k \times n}$ and $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{k}\right) \in \mathbb{R}^{p \times k}$ such that \mathbf{D} is sparse and $\|\mathbf{X}-\mathbf{D A}\|_{F}^{2}$ is small
- Sparse formulation (Witten et al., 2009; Bach et al., 2008)
- Penalize/constrain \mathbf{d}_{j} by the ℓ_{1}-norm for sparsity
- Penalize/constrain $\boldsymbol{\alpha}_{i}$ by the ℓ_{2}-norm to avoid trivial solutions

$$
\min _{\mathbf{D}, \mathbf{A}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2}+\lambda \sum_{j=1}^{k}\left\|\mathbf{d}_{j}\right\|_{1} \text { s.t. } \forall i,\left\|\boldsymbol{\alpha}_{i}\right\|_{2} \leqslant 1
$$

Sparse PCA vs. dictionary learning

- Sparse PCA: $\mathbf{x}_{i} \approx \mathbf{D} \boldsymbol{\alpha}_{i}, \mathbf{D}$ sparse

Sparse PCA vs. dictionary learning

- Sparse PCA: $\mathbf{x}_{i} \approx \mathbf{D} \boldsymbol{\alpha}_{i}, \mathbf{D}$ sparse
- Dictionary learning: $\mathrm{x}_{i} \approx \mathbf{D} \boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{i}$ sparse

$$
\begin{aligned}
& +
\end{aligned}
$$

Structured matrix factorizations (Bach et al., 2008)

$$
\begin{aligned}
& \min _{\mathbf{D}, \mathbf{A}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2}+\lambda \sum_{j=1}^{k}\left\|\mathbf{d}_{j}\right\|_{\star} \text { s.t. } \forall i,\left\|\boldsymbol{\alpha}_{i}\right\|_{\bullet} \leqslant 1 \\
& \min _{\mathbf{D}, \mathbf{A}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{n}\left\|\boldsymbol{\alpha}_{i}\right\|_{\bullet} \text { s.t. } \forall j,\left\|\mathbf{d}_{j}\right\|_{\star} \leqslant 1
\end{aligned}
$$

- Optimization by alternating minimization (non-convex)
- $\boldsymbol{\alpha}_{i}$ decomposition coefficients (or "code"), d_{j} dictionary elements
- Two related/equivalent problems:
- Sparse PCA $=$ sparse dictionary (ℓ_{1}-norm on d_{j})
- Dictionary learning $=$ sparse decompositions (ℓ_{1}-norm on α_{i}) (Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al., 2007)

Dictionary learning for image denoising

Dictionary learning for image denoising

- Solving the denoising problem (Elad and Aharon, 2006)
- Extract all overlapping 8×8 patches $\mathbf{x}_{i} \in \mathbb{R}^{64}$
- Form the matrix $\mathbf{X}=\left(\mathbf{x}_{1}^{\top}, \ldots, \mathbf{x}_{n}^{\top}\right) \in \mathbb{R}^{n \times 64}$
- Solve a matrix factorization problem:

$$
\min _{\mathbf{D}, \mathbf{A}}\|\mathbf{X}-\mathbf{D A}\|_{F}^{2}=\min _{\mathbf{D}, \mathbf{A}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2}
$$

where \mathbf{A} is sparse, and \mathbf{D} is the dictionary

- Each patch is decomposed into $\mathbf{x}_{i}=\mathbf{D} \boldsymbol{\alpha}_{i}$
- Average the reconstruction $\mathbf{D} \boldsymbol{\alpha}_{i}$ of each patch \mathbf{x}_{i} to reconstruct a full-sized image
- The number of patches n is large (= number of pixels)

Online optimization for dictionary learning

$$
\begin{gathered}
\min _{\substack{A} \mathbb{R}^{k \times n}, \mathbf{D} \in \mathcal{D}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{\alpha}_{i}\right\|_{1} \\
\mathcal{D} \triangleq\left\{\mathbf{D} \in \mathbb{R}^{p \times k} \quad \text { s.t. } \forall j=1, \ldots, k,\left\|\mathbf{d}_{j}\right\|_{2} \leqslant 1\right\} .
\end{gathered}
$$

- Classical optimization alternates between \mathbf{D} and \mathbf{A}
- Good results, but very slow !

Online optimization for dictionary learning

$$
\begin{gathered}
\min _{\mathbf{A} \in \mathbb{R}^{k \times n}, \mathbf{D} \in \mathcal{D}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{D} \boldsymbol{\alpha}_{i}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{\alpha}_{i}\right\|_{1} \\
\mathcal{D} \triangleq\left\{\mathbf{D} \in \mathbb{R}^{p \times k} \quad \text { s.t. } \forall j=1, \ldots, k,\left\|\mathbf{d}_{j}\right\|_{2} \leqslant 1\right\} .
\end{gathered}
$$

- Classical optimization alternates between \mathbf{D} and \mathbf{A}.
- Good results, but very slow !
- Online learning (Mairal, Bach, Ponce, and Sapiro, 2009b) can
- handle potentially infinite datasets
- adapt to dynamic training sets
- Simultaneous sparse coding (Mairal et al., 2009e)
- Links with NL-means (Buades et al., 2008)

Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009e)

Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009e)

What does the dictionary D look like?

Inpainting a 12-Mpixel photograph

Inpainting a 12-Mpixel photograph

Inpainting a 12-Mpixel photograph

Inpainting a 12-Mpixel photograph

Additional methods - Softwares

- Many contributions in signal processing, optimization, mach. learning
- Extensions to stochastic setting (Bottou and Bousquet, 2008)
- Extensions to other sparsity-inducing norms
- Computing proximal operator
- F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1-106, 2011.
- Softwares
- Many available codes
- SPAMS (SPArse Modeling Software) http://www.di.ens.fr/willow/SPAMS/

Task-driven dictionary learning (Mairal, Bach, and Ponce, 2010a)

- Define $\alpha^{*}(D, x)=\operatorname{argmin}_{\alpha} \frac{1}{2}\|x-D \alpha\|_{2}^{2}+\lambda\|\alpha\|_{1}$
- α is used as a code for x
- Direct optimization of $\alpha^{*}(D, x)$ with respect to D
- Application to image processing tasks such inverse halftoning (Mairal, Bach, and Ponce, 2010a)
- Image super-resolution (Couzinie-Devy, Mairal, Bach, and Ponce, 2011)

Digital Zooming (Couzinie-Devy et al., 2011)

Digital Zooming (Couzinie-Devy et al., 2011)

Inverse half-toning (Mairal et al., 2011)

Inverse half-toning (Mairal et al., 2011)

Ongoing Work - Inverse half-toning

Outline

- Tutorial: Sparse methods for machine learning
- Algorithms: Convex optimization
- Theory: high-dimensional inference
- Learning on matrices
- Classical approaches to structured sparsity
- Linear combinations of ℓ_{q}-norms
- Applications
- Structured sparsity through submodular functions
- Relaxation of the penalization of supports
- Unified algorithms and analysis

