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Audio source separation vs classification

Audio scenes can be quite complex but source separation has progressed in
the last few years!

Music Home automation TV series
↓ ↓ ↓

Vocals Spoken command Speech

Can this help audio “classification” tasks such as

speaker/singer identification,

speech/lyrics transcription,

music genre classification, keyword spotting, mutimedia indexing?
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Single-source audio classification

Audio classification

Audio content description techniques do not operate directly on the input
signal but on derived features.

Classification/transcription most often relies on probabilistic acoustic
models of the features.

Two stages: training and decoding.
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The characteristics of training and test data must match each other.
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Single-source audio classification

Mel-frequency cepstral coefficients

MFCCs represent the auditory spectral envelope on short time frames.
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Single-source audio classification

Chroma coefficients

Chroma coefficients represent the pitch content of sound on short time
frames.
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Single-source audio classification

Other features

For speech:

∆MFCC and ∆∆MFCC,

perceptual linear prediction (PLP) coefficients,

spectro-temporal modulation features,

neural network features,

. . .

For music:

all of the above,

rhythm features,

. . .
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Single-source audio classification

GMM acoustic models

Classification tasks can be addressed using Gaussian mixture acoustic
models (GMM).

For a given class C , the corresponding GMM is parameterized by

mean vectors µi

covariance matrices Σi

weights ωi .

Classification is performed in the maximum a posteriori (MAP) sense:
choose the class C that maximizes

p(C )p(y|C ) = p(C )
∏

n

∑

i

ωiN (yn|µi ,Σi ).

Training is performed in the maximum likelihood (ML) sense using an EM
algorithm.
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Single-source audio classification

HMM acoustic models

Transcription tasks are addressed using hidden Markov acoustic models
(HMM) with Gaussian observation probabilities.

For speech, these probabilities encode knowledge about word
pronunciations and word sequences.

Training and testing rely on similar equations as for GMMs, except that
the computed GMM likelihood values are post-processed using transition
probabilities.

We focus for simplicity on GMMs in the following. The techniques
presented here easily extend to HMMs with GMM observation probabilities.
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The uncertainty handling paradigm

Training/test mismatch

The matched training/test paradigm becomes invalid on multi-source or
noisy data.
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How can we reduce or circumvent the mismatch?
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The uncertainty handling paradigm

Mismatch circumvention techniques

General techniques include:

using different features (modulation features, RNN, etc),

changing the training objective (discriminative, ARD, etc),

combinining the outputs of several systems,

. . .

These non-specific techniques partly circumvent the mismatch between
training and test data.

We focus on specific techniques directly aiming to reduce it instead.
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The uncertainty handling paradigm

Conventional mismatch reduction techniques

Feature compensation:
good separation but of-
ten increased mismatch
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Training data coverage:
better match but huge
training set needed
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Noise adaptive training
[Deng, 2000]: combines
both advantages, large
training set still needed
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The uncertainty handling paradigm

The uncertainty handling paradigm

Emerging paradigm: estimate and propagate confidence values represented
by (approximate) posterior distributions.

Early focus on Boolean uncertainty did not allow complex features.

More recent focus on Gaussian distributions [Deng, Astudillo, Kolossa. . . ].
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Uncertainty estimation

Reminder about audio source separation

Audio source separation techniques typically operate in the time-frequency
domain, e.g., via the short time Fourier transform (STFT).

They often rely on probabilistic parametric models of the source signals
and the mixing process with parameters such as:

steering/blocking vectors for beamforming, ICA,

basis spectra and scaling coefficients for NMF, harmonic NMF, and
variants thereof,

exemplar spectra and discrete hidden states for GMM, HMM. . .

Flexible FASST toolbox integrating several of the above models.
http://bass-db.gforge.inria.fr/fasst/
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Uncertainty estimation

Heuristic uncertainty estimator

First idea: the bigger the change, the bigger the uncertainty [Kolossa].

Variance of p(s|x) proportional to the squared difference between the noisy
signal x and the separated signal s̄:

Σ̄s,nf = diag(αf |xnf − s̄nf |
2).

Heuristic solution, not very elegant but somewhat effective.
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Uncertainty estimation

Wiener uncertainty estimator

Second idea: uncertainty stemming from the Wiener filter [Astudillo].

First estimate the parameters θ of the source models in the maximum
likelihood (ML) sense

θ̂ = argmax p(x|θ).

Then, assuming that x and s are Gaussian with covariances depending on
θ, we have

p(s|x) ≈ p(s|x, θ̂) =
∏

nf

N (snf |s̄nf , Σ̄s,nf )

with

s̄nf = Σs,nfΣ
−1
x,nf xnf

Σ̄s,nf = (I−Σs,nfΣ
−1
x,nf )Σs,nf

More principled, but does not account for the uncertainty about θ itself!
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Uncertainty estimation

Bayesian uncertainty estimator (1)

The theoretical Bayesian uncertainty estimator is given by [Adiloğlu]

p(s|x) =

∫
p(s, θ|x) dθ

Problem: this integral typically involves thousands of dimensions!

