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@ finite number of roads and junctions
@ each arc can be modeled by [a, b]
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@ finite number of roads and junctions
@ each arc can be modeled by [a, b]
@ a macroscopic traffic model on each arc
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Junctions

@ nincoming arcs
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@ nincoming arcs
@ moutgoing arcs
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Junctions

@ nincoming arcs

@ moutgoing arcs

@ a traffic model on each
arc
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Junctions

@ nincoming arcs
@ moutgoing arcs

@ a traffic model on each
arc

LWR
Aw-Rascle-Zhang

Phase-Transitions models
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The LWR model

pt+f(p)x =0 J
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The LWR model

pi+ f(p)x =0 J

@ /(t, x) denotes the density of cars at time t > 0 and in the position x

Various possibilities for solving Riemann problems at junctions



The LWR model

pt+ f(p)x =0 J

@ p(t, x) denotes the density of cars at time { > 0 and in the position x
@ f(p) is the flux

Various possibilities for solving Riemann problems at junctions



The LWR model

pt+ f(p)x =0 J

@ p(t, x) denotes the density of cars at time { > 0 and in the position x
@ f(p)is the flux anditis given by f(p) = pv, where v is the average velocity

Various possibilities for solving Riemann problems at junctions



The LWR model

pt+f(p)x =0 J

@ p(t, x) denotes the density of cars at time { > 0 and in the position x
@ f(p)is the flux and itis given by f(p) = pv, where v is the average velocity
@ v depends only on p in a decreasing way

Various possibilities for solving Riemann problems at junctions



The LWR model

pt+f(p)x =0 J

@ p(t, x) denotes the density of cars at time { > 0 and in the position x
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The LWR model

pt+f(p)x =0 J

@ p(t, x) denotes the density of cars at time { > 0 and in the position x

@ f(p)is the flux and itis given by f(p) = pv, where v is the average velocity
@ v depends only on p in a decreasing way

@ f(0) = f(pmax) = O is a strictly concave function
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A Phase-Transition model

Free phase Q: Otp+ 0x (pV) =0
. Otp + Ox (pv(p,q)) =0
Congested phase Q.:
et ° {atq+ax<qv(p, g)) =0
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@ Colombo, Marcellini, Rascle. A 2-phase traffic model based on a speed bound.
SIMA 2010.

@ Blandin, Work, Goatin, Piccoli, Bayen. A general phase transition model for
vehicular traffic. SIMA 2011.
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LWR: Riemann problem at a junction

n incoming and m outgoing arcs

+ O f =0
{ oiP1 + ot (01) I=1,....n+m

p1(0,X) = pio
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LWR on a junction: Riemann solver 1.

@ nincoming and m outgoing arcs
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LWR on a junction: Riemann solver 1.

@ nincoming and m outgoing arcs
@ Distribution matrix A € M™*"
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LWR on a junction: Riemann solver 1.

@ nincoming and m outgoing arcs
@ Distribution matrix A € M™*"
@ Constraints

A (F(p1)s- -, (o))" = (F(ons1)s - - - F(pnem)) T
on the fluxes at J
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LWR on a junction: Riemann solver 1.

@ nincoming and m outgoing arcs
@ Distribution matrix A € M™*"
@ Constraints

A-(£(p1)s-- F(pn))T = (F(pnst)s- -+ Fonem))T

on the fluxes at J
@ Choose the solution maximizing >-7_, f(p;)
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LWR on a junction: Riemann solver 1.

@ nincoming and m outgoing arcs
@ Distribution matrix A € M™*"
@ Constraints

A-(£(p1)s-- F(pn))T = (F(pnst)s- -+ Fonem))T

on the fluxes at J
@ Choose the solution maximizing >-7_, f(p;)
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LWR on a junction: Riemann solver 2

@ nincoming and m outgoing arcs
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LWR on a junction: Riemann solver 2

@ nincoming and m outgoing arcs

@ Maximize the fluxes T = Y7, f(p;) = ,”i,,% f(pi)
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LWR on a junction: Riemann solver 2

@ nincoming and m outgoing arcs

@ Maximize the fluxes T = Y7, f(p;) = ,”i,,% f(pi)

@ Distribution over incoming roads and over outgoing roads
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LWR on a junction: Riemann solver 2