Sparsity in supervised machine learning

- Observed data $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, n$
- Response vector $y=\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$
- Design matrix $X=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda \Omega(w)=\min _{w \in \mathbb{R}^{p}} L(y, X w)+\lambda \Omega(w)
$$

- Norm Ω to promote sparsity
- square loss $+\ell_{1}$-norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
- Proxy for interpretability
- Allow high-dimensional inference: $\log p=O(n)$

Sparsity in unsupervised machine learning

- Multiple responses/signals $y=\left(y^{1}, \ldots, y^{k}\right) \in \mathbb{R}^{n \times k}$

$$
\min _{w^{1}, \ldots, w^{k} \in \mathbb{R}^{p}} \sum_{j=1}^{k}\left\{L\left(y^{j}, X w^{j}\right)+\lambda \Omega\left(w^{j}\right)\right\}
$$

Sparsity in unsupervised machine learning

- Multiple responses/signals $y=\left(y^{1}, \ldots, y^{k}\right) \in \mathbb{R}^{n \times k}$

$$
\min _{w^{1}, \ldots, w^{k} \in \mathbb{R}^{p}} \sum_{j=1}^{k}\left\{L\left(y^{j}, X w^{j}\right)+\lambda \Omega\left(w^{j}\right)\right\}
$$

- Only responses are observed \Rightarrow Dictionary learning
- Learn $X=\left(x^{1}, \ldots, x^{p}\right) \in \mathbb{R}^{n \times p}$ such that $\forall j,\left\|x^{j}\right\|_{2} \leqslant 1$

$$
\min _{X=\left(x^{1}, \ldots, x^{p}\right)} \min _{w^{1}, \ldots, w^{k} \in \mathbb{R}^{p}} \sum_{j=1}^{k}\left\{L\left(y^{j}, X w^{j}\right)+\lambda \Omega\left(w^{j}\right)\right\}
$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $\left\|x^{j}\right\|_{2} \leqslant 1$ by $\Theta\left(x^{j}\right) \leqslant 1$

Sparsity in signal processing

- Multiple responses/signals $x=\left(x^{1}, \ldots, x^{k}\right) \in \mathbb{R}^{n \times k}$

$$
\min _{\alpha^{1}, \ldots, \alpha^{k} \in \mathbb{R}^{p}} \sum_{j=1}^{k}\left\{L\left(x^{j}, D \alpha^{j}\right)+\lambda \Omega\left(\alpha^{j}\right)\right\}
$$

- Only responses are observed \Rightarrow Dictionary learning
- Learn $D=\left(d^{1}, \ldots, d^{p}\right) \in \mathbb{R}^{n \times p}$ such that $\forall j,\left\|d^{j}\right\|_{2} \leqslant 1$

$$
\min _{D=\left(d^{1}, \ldots, d^{p}\right)} \min _{\alpha^{1}, \ldots, \alpha^{k} \in \mathbb{R}^{p}} \sum_{j=1}^{k}\left\{L\left(x^{j}, D \alpha^{j}\right)+\lambda \Omega\left(\alpha^{j}\right)\right\}
$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $\left\|d^{j}\right\|_{2} \leqslant 1$ by $\Theta\left(d^{j}\right) \leqslant 1$

Why structured sparsity?

- Interpretability
- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)

Structured sparse PCA (Jenatton et al., 2009b)

raw data

sparse PCA

- Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

Structured sparse PCA (Jenatton et al., 2009b)

raw data

sparse PCA

- Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

Structured sparse PCA (Jenatton et al., 2009b)

raw data

Structured sparse PCA

- Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Structured sparse PCA (Jenatton et al., 2009b)

raw data

Structured sparse PCA

- Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Why structured sparsity?

- Interpretability
- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)

Why structured sparsity?

- Interpretability
- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010b)
- Stability and identifiability
- Optimization problem $\min _{w \in \mathbb{R}^{p}} L(y, X w)+\lambda\|w\|_{1}$ is unstable
- "Codes" w^{j} often used in later processing (Mairal et al., 2009d)
- Prediction or estimation performance
- When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)
- Numerical efficiency
- Non-linear variable selection with 2^{p} subsets (Bach, 2008c)

Classical approaches to structured sparsity

- Many application domains
- Computer vision (Cevher et al., 2008; Mairal et al., 2009c)
- Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al., 2011)
- Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)
- Non-convex approaches
- Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al. (2009)
- Convex approaches
- Design of sparsity-inducing norms

Outline

- Tutorial: Sparse methods for machine learning
- Algorithms: Convex optimization
- Theory: high-dimensional inference
- Learning on matrices
- Classical approaches to structured sparsity
- Linear combinations of ℓ_{q}-norms
- Applications
- Structured sparsity through submodular functions
- Relaxation of the penalization of supports
- Unified algorithms and analysis

Sparsity-inducing norms

- Popular choice for Ω
- The $\ell_{1}-\ell_{2}$ norm,

$$
\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{2}=\sum_{G \in \mathbf{H}}\left(\sum_{j \in G} w_{j}^{2}\right)^{1 / 2}
$$

- with \mathbf{H} a partition of $\{1, \ldots, p\}$
- The $\ell_{1}-\ell_{2}$ norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_{1}-norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)

Unit norm balls

Geometric interpretation

$\|w\|_{2}$

$\|w\|_{1}$

$$
\sqrt{w_{1}^{2}+w_{2}^{2}}+\left|w_{3}\right|
$$

Sparsity-inducing norms

- Popular choice for Ω
- The $\ell_{1}-\ell_{2}$ norm,

$$
\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{2}=\sum_{G \in \mathbf{H}}\left(\sum_{j \in G} w_{j}^{2}\right)^{1 / 2}
$$

- with \mathbf{H} a partition of $\{1, \ldots, p\}$
- The $\ell_{1}-\ell_{2}$ norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_{1}-norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)
- However, the $\ell_{1}-\ell_{2}$ norm encodes fixed/static prior information, requires to know in advance how to group the variables
- What happens if the set of groups \mathbf{H} is not a partition anymore?