Variational Bayes (VB): approximate the joint posterior p(s, θ|x) by the
closest distribution q(s, θ) for which the integral is tractable.

When q is assumed to factor as q(s, θ) = q(s)q(θ), the posterior over s is
simply obtained as

p(s|x) ≈ q(s).
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Uncertainty estimation

Bayesian uncertainty estimator (2)

Minimizing the Kullback-Leibler divergence between p and q is equivalent
to maximizing the so-called variational free energy

L (q) =

∫
q(s, θ) log

p(x, s, θ)

q(s, θ)
ds dθ

This quantity is sometimes not maximizable in closed form: minorization
by a parametric bound f (x, s, θ,Ω) ≤ p(x, s, θ) may be needed.

Assuming q(s, θ) =
∏

nf q(snf )
∏

i q(θi ), the solution is iteratively
estimated by

1 tightening the bound w.r.t. the variational parameters Ω,

2 q(θi ) ∝ exp[Es,θi′ 6=i
log f (x, s, θ,Ω)]

3 q(snf ) ∝ exp[Esn′f ′ 6=nf ,θ
log f (x, s, θ,Ω)]
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Uncertainty estimation

Bayesian uncertainty estimator (3)

This results in an expectation-maximization (EM)-like source separation
algorithm where posterior distributions over the parameters are updated
instead of point estimates as in usual ML-based EM.

Resulting approximating distributions for FASST:

complex-valued Gaussian for snf and for the steering vectors,

generalized inverse Gaussian for the NMF parameters.
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Uncertainty estimation

Speaker identification benchmark (1)

CHiME Speech Separation and Recognition Challenge
http://spandh.dcs.shef.ac.uk/chime challenge/

Data: short spoken commands mixed with genuine noise backgrounds
recorded in a family home.

Training: 20 clean utterances from each of 34 speakers
Test: 20 other utterances per speaker, each mixed at 6 different SNRs

Enhancement: multichannel NMF (ML or VB).

Features: static MFCCs (2 to 20), log-normal uncertainty propagation

Baseline classifier: 32-component GMMs with diagonal covariances,
initialized by hierarchical K-means
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Uncertainty estimation

Speaker identification benchmark (2)

VB performs similarly to ML for the estimation of s̄, but it results in better
Σ̄s and eventually in improved speaker identification accuracy.
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Uncertainty propagation
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Uncertainty propagation

Mel frequency cepstral coefficients

We take the example of Mel frequency cepstral coefficients (MFCCs):

General idea: split the computation into simple steps and propagate the
posterior through each step [Gales, Astudillo].

Approximate closed-form equations are preferred to sampling techniques
because of their smaller computational cost.

Similar equations can be reused for other features (RASTA-PLP, MLP,
chroma, etc).
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Uncertainty propagation

Propagation through a linear transform

The Mel filterbank and the DCT are linear transforms.

Az = Az̄

Σ̄Az = AΣ̄zA
H
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Uncertainty propagation

Propagation through the magnitude transform

from Astudillo, 2012

Phase integration results in a Rice distribution whose first
and second order moments can be computed in closed
form.

|z | = σ̄z
√
π/2 L1/2(−|z̄ |2/2σ̄2

z )

σ̄2
|z| = |z̄ |2 + 2σ̄2

z − |z |
2

with L1/2(z) = ez/2[(1− z)I0(−z/2)− z I1(−z/2)].

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 20/02/2013 27 / 39



Uncertainty propagation

Propagation through the log transform

The exponential transform results in a distribution whose first and second
order moments can be computed by closed form equations.

The inversion of these equations yields a good approximation for the
logarithmic transform.

log zi = log(z̄i )−
1

2
log

(
Σ̄z,ii

z̄2i
+ 1

)

Σ̄log z,ij = log

(
Σ̄z,ij

z̄i z̄j
+ 1

)
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Uncertainty propagation

Propagation through general nonlinear transforms

For general nonlinear transforms, the unscented transform often yields a
good approximation at the fraction of the cost of a full sampling scheme.

from Astudillo, 2012

Vector Taylor series (VTS) has also been proposed.
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Uncertainty decoding and training
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Uncertainty decoding and training

Uncertainty decoding

For noisy data, classification can be performed via the uncertainty
decoding (UD) rule [Deng]

p(ȳ, Σ̄|C ) ≈

∫
p(y|ȳ, Σ̄)p(y|C ) dy

=
∏

n

∑

i

ωiN (ȳn|µi ,Σi+Σ̄n)

Model and noise variances add up: this exploits both the model and the
uncertainty to (implicitly) predict the missing data.
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Uncertainty decoding and training

Uncertainty training (1)

So far, we have assumed that the GMMs have been trained on clean data
but clean data may not be available!