@ nincoming and m outgoing arcs
o Maximize the fluxes I = >4 f(p;) = X704 F(pi)
@ Distribution over incoming roads and over outgoing roads
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LWR on a junction: existence result

Theorem (car 2005, AP 2009]

Let RS be the Riemann solver 1 or 2.
For every T > 0, there exists a solution (p1, ..., pnrm) for the Cauchy

problem r
gt gt =0
pi(0, X) = pr,o(X) s
such that
RS(p1(t,0), ..., pnem(t,0)) = (p1(t,0), ..., pnem(£,0))

fora.e. t € [0, T].
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LWR on a junction: existence result

Some comments...
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LWR on a junction: existence result

Some comments...
@ the proof is based on the wave-front tracking technique
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LWR on a junction: existence result

Some comments...
@ the proof is based on the wave-front tracking technique
@ the same results hold for more general Riemann solvers

@ RS1: counterexample to the Lipschitz continuous
dependence w.r.t. the initial condition
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LWR on a junction: existence result

Some comments...
@ the proof is based on the wave-front tracking technique
@ the same results hold for more general Riemann solvers

@ RS1: counterexample to the Lipschitz continuous
dependence w.r.t. the initial condition

@ RS2: Lipschitz continuous dependence w.r.t. the initial
condition
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Bottleneck
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Bottleneck

dp + Oxf(p) =0
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Bottleneck

Bp + Oxf (p) =0 B+ 9xg (p) =0
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Bottleneck

Bp + Oxf (p) =0 B+ 9xg (p) =0

@ fand g concave functions
@ f(0)=0and g(0)=0
® f(pmax) = 0and g(pmax) =0
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Bottleneck

Bp + Oxf (p) =0 B+ 9xg (p) =0

@ f and g concave functions

@ f(0)=0and g(0)=0

® f(pmax) = 0and g(pmax) =0

@ fand g have a unique point of maximum
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Bottleneck: solutions x = 0

@ For each v € [0, min {max f, max g}] there exists a
Riemann solver RS, which selects a solution with flux
lower than vat x =0
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Bottleneck: solutions x = 0

@ For each v € [0, min {max f, max g}] there exists a
Riemann solver RS, which selects a solution with flux
lower than vat x =0

@ Foreach RS, and T > 0 there is a unique solution (p1, p2)
for the Cauchy problem

Op+0xf(p)=0 x<0
Op+0xg(p) =0 x>0
p1(0,X) = p1o(x) x<0
p2(0,x) = p2o(x) x>0
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Bottleneck: solutions x = 0

@ For each v € [0, min {max f, max g}] there exists a
Riemann solver RS, which selects a solution with flux
lower than vat x =0

@ Foreach RS, and T > 0 there is a unique solution (p1, p2)
for the Cauchy problem

Op+0xf(p)=0 x<0
Otp+0xg(p)=0 x>0
p1(0,X) = p1o(x) x <0
p2(0,Xx) = p2o(x) x>0

@ [NHM 2007]

@ Colombo, Goatin. A well posed conservation law with a variable
unilateral constraint. J. Differential Equations 2007.
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Junction with buffer
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Junction with buffer
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Junction with buffer

@ Applications: telecommunications, car traffic, supply
chains.
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Junction with buffer

@ Applications: telecommunications, car traffic, supply
chains.

@ Herty, Klar, Piccoli. Existence of solutions for supply chain
models based on partial differential equations. SIMA, 2007.
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Junction with buffer

@ Applications: telecommunications, car traffic, supply
chains.

@ Herty, Klar, Piccoli. Existence of solutions for supply chain
models based on partial differential equations. SIMA, 2007.

@ Herty, Lebacque, Moutari. A novel model for intersections of
vehicular traffic flow. NHM, 2009.
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Junction with buffer: Riemann problem

( Otpi(t, x) + Oxf(pi(t, x)) = 0,

n n+m
"(6) =) _f(pi(t,0=-)) = > 1(p;(t,0+)),
o ; i ) j—zn—i:-1 (6i(1,01)) le{1,...,n+m}

p1(0,x) = pjo,
r(0) =,
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Junction with buffer: Riemann problem