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

- When penalizing by the $\ell_{1}-\ell_{2}$ norm,

$$
\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{2}=\sum_{G \in \mathbf{H}}\left(\sum_{j \in G} w_{j}^{2}\right)^{1 / 2}
$$

- The ℓ_{1} norm induces sparsity at the group level:
* Some w_{G} 's are set to zero

$$
\left[\begin{array}{l}
G_{1} \\
\square G_{2} \\
G_{3}
\end{array}\right.
$$

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

- When penalizing by the $\ell_{1}-\ell_{2}$ norm,

$$
\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{2}=\sum_{G \in \mathbf{H}}\left(\sum_{j \in G} w_{j}^{2}\right)^{1 / 2}
$$

- The ℓ_{1} norm induces sparsity at the group level:
* Some w_{G} 's are set to zero
- Inside the groups, the ℓ_{2} norm does not promote sparsity
- The zero pattern of w is given by

$$
\left\{j, w_{j}=0\right\}=\bigcup_{G \in \mathbf{H}^{\prime}} G \text { for some } \mathbf{H}^{\prime} \subseteq \mathbf{H}
$$

- Zero patterns are unions of groups

Examples of set of groups \mathbf{H}

- Selection of contiguous patterns on a sequence, $p=6$

- \mathbf{H} is the set of blue groups
- Any union of blue groups set to zero leads to the selection of a contiguous pattern

Examples of set of groups \mathbf{H}

- Selection of rectangles on a 2-D grids, $p=25$

- \mathbf{H} is the set of blue/green groups (with their not displayed complements)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

Examples of set of groups \mathbf{H}

- Selection of diamond-shaped patterns on a 2-D grids, $p=25$.

- It is possible to extend such settings to 3-D space, or more complex topologies

Unit norm balls

Geometric interpretation

Optimization for sparsity-inducing norms
 (see Bach, Jenatton, Mairal, and Obozinski, 2011)

- Gradient descent as a proximal method (differentiable functions)

$$
\begin{aligned}
& -w_{t+1}=\arg \min _{w \in \mathbb{R}^{p}} L\left(w_{t}\right)+\left(w-w_{t}\right)^{\top} \nabla L\left(w_{t}\right)+\frac{B}{2}\left\|w-w_{t}\right\|_{2}^{2} \\
& -w_{t+1}=w_{t}-\frac{1}{B} \nabla L\left(w_{t}\right)
\end{aligned}
$$

Optimization for sparsity-inducing norms
 (see Bach, Jenatton, Mairal, and Obozinski, 2011)

- Gradient descent as a proximal method (differentiable functions)

$$
\begin{aligned}
& -w_{t+1}=\arg \min _{w \in \mathbb{R}^{p}} L\left(w_{t}\right)+\left(w-w_{t}\right)^{\top} \nabla L\left(w_{t}\right)+\frac{B}{2}\left\|w-w_{t}\right\|_{2}^{2} \\
& -w_{t+1}=w_{t}-\frac{1}{B} \nabla L\left(w_{t}\right)
\end{aligned}
$$

- Problems of the form:

$$
\min _{w \in \mathbb{R}^{p}} L(w)+\lambda \Omega(w)
$$

$-w_{t+1}=\arg \min _{w \in \mathbb{R}^{p}} L\left(w_{t}\right)+\left(w-w_{t}\right)^{\top} \nabla L\left(w_{t}\right)+\lambda \Omega(w)+\frac{B}{2}\left\|w-w_{t}\right\|_{2}^{2}$
$-\Omega(w)=\|w\|_{1} \Rightarrow$ Thresholded gradient descent

- Similar convergence rates than smooth optimization
- Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010b) Small scale

- Specific norms which can be implemented through network flows

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010b) Large scale

- Specific norms which can be implemented through network flows

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010b)

Input

ℓ_{1}-norm

Application to background subtraction

 (Mairal, Jenatton, Obozinski, and Bach, 2010b)Background

ℓ_{1}-norm

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading" : prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading" : prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading" : prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Sparse Structured PCA (Jenatton, Obozinski, and Bach, 2009b)

- Learning sparse and structured dictionary elements:

$$
\min _{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n}\left\|y^{i}-X w^{i}\right\|_{2}^{2}+\lambda \sum_{j=1}^{p} \Omega\left(x^{j}\right) \text { s.t. } \forall i,\left\|w^{i}\right\|_{2} \leq 1
$$

Application to face databases $(1 / 3)$

raw data

(unstructured) NMF

- NMF obtains partially local features

Application to face databases $(2 / 3)$

(unstructured) sparse PCA Structured sparse PCA

- Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases $(2 / 3)$

(unstructured) sparse PCA

Structured sparse PCA

- Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

- Quantitative performance evaluation on classification task

Structured sparse PCA on resting state activity (Varoquaux, Jenatton, Gramfort, Obozinski, Thirion, and Bach, 2010)

Dictionary learning vs. sparse structured PCA Exchange roles of X and w

- Sparse structured PCA (structured dictionary elements):
$\min _{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n}\left\|y^{i}-X w^{i}\right\|_{2}^{2}+\lambda \sum_{j=1}^{k} \Omega\left(x^{j}\right)$ s.t. $\forall i,\left\|w^{i}\right\|_{2} \leq 1$.
- Dictionary learning with structured sparsity for codes w :

$$
\min _{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n}\left\|y^{i}-X w^{i}\right\|_{2}^{2}+\lambda \Omega\left(w^{i}\right) \text { s.t. } \forall j,\left\|x^{j}\right\|_{2} \leq 1 \text {. }
$$

- Optimization:
- Alternating optimization
- Modularity of implementation if proximal step is efficient (Jenatton et al., 2010; Mairal et al., 2010b)

Hierarchical dictionary learning (Jenatton, Mairal, Obozinski, and Bach, 2010)

- Structure on codes w (not on dictionary X)
- Hierarchical penalization: $\Omega(w)=\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{2}$ where groups G in \mathbf{H} are equal to set of descendants of some nodes in a tree

- Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008c)

Hierarchical dictionary learning Modelling of text corpora

- Each document is modelled through word counts
- Low-rank matrix factorization of word-document matrix
- Similar to NMF with multinomial loss
- Probabilistic topic models (Blei et al., 2003)
- Similar structures based on non parametric Bayesian methods (Blei et al., 2004)
- Can we achieve similar performance with simple matrix factorization formulation?

Modelling of text corpora - Dictionary tree

Topic models, NMF and matrix factorization

- Three different views on the same problem
- Interesting parallels to be made
- Common problems to be solved
- Structure on dictionary/decomposition coefficients with adapted priors, e.g., nested Chinese restaurant processes (Blei et al., 2004)
- Learning hyperparameters from data
- Identifiability and interpretation/evaluation of results
- Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien et al., 2008; Mairal et al., 2009d)
- Optimization and local minima

Structured sparsity - Audio processing Source separation (Lefèvre et al., 2011)

Time

Time

Structured sparsity - Audio processing Musical instrument separation (Lefèvre et al., 2011)

- Unsupervised source separation with group-sparsity prior
- Top: mixture
- Left: source tracks (guitar, voice). Right: separated tracks.