Retraining on noisy data allows to learn the residual distortion that Σ̄n

failed to represent because

the Gaussian parametric model of uncertainty may not fit the actual
distribution of uncertainty,

even when it does, its covariance Σ̄n is never perfectly estimated.

To do so, we maximize the UD criterion over the training data via an EM
algorithm considering both the states in and the clean data yn as hidden
data [Ozerov].
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Uncertainty decoding and training

Uncertainty training (2)

E-step: estimate clean feature moments by Wiener filtering

γi ,n ∝ ωi N (ȳn|µi ,Σi+Σ̄n),

ŷi ,n = µi +Σi (Σi + Σ̄n)
−1 (ȳn − µi ) ,

R̂yy,i ,n = ŷi ,nŷ
T
i ,n+

(
I−Σi (Σi + Σ̄n)

−1
)
Σi .

M-step: update GMM parameters

ωi =
1

N

N∑

n=1

γi ,n,

µi =
1

∑N
n=1 γi ,n

N∑

n=1

γi ,nŷi ,n,

Σi = diag

(
1

∑N
n=1 γi ,n

N∑

n=1

γi ,nR̂yy,i ,n − µiµ
T
i

)
.
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Uncertainty decoding and training

Speaker identification benchmark

Same data, source separation algorithm and baseline classifier as above,
heuristic STFT uncertainty estimation + log-normal propagation.

Results averaged into 4 training conditions:

clean,

matched (same SNR),

unmatched (different SNR),

multicondition (all SNRs, hence more noisy data)

Enhanced Training Decoding Training condition
signal approach approach Clean Matched Unmatched Multi

No Conventional Conventional 65.17 71.81 69.34 84.09

Yes Conventional Conventional 55.22 82.11 80.91 90.12
Yes Conventional Uncertainty
Yes Uncertainty Uncertainty
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Uncertainty decoding and training

Speaker identification benchmark

Same data, source separation algorithm and baseline classifier as above,
heuristic STFT uncertainty estimation + log-normal propagation.

Results averaged into 4 training conditions:

clean,

matched (same SNR),

unmatched (different SNR),

multicondition (all SNRs, hence more noisy data)

Enhanced Training Decoding Training condition
signal approach approach Clean Matched Unmatched Multi

No Conventional Conventional 65.17 71.81 69.34 84.09

Yes Conventional Conventional 55.22 82.11 80.91 90.12
Yes Conventional Uncertainty 75.51 78.60 77.58 85.02
Yes Uncertainty Uncertainty 75.51 82.87 81.52 91.13
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Uncertainty decoding and training

Singer identification benchmark

Data: 40 songs by 10 singers (5 male and 5 female) from the RWC
Popular Music Database, split into 10 s segments

Training/testing: data organized into 4 training/testing folds

Enhancement: melody separation algorithm by Durrieu et al.

Features: static MFCCs (2 to 20), VTS propagation

Baseline classifier: 32-component GMMs with diagonal covariances

Accuracy (%)
per 10 s singing segment per song (maj. vote)

Fold 1 Fold 2 Fold 3 Fold 4 Total all seg. sung seg.

no separation 51 53 55 38 49 57 64

wo/ uncertainty 60 63 53 43 55 57 64

w/ uncertainty 71 72 84 83 77 85 94
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Summary

Summary

Uncertainty handling is a promising approach for the integration of source
separation and classification, which almost reaches the performance
achieved on clean data when the uncertainty is known.

Principled uncertainty estimation, propagation and decoding techniques do
not always work better than heuristic techniques though. Greater
understanding of these heuristics is needed.

Perspectives:

exploitation the uncertainties about other parameters, e.g., the source
spatial location,

understanding the interplay between source separation methods and
uncertainty estimators on the classification performance
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Summary

Challenges, workshop and resources

2nd CHiME Speech Separation and Recognition Challenge
http://spandh.dcs.shef.ac.uk/chime challenge/

Deadline: January 15, 2013

4th Signal Separation Evaluation Campaign (SiSEC)
http://sisec.wiki.irisa.fr/

Deadline: Spring 2013, to be announced soon

2nd Int. Workshop on Machine Listening in Multisource Environments
http://spandh.dcs.shef.ac.uk/chime workshop/

Vancouver, June 1, 2013 (in conjunction with ICASSP)

Other resources
http://lvacentral.inria.fr/
lvalist@googlegroups.com

machinelistening@googlegroups.com
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