Alternative approach: latent group Lasso (Jacob, Obozinski, and Vert, 2009)

- Overlapping I: $\Omega(w)=\sum_{G \in \mathbb{G}}\left\|w_{G}\right\|_{2}$
- Sparsity patterns invariant by intersection
- Overlapping II: $\Omega(w)=\inf _{w=\sum_{G \in \mathrm{G}} v_{G}, \operatorname{Supp}\left(v_{G}\right) \subseteq G} \sum_{G \in \mathrm{G}}\left\|v_{G}\right\|_{2}$

$$
\left\{\begin{array}{l}
\min _{w, v} L(w)+\lambda \sum_{G \in \mathbf{G}}\left\|v_{G}\right\|_{2} \\
w=\sum_{G \in \mathrm{G}} v_{G} \\
\operatorname{Supp}\left(v_{G}\right) \subseteq G
\end{array}\right.
$$

$$
\mathrm{w}=\begin{array}{|}
\mathrm{v} 1 & \begin{array}{r}
\square \\
\mathrm{v} 2
\end{array}+\begin{array}{|}
0 \\
0 \\
0
\end{array} & \mathrm{v} 3
\end{array}
$$

- Sparsity patterns invariant by union

Outline

- Tutorial: Sparse methods for machine learning
- Algorithms: Convex optimization
- Theory: high-dimensional inference
- Learning on matrices
- Classical approaches to structured sparsity
- Linear combinations of ℓ_{q}-norms
- Applications
- Structured sparsity through submodular functions
- Relaxation of the penalization of supports
- Unified algorithms and analysis

ℓ_{1}-norm $=$ convex envelope of cardinality of support

- Let $w \in \mathbb{R}^{p}$. Let $V=\{1, \ldots, p\}$ and $\operatorname{Supp}(w)=\left\{j \in V, w_{j} \neq 0\right\}$
- Cardinality of support: $\|w\|_{0}=\operatorname{Card}(\operatorname{Supp}(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)

- ℓ_{1}-norm $=$ convex envelope of ℓ_{0}-quasi-norm on the ℓ_{∞}-ball $[-1,1]^{p}$

Convex envelopes of general functions of the support (Bach, 2010)

- Let $F: 2^{V} \rightarrow \mathbb{R}$ be a set-function
- Assume F is non-decreasing (i.e., $A \subset B \Rightarrow F(A) \leqslant F(B)$)
- Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Define $\Theta(w)=F(\operatorname{Supp}(w))$: How to get its convex envelope?

1. Possible if F is also submodular
2. Allows unified theory and algorithm
3. Provides new regularizers

Submodular functions (Fujishige, 2005; Bach, 2011)

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

Submodular functions (Fujishige, 2005; Bach, 2011)

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

- Intuition 1: defined like concave functions ("diminishing returns")
- Example: $F: A \mapsto g(\operatorname{Card}(A))$ is submodular if g is concave

Submodular functions (Fujishige, 2005; Bach, 2011)

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow \quad & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

- Intuition 1: defined like concave functions ("diminishing returns")
- Example: $F: A \mapsto g(\operatorname{Card}(A))$ is submodular if g is concave
- Intuition 2: behave like convex functions
- Polynomial-time minimization, conjugacy theory

Submodular functions (Fujishige, 2005; Bach, 2011)

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

- Intuition 1: defined like concave functions ("diminishing returns")
- Example: $F: A \mapsto g(\operatorname{Card}(A))$ is submodular if g is concave
- Intuition 2: behave like convex functions
- Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
- Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
- Optimal design (Krause and Guestrin, 2005)

Submodular functions - Examples

- Concave functions of the cardinality: $g(|A|)$
- Cuts
- Entropies
- $H\left(\left(X_{k}\right)_{k \in A}\right)$ from p random variables X_{1}, \ldots, X_{p}
- Network flows
- Efficient representation for set covers
- Rank functions of matroids

Submodular functions - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^{p}$
- Given any set-function F and w such that $w_{j_{1}} \geqslant \cdots \geqslant w_{j_{p}}$, define:

$$
f(w)=\sum_{k=1}^{p} w_{j_{k}}\left[F\left(\left\{j_{1}, \ldots, j_{k}\right\}\right)-F\left(\left\{j_{1}, \ldots, j_{k-1}\right\}\right)\right]
$$

- If $w=1_{A}, f(w)=F(A) \Rightarrow$ extension from $\{0,1\}^{p}$ to \mathbb{R}^{p}
- f is piecewise affine and positively homogeneous
- F is submodular if and only if f is convex (Lovász, 1982)
- Minimizing $f(w)$ on $w \in[0,1]^{p}$ equivalent to minimizing F on 2^{V}

Submodular functions and structured sparsity

- Let $F: 2^{V} \rightarrow \mathbb{R}$ be a non-decreasing submodular set-function
- Proposition: the convex envelope of $\Theta: w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞}-ball is $\Omega: w \mapsto f(|w|)$ where f is the Lovász extension of F

Submodular functions and structured sparsity

- Let $F: 2^{V} \rightarrow \mathbb{R}$ be a non-decreasing submodular set-function
- Proposition: the convex envelope of $\Theta: w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞}-ball is $\Omega: w \mapsto f(|w|)$ where f is the Lovász extension of F
- Sparsity-inducing properties: Ω is a polyhedral norm

- A if stable if for all $B \supset A, B \neq A \Rightarrow F(B)>F(A)$
- With probability one, stable sets are the only allowed active sets

Polyhedral unit balls

$$
F(A)=|A|
$$

$$
\Omega(w)=\|w\|_{1}
$$

$F(A)=\min \{|A|, 1\}$
$\Omega(w)=\|w\|_{\infty}$

$$
F(A)=|A|^{1 / 2}
$$

all possible extreme points

$$
\begin{aligned}
F(A)= & 1_{\{A \cap\{1,2,3\} \neq \varnothing\}} \\
& +1_{\{A \cap\{2,3\} \neq \varnothing\}}+1_{\{A \cap\{3\} \neq \varnothing\}} \\
\Omega(w)= & \|w\|_{\infty}+\left\|w_{\{2,3\}}\right\|_{\infty}+\left|w_{3}\right|
\end{aligned}
$$

Submodular functions and structured sparsity

- Unified theory and algorithms
- Generic computation of proximal operator
- Unified oracle inequalities
- Extensions
- Shaping level sets through symmetric submodular function (Bach, 2011)
- ℓ_{q}-relaxations of combinatorial penalties (Obozinski and Bach, 2011)

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
- Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$
\Omega(w)=\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{\infty}
$$

$-\ell_{1}-\ell_{\infty}$ norm \Rightarrow sparsity at the group level

- Some w_{G} 's are set to zero for some groups G

$$
(\operatorname{Supp}(w))^{c}=\bigcup_{G \in \mathbf{H}^{\prime}} G \text { for some } \mathbf{H}^{\prime} \subseteq \mathbf{H}
$$

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
- Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$
\Omega(w)=\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{\infty} \Rightarrow \quad F(A)=\operatorname{Card}(\{G \in \mathbf{H}, G \cap A \neq \varnothing\})
$$

$-\ell_{1}-\ell_{\infty}$ norm \Rightarrow sparsity at the group level

- Some w_{G} 's are set to zero for some groups G

$$
(\operatorname{Supp}(w))^{c}=\bigcup_{G \in \mathbf{H}} G \text { for some } \mathbf{H}^{\prime} \subseteq \mathbf{H}
$$

- Justification not only limited to allowed sparsity patterns

Selection of contiguous patterns in a sequence

- Selection of contiguous patterns in a sequence

- H is the set of blue groups: any union of blue groups set to zero leads to the selection of a contiguous pattern

Selection of contiguous patterns in a sequence

- Selection of contiguous patterns in a sequence

- H is the set of blue groups: any union of blue groups set to zero leads to the selection of a contiguous pattern
- $\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{\infty} \Rightarrow F(A)=p-1+\operatorname{Range}(A)$ if $A \neq \varnothing$
- Jump from 0 to $p-1$: tends to include all variables simultaneously
- Add $\nu|A|$ to smooth the kink: all sparsity patterns are possible
- Contiguous patterns are favored (and not forced)

Extensions of norms with overlapping groups

- Selection of rectangles (at any position) in a 2-D grids

- Hierarchies

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
- Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$
\Omega(w)=\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{\infty} \Rightarrow F(A)=\operatorname{Card}(\{G \in \mathbf{H}, G \cap A \neq \varnothing\})
$$

- Justification not only limited to allowed sparsity patterns

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
- Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$
\Omega(w)=\sum_{G \in \mathbf{H}}\left\|w_{G}\right\|_{\infty} \Rightarrow F(A)=\operatorname{Card}(\{G \in \mathbf{H}, G \cap A \neq \varnothing\})
$$

- Justification not only limited to allowed sparsity patterns
- From $F(A)$ to $\Omega(w)$: provides new sparsity-inducing norms
- $F(A)=g(\operatorname{Card}(A)) \Rightarrow \Omega$ is a combination of order statistics
- Non-factorial priors for supervised learning: Ω depends on the eigenvalues of $X_{A}^{\top} X_{A}$ and not simply on the cardinality of A

Non-factorial priors for supervised learning

- Joint variable selection and regularization. Given support $A \subset V$,

$$
\min _{w_{A} \in \mathbb{R}^{A}} \frac{1}{2 n}\left\|y-X_{A} w_{A}\right\|_{2}^{2}+\frac{\lambda}{2}\left\|w_{A}\right\|_{2}^{2}
$$

- Minimizing with respect to A will always lead to $A=V$
- Information/model selection criterion $F(A)$

$$
\begin{aligned}
& \min _{A \subset V} \min _{w_{A} \in \mathbb{R}^{A}} \frac{1}{2 n}\left\|y-X_{A} w_{A}\right\|_{2}^{2}+\frac{\lambda}{2}\left\|w_{A}\right\|_{2}^{2}+F(A) \\
\Leftrightarrow & \min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}+F(\operatorname{Supp}(w))
\end{aligned}
$$

Non-factorial priors for supervised learning

- Selection of subset A from design $X \in \mathbb{R}^{n \times p}$ with ℓ_{2}-penalization
- Frequentist analysis (Mallow's C_{L}): $\operatorname{tr} X_{A}^{\top} X_{A}\left(X_{A}^{\top} X_{A}+\lambda I\right)^{-1}$
- Not submodular
- Bayesian analysis (marginal likelihood): $\log \operatorname{det}\left(X_{A}^{\top} X_{A}+\lambda I\right)$
- Submodular (also true for $\operatorname{tr}\left(X_{A}^{\top} X_{A}\right)^{1 / 2}$)

p	n	k	submod.	ℓ_{2} vs. submod.	ℓ_{1} vs. submod.	greedy vs. submod.
120	120	80	40.8 ± 0.8	-2.6 ± 0.5	$\mathbf{0 . 6} \pm \mathbf{0 . 0}$	$\mathbf{2 1 . 8} \pm \mathbf{0 . 9}$
120	120	40	35.9 ± 0.8	$\mathbf{2 . 4} \pm \mathbf{0 . 4}$	$\mathbf{0 . 3} \pm \mathbf{0 . 0}$	$\mathbf{1 5 . 8} \pm \mathbf{1 . 0}$
120	120	20	29.0 ± 1.0	$\mathbf{9 . 4} \pm \mathbf{0 . 5}$	-0.1 ± 0.0	$\mathbf{6 . 7} \pm \mathbf{0 . 9}$
120	120	10	20.4 ± 1.0	$\mathbf{1 7 . 5} \pm \mathbf{0 . 5}$	-0.2 ± 0.0	-2.8 ± 0.8
120	20	20	49.4 ± 2.0	0.4 ± 0.5	$\mathbf{2 . 2} \pm \mathbf{0 . 8}$	$\mathbf{2 3 . 5} \pm \mathbf{2 . 1}$
120	20	10	49.2 ± 2.0	0.0 ± 0.6	1.0 ± 0.8	$\mathbf{2 0 . 3} \pm \mathbf{2 . 6}$
120	20	6	43.5 ± 2.0	$\mathbf{3 . 5} \pm \mathbf{0 . 8}$	$\mathbf{0 . 9} \pm \mathbf{0 . 6}$	$\mathbf{2 4 . 4} \pm \mathbf{3 . 0}$
120	20	4	41.0 ± 2.1	$\mathbf{4 . 8} \pm \mathbf{0 . 7}$	-1.3 ± 0.5	$\mathbf{2 5 . 1} \pm \mathbf{3 . 5}$

Unified optimization algorithms

- Polyhedral norm with $O\left(3^{p}\right)$ faces and extreme points
- Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
- subgradient may be obtained in polynomial time \Rightarrow too slow

Unified optimization algorithms

- Polyhedral norm with $O\left(3^{p}\right)$ faces and extreme points
- Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
- subgradient may be obtained in polynomial time \Rightarrow too slow
- Proximal methods (e.g., Beck and Teboulle, 2009)
$-\min _{w \in \mathbb{R}^{p}} L(y, X w)+\lambda \Omega(w)$: differentiable + non-differentiable
- Efficient when $(P): \min _{w \in \mathbb{R}^{p}} \frac{1}{2}\|w-v\|_{2}^{2}+\lambda \Omega(w)$ is "easy"
- Proposition: (P) is equivalent to submodular function minimization

Proximal methods for Lovász extensions

- Proposition (Chambolle and Darbon, 2009): let w^{*} be the solution of $\min _{w \in \mathbb{R}^{p}} \frac{1}{2}\|w-v\|_{2}^{2}+\lambda f(w)$. Then the solutions of

$$
\min _{A \subset V} \lambda F(A)+\sum_{j \in A}\left(\alpha-v_{j}\right)
$$

are the sets A^{α} such that $\left\{w^{*}>\alpha\right\} \subset A^{\alpha} \subset\left\{w^{*} \geqslant \alpha\right\}$

- Parametric submodular function optimization
- General decomposition strategy for $f(|w|)$ and $f(w)$ (Groenevelt, 1991)
- Efficient only when submodular minimization is efficient
- Otherwise, minimum-norm-point algorithm (a.k.a. Frank Wolfe) is preferable

Comparison of optimization algorithms

- Synthetic example with $p=1000$ and $F(A)=|A|^{1 / 2}$
- ISTA: proximal method
- FISTA: accelerated variant (Beck and Teboulle, 2009)

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010b) Small scale

- Specific norms which can be implemented through network flows

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010b) Large scale

- Specific norms which can be implemented through network flows

Unified theoretical analysis

- Decomposability
- Key to theoretical analysis (Negahban et al., 2009)
- Property: $\forall w \in \mathbb{R}^{p}$, and $\forall J \subset V$, if $\min _{j \in J}\left|w_{j}\right| \geqslant \max _{j \in J^{c}}\left|w_{j}\right|$, then $\Omega(w)=\Omega_{J}\left(w_{J}\right)+\Omega^{J}\left(w_{J^{c}}\right)$
- Support recovery
- Extension of known sufficient condition (Zhao and Yu, 2006; Negahban and Wainwright, 2008)
- High-dimensional inference
- Extension of known sufficient condition (Bickel et al., 2009)
- Matches with analysis of Negahban et al. (2009) for common cases

Support recovery $-\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\lambda \Omega(w)$

- Notation
$-\rho(J)=\min _{B \subset J^{c}} \frac{F(B \cup J)-F(J)}{F(B)} \in(0,1]$ (for J stable)
$-c(J)=\sup _{w \in \mathbb{R}^{p}} \Omega_{J}\left(w_{J}\right) /\left\|w_{J}\right\|_{2} \leqslant|J|^{1 / 2} \max _{k \in V} F(\{k\})$
- Proposition
- Assume $y=X w^{*}+\sigma \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, I)$
- $J=$ smallest stable set containing the support of w^{*}
- Assume $\nu=\min _{j, w_{j}^{*} \neq 0}\left|w_{j}^{*}\right|>0$
- Let $Q=\frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$. Assume $\kappa=\lambda_{\min }\left(Q_{J J}\right)>0$
- Assume that for $\eta>0,\left(\Omega^{J}\right)^{*}\left[\left(\Omega_{J}\left(Q_{J J}^{-1} Q_{J j}\right)\right)_{j \in J^{c}}\right] \leqslant 1-\eta$
- If $\lambda \leqslant \frac{\kappa \nu}{2 c(J)}, \hat{w}$ has support equal to J, with probability larger than

$$
1-3 P\left(\Omega^{*}(z)>\frac{\lambda \eta \rho(J) \sqrt{n}}{2 \sigma}\right)
$$

$-z$ is a multivariate normal with covariance matrix Q

Consistency - $\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\lambda \Omega(w)$

- Proposition
- Assume $y=X w^{*}+\sigma \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, I)$
- $J=$ smallest stable set containing the support of w^{*}
- Let $Q=\frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$.
- Assume that $\forall \Delta$ s.t. $\Omega^{J}\left(\Delta_{J c}\right) \leqslant 3 \Omega_{J}\left(\Delta_{J}\right), \Delta^{\top} Q \Delta \geqslant \kappa\left\|\Delta_{J}\right\|_{2}^{2}$
- Then $\Omega\left(\hat{w}-w^{*}\right) \leqslant \frac{24 c(J)^{2} \lambda}{\kappa \rho(J)^{2}}$ and $\frac{1}{n}\left\|X \hat{w}-X w^{*}\right\|_{2}^{2} \leqslant \frac{36 c(J)^{2} \lambda^{2}}{\kappa \rho(J)^{2}}$
with probability larger than $1-P\left(\Omega^{*}(z)>\frac{\lambda \rho(J) \sqrt{n}}{2 \sigma}\right)$
$-z$ is a multivariate normal with covariance matrix Q
- Concentration inequality (z normal with covariance matrix Q):
- \mathcal{T} set of stable inseparable sets
- Then $P\left(\Omega^{*}(z)>t\right) \leqslant \sum_{A \in \mathcal{T}} 2^{|A|} \exp \left(-\frac{t^{2} F(A)^{2} / 2}{1^{\top} Q_{A A}{ }^{1}}\right)$

Symmetric submodular functions (Bach, 2011)

- Let $F: 2^{V} \rightarrow \mathbb{R}$ be a symmetric submodular set-function
- Proposition: The Lovász extension $f(w)$ is the convex envelope of the function $w \mapsto \max _{\alpha \in \mathbb{R}} F(\{w \geqslant \alpha\})$ on the set $[0,1]^{p}+\mathbb{R} 1_{V}=$ $\left\{w \in \mathbb{R}^{p}, \max _{k \in V} w_{k}-\min _{k \in V} w_{k} \leqslant 1\right\}$.
- Shaping all level sets

Symmetric submodular functions - Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
- Cuts - total variation

$$
F(A)=\sum_{k \in A, j \in V \backslash A} d(k, j) \Rightarrow f(w)=\sum_{k, j \in V} d(k, j)\left(w_{k}-w_{j}\right)_{+}
$$

- NB: graph may be directed
- Application to change-point detection (Tibshirani et al., 2005; Harchaoui and Lévy-Leduc, 2008)

Symmetric submodular functions - Examples

- From $F(A)$ to $\Omega(w)$: provides new sparsity-inducing norms
- Regular functions (Boykov et al., 2001; Chambolle and Darbon, 2009)

$$
F(A)=\min _{B \subset W} \sum_{k \in B,} d(k, j)+\lambda|A \Delta B|
$$

Symmetric submodular functions - Examples

- From $F(A)$ to $\Omega(w)$: provides new sparsity-inducing norms
- $F(A)=g(\operatorname{Card}(A)) \Rightarrow$ priors on the size and numbers of clusters

$$
|A|(p-|A|)
$$

$1_{|A| \in(0, p)}$

$\max \{|A|, p-|A|\}$

- Convex formulations for clustering (Hocking, Joulin, Bach, and Vert, 2011)

ℓ_{q}-relaxation of combinatorial penalties (Obozinski and Bach, 2011)

- Main result of Bach (2010):
- $f(|w|)$ is the convex envelope of $F(\operatorname{Supp}(w))$ on $[-1,1]^{p}$
- Problems:
- Limited to submodular functions
- Limited to ℓ_{∞}-relaxation: undesired artefacts

$$
\begin{gathered}
F(A)=1_{\{A \cap\{1\} \neq \varnothing\}}+1_{\{A \cap\{2,3\} \neq \varnothing\}} \\
\Omega(w)=\left|w_{1}\right|+\left\|w_{\{2,3\}}\right\|_{\infty}
\end{gathered}
$$

From ℓ_{∞} to ℓ_{2}

- Variational formulations for subquadratic norms (Bach et al., 2011)

$$
\Omega(w)=\min _{\eta \in \mathbb{R}_{+}^{p}} \frac{1}{2} \sum_{j=1}^{p} \frac{w_{j}^{2}}{\eta_{j}}+\frac{1}{2} g(\eta)=\min _{\eta \in H} \sqrt{\sum_{j=1}^{p} \frac{w_{j}^{2}}{\eta_{j}}}
$$

where g is a convex homogeneous and $H=\{\eta, g(\eta) \leqslant 1\}$

- Often used for computational reasons (Lasso, group Lasso)
- May also be used to define a norm (Micchelli et al., 2011)

From ℓ_{∞} to ℓ_{2}

- Variational formulations for subquadratic norms (Bach et al., 2011)

$$
\Omega(w)=\min _{\eta \in \mathbb{R}_{+}^{p}} \frac{1}{2} \sum_{j=1}^{p} \frac{w_{j}^{2}}{\eta_{j}}+\frac{1}{2} g(\eta)=\min _{\eta \in H} \sqrt{\sum_{j=1}^{p} \frac{w_{j}^{2}}{\eta_{j}}}
$$

where g is a convex homogeneous and $H=\{\eta, g(\eta) \leqslant 1\}$

- Often used for computational reasons (Lasso, group Lasso)
- May also be used to define a norm (Micchelli et al., 2011)
- If F is a nondecreasing submodular function with Lovász extension f
- Define $\Omega_{2}^{F}(w)=\min _{\eta \in \mathbb{R}_{+}^{p}} \frac{1}{2} \sum_{j=1}^{p} \frac{w_{j}^{2}}{\eta_{j}}+\frac{1}{2} f(\eta)$
- Is it the convex relaxation of some natural function?

ℓ_{q}-relaxation of submodular penalties (Obozinski and Bach, 2011)

- F a nondecreasing submodular function with Lovász extension f
- Define $\Omega_{q}^{F}(w)=\min _{\eta \in \mathbb{R}_{+}^{p}} \frac{1}{q} \sum_{i \in V} \frac{\left|w_{i}\right|^{q}}{\eta_{i}^{q-1}}+\frac{1}{r} f(\eta)$ with $\frac{1}{q}+\frac{1}{r}=1$
- Proposition 1: Ω_{q}^{F} is the convex envelope of $w \mapsto F(\operatorname{Supp}(w))\|w\|_{q}$
- Proposition 2: Ω_{q}^{F} is the homogeneous convex envelope of $w \mapsto \frac{1}{r} F(\operatorname{Supp}(w))+\frac{1}{q}\|w\|_{q}^{q}$
- Jointly penalizing and regularizing
- Special cases $q=1, q=2$ and $q=\infty$
- Removes artefacts of ℓ_{∞}-formulation

How tight is the relaxation?
 What information of F is kept after the relaxation?

- When F is submodular and $q=\infty$
- the Lovász extension $f=\Omega_{\infty}^{F}$ is said to "extend" F because $\Omega_{\infty}^{F}\left(1_{A}\right)=f\left(1_{A}\right)=F(A)$
- In general we can still consider the function : $G(A) \triangleq \Omega_{\infty}^{F}\left(1_{A}\right)$
- Do we have $G(A)=F(A)$?
- How is G related to F ?
- What is the norm Ω_{∞}^{G} which is associated with G ?

Lower combinatorial envelope

- Given a function $F: 2^{V} \rightarrow \mathbb{R}$, define its lower combinatorial envelope as the function G given by

$$
G(A)=\max _{s \in P(F)} s(A)
$$

with $P(F)=\left\{s \in \mathbb{R}^{p}, \forall A \subset V, s(A) \leq F(A)\right\}$.

- Property 1:G is the largest function such that $G \leqslant F$ and

$$
G(A)=\Omega_{\infty}^{G}\left(1_{A}\right)
$$

- Property 2 : G is its own combinatorial envelope
- A new class of set-functions

Conclusion

- Structured sparsity for machine learning and statistics
- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms Submodular functions to encode discrete structures

Conclusion

- Structured sparsity for machine learning and statistics
- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms Submodular functions to encode discrete structures
- On-going work on structured sparsity
- Norm design beyond submodular functions
- Instance of general framework of Chandrasekaran et al. (2010)
- Links with greedy (i.e., non convex) methods (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Achieving $\log p=O(n)$ algorithmically (Bach, 2008c)

References

Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classification. In Proceedings of the 24th international conference on Machine Learning (ICML), 2007.
C. Archambeau and F. Bach. Sparse probabilistic projections. In Advances in Neural Information Processing Systems 21 (NIPS), 2008.
F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML), 2008a.
F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008b.
F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008c.
F. Bach. Self-concordant analysis for logistic regression. Technical Report 0910.4627, ArXiv, 2009.
F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. 2011. URL http://hal.inria.fr/hal-00645271/en.
F. Bach. Shaping level sets with submodular functions. In Adv. NIPS, 2011.
F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the International Conference on Machine Learning (ICML), 2004.
F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical Report 0812.1869, ArXiv, 2008.
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Technical Report 00613125, HAL, 2011.
O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9: 485-516, 2008.
R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
L. Benaroya, F. Bimbot, and R. Gribonval. Audio source separation with a single sensor. IEEE Transactions on Speech and Audio Processing, 14(1):191, 2006.
D. Bertsekas. Nonlinear programming. Athena Scientific, 1995.
P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705-1732, 2009.
D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal of Machine Learning Research, 3:993-1022, January 2003.
D. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. Advances in neural information processing systems, 16:106, 2004.
D.M. Blei and J. McAuliffe. Supervised topic models. In Advances in Neural Information Processing Systems (NIPS), volume 20, 2008.
J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizbal. Numerical Optimization Theoretical
and Practical Aspects. Springer, 2003.
J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. Number 3 in CMS Books in Mathematics. Springer-Verlag, 2000.
L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information Processing Systems (NIPS), volume 20, 2008.
S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI, 23(11):1222-1239, 2001.
A. Buades, B. Coll, and J.-M. Morel. Non-local image and movie denoising. International Journal of Computer vision, 76(2):123-139, 2008.
F. Bunea, A.B. Tsybakov, and M.H. Wegkamp. Aggregation for Gaussian regression. Annals of Statistics, 35(4):1674-1697, 2007.
E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n . Annals of Statistics, 35(6):2313-2351, 2007.
E. Candès and M. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2):21-30, 2008.
E.J. Candès and Y. Plan. Near-ideal model selection by 11 minimization. The Annals of Statistics, 37 (5A):2145-2177, 2009.
E.J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Arxiv preprint arXiv:0912.3599, 2009.
F. Caron and A. Doucet. Sparse Bayesian nonparametric regression. In 25th International Conference
on Machine Learning (ICML), 2008.
V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery using markov random fields. In Advances in Neural Information Processing Systems, 2008.
A. Chambolle. Total variation minimization and a class of binary MRF models. In Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 136-152. Springer, 2005.
A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric maximum flows. International Journal of Computer Vision, 84(3):288-307, 2009.
V. Chandrasekaran, B. Recht, P.A. Parrilo, and A.S. Willsky. The convex geometry of linear inverse problems. Arxiv preprint arXiv:1012.0621, 2010.
S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Review, 43(1):129-159, 2001.
Florent Couzinie-Devy, Julien Mairal, Francis Bach, and Jean Ponce. Dictionary Learning for Deblurring and Digital Zoom. Technical report, September 2011. URL http://hal.inria. fr/inria-00627402.
A. d'Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 9:1269-1294, 2008.
D.L. Donoho and J. Tanner. Neighborliness of randomly projected simplices in high dimensions. Proceedings of the National Academy of Sciences of the United States of America, 102(27):9452, 2005.
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of statistics, 32 (2):407-451, 2004.
M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736-3745, 2006.
J. Fan and R. Li. Variable Selection Via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96(456):1348-1361, 2001.
M. Fazel, H. Hindi, and S.P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings of the American Control Conference, volume 6, pages 4734-4739, 2001.
C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the itakura-saito divergence. with application to music analysis. Neural Computation, 21(3), 2009.
J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Annals of Applied Statistics, 1(2):302-332, 2007.
W. Fu. Penalized regressions: the bridge vs. the Lasso. Journal of Computational and Graphical Statistics, 7(3):397-416, 1998).
S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. In IEEE International Symposium on Biomedical Imaging, 2009.
H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. European Journal of Operational Research, 54(2):227-236, 1991.
Z. Harchaoui and C. Lévy-Leduc. Catching change-points with Lasso. Adv. NIPS, 20, 2008.
Z. Harchaoui, M. Douze, M. Paulin, M. Dudik, and J. Malick. Large-scale classification with trace-norm regularization. In Proc. CVPR, 2012.
J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. IEEE Transactions on Information Theory, 52(9):4036-4048, 2006.
T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algorithm for clustering using convex fusion penalties. In Proc. ICML, 2011.
J. Huang and T. Zhang. The benefit of group sparsity. Technical Report 0901.2962v2, ArXiv, 2009.
J. Huang, S. Ma, and C.H. Zhang. Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica, 18:1603-1618, 2008.
J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In Proceedings of the 26th International Conference on Machine Learning (ICML), 2009.
H. Ishwaran and J.S. Rao. Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33(2):730-773, 2005.
L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso. In Proceedings of the 26th International Conference on Machine Learning (ICML), 2009.
R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In Submitted to ICML, 2010.
R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363,
2011. In submission to SIAM Journal on Imaging Sciences.
K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In Proceedings of CVPR, 2009.
S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In Proceedings of the International Conference on Machine Learning (ICML), 2010.
A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In Proc. UAI, 2005.
S. Lacoste-Julien, F. Sha, and M.I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. Advances in Neural Information Processing Systems (NIPS) 21, 2008.
H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems (NIPS), 2007.
K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics, 2:90-102, 2008.
K. Lounici, A.B. Tsybakov, M. Pontil, and S.A. van de Geer. Taking advantage of sparsity in multi-task learning. In Conference on Computational Learning Theory (COLT), 2009.
L. Lovász. Submodular functions and convexity. Mathematical programming: the state of the art, Bonn, pages 235-257, 1982.
J. Lv and Y. Fan. A unified approach to model selection and sparse recovery using regularized least squares. Annals of Statistics, 37(6A):3498-3528, 2009.
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050, 2009a.
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In International Conference on Machine Learning (ICML), 2009b.
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In Computer Vision, 2009 IEEE 12th International Conference on, pages 2272-2279. IEEE, 2009c.
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. Advances in Neural Information Processing Systems (NIPS), 21, 2009d.
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In International Conference on Computer Vision (ICCV), 2009e.
J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (99):1-1, 2010a.
J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In NIPS, 2010b.
H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. Naval Research Logistics Quarterly, 3:111-133, 1956.
P. Massart. Concentration Inequalities and Model Selection: Ecole d'été de Probabilités de Saint-Flour 23. Springer, 2003.
N. Meinshausen. Relaxed Lasso. Computational Statistics and Data Analysis, 52(1):374-393, 2008.
N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. Annals of statistics, 34(3):1436, 2006.
N. Meinshausen and P. Bühlmann. Stability selection. Technical report, arXiv: 0809.2932, 2008.
N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37(1):246-270, 2008.
C.A. Micchelli, J.M. Morales, and M. Pontil. Regularizers for structured sparsity. Arxiv preprint arXiv:1010.0556, 2011.
R.M. Neal. Bayesian learning for neural networks. Springer Verlag, 1996.
S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and perils of $\ell_{1}-\ell_{\infty}$-regularization. In Adv. NIPS, 2008.
S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. 2009.
Y. Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic Pub, 2003.
Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.
G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2011.
G. Obozinski, M.J. Wainwright, and M.I. Jordan. High-dimensional union support recovery in multivariate regression. In Advances in Neural Information Processing Systems (NIPS), 2008.
G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, pages 1-22, 2009.
B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37:3311-3325, 1997.
M. R. Osborne, B. Presnell, and B. A. Turlach. On the lasso and its dual. Journal of Computational
and Graphical Statistics, 9(2):319-337, 2000.
M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In Advances in Neural Information Processing Systems, 2007.
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9:2491-2521, 2008.
F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM. Bioinformatics, 24(13):i375-i382, Jul 2008.
V . Roth and B. Fischer. The group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of the 25th International Conference on Machine Learning (ICML), 2008.
B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
M.W. Seeger. Bayesian inference and optimal design for the sparse linear model. The Journal of Machine Learning Research, 9:759-813, 2008.
J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.
N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances in Neural Information Processing Systems 17, 2005.
R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of The Royal Statistical Society Series B, 58(1):267-288, 1996.
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused Lasso. J. Roy. Stat. Soc. B, 67(1):91-108, 2005.
S. A. Van De Geer. High-dimensional generalized linear models and the Lasso. Annals of Statistics, 36 (2):614, 2008.
G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach. Sparse structured dictionary learning for brain resting-state activity modeling. In NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions, 2010.
M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_{1} constrained quadratic programming. IEEE transactions on information theory, 55(5):2183, 2009.
L. Wasserman and K. Roeder. High dimensional variable selection. Annals of statistics, 37(5A):2178, 2009.
D.M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515-534, 2009.
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of The Royal Statistical Society Series B, 68(1):49-67, 2006.
M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal of The Royal Statistical Society Series B, 69(2):143-161, 2007.
T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. Advances in Neural Information Processing Systems, 22, 2008a.
T. Zhang. Multi-stage convex relaxation for learning with sparse regularization. Advances in Neural Information Processing Systems, 22, 2008b.
T. Zhang. On the consistency of feature selection using greedy least squares regression. The Journal of Machine Learning Research, 10:555-568, 2009.
P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research, 7:2541-2563, 2006.
P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, 37(6A):3468-3497, 2009.
H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418-1429, 2006.
H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B (Statistical Methodology), 67(2):301-320, 2005.
H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36(4):1509-1533, 2008.