Case 0 < 1y < I'max

1 1 . . . . .
® [, oy maximal possible fluxes on incoming and

outgoing arcs

s for solving Riemann problems at junctions



Junction with buffer: Riemann problem

Case 0 < 1y < I'max

1 1 . . . . .
® [, oy maximal possible fluxes on incoming and

outgoing arcs
@ [jpe = min {ﬂ N} and oyt = min {r1 ,u,}

inc’ out»
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Junction with buffer: Riemann problem

Case 0 < ry < Imax

1 1 . . . . .
® [, oy maximal possible fluxes on incoming and

outgoing arcs
@ Tjne =min{I} ., 1} and Moy = min {1}, p}
@ distribution on the arcs
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Junction with buffer: Riemann problem

Case 0 < ry < Imax

1 1 . . . . .
® [, oy maximal possible fluxes on incoming and

outgoing arcs
@ Tjne =min{I} ., 1} and Moy = min {1}, p}
@ distribution on the arcs

° r/(t) = rinc - I_oul‘
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Junction with buffer: Riemann problem

Caserp =0
1 1 . . . . .
® [, oy maximal possible fluxes on incoming and

outgoing arcs
@ ljne =min{I} ., u} and Moy = min {1 7L . u}
@ distribution on the arcs
° I’/(l‘) = rinc - I_oul‘
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Junction with buffer: Riemann problem

Case ry = Iax

o 1} Il maximal possible fluxes on incoming and
outgoing arcs

@ e =min{r} Tl pn}and Moy =min{rl . u}

@ distribution on the arcs

° r/(t) = rinc - I_oul‘
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Junction with buffer: cauchy problem

([ Opi(t, X) + Oxf(pi(t, X)) = 0,

n n+m
'(t) = f(pi(t,0-)) — f(pi(t,0 ,
"o ; il ) ,-ZZ,,; (6i(t, 0+)) le{1,...,n+m}

p1(0,x) = pjo(X),
r(0) = ro,
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Junction with buffer: cauchy problem

([ Opi(t, X) + Oxf(pi(t, X)) = 0,

n n+m
'(t) = f(pi(t,0-)) — f(pi(t,0 ,
"o ; il ) ,-ZZ,,; (6i(t, 0+)) le{1,...,n+m}

p1(0,x) = pjo(X),
r(0) = ro,

Theorem [DCDS-A, 2012]
For every T > 0, the Cauchy problem admits a weak solution.
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Junction with buffer: cauchy problem

atp/(tax) + axf(p/(t,X)) = 07

n n+m
'(t) = f(pi(t,0-)) — f(pi(t,0 ,
"o ; il ) ,-ZZ,,; (6i(t, 0+)) le{1,...,n+m}

p1(0,x) = pjo(X),
r(0) = ro,

Theorem [DCDS-A, 2012]

For every T > 0, the Cauchy problem admits a weak solution.
Moreover the solution depends in a Lipschitz continuous way
w.r.t the initial conditions.

TRAM2, March 21, 2013 Various possibilities for solving Riemann problems at junctions



Multi-buffers
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Multi-buffers
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Multi-buffers

>0
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Multi-buffers: Riemann problem (e 2013

@ nincoming, m outgoing arcs, m buffers
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Multi-buffers: Riemann problem (e 2013

@ nincoming, m outgoing arcs, m buffers
@ Distribution matrix A € M™*"
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Multi-buffers: Riemann problem (e 2013

@ nincoming, m outgoing arcs, m buffers
@ Distribution matrix A € M™*"
@ Constraints

A (f(m)a"'vf(pn))T = (7n+1»---7'7n+m)T

on the fluxes at J
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Multi-buffers: Riemann problem (e 2013

@ nincoming, m outgoing arcs, m buffers
@ Distribution matrix A € M™*"
@ Constraints

A (f(m)a"'vf(pn))T = (7n+1»---7'7n+m)T

on the fluxes at J
@ Maximization
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LWR-PT

LWR

dp + 0xf(p) =0
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LWR-PT

LWR

dp + 0xf(p) =0

PT model

Qs Otp + Ox (pV):O

Q.- dp + 0x (pv(p,q)) =0
“ 8:q + 9« (qv(p,q)) =0

X
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LWR-PT

LWR PT model
Q: Op+0x(pV)=0
¢ g+ 0x (qv(p,q)) =0
X

Solutionatx =0
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LWR-PT

LWR

Bip + Bxf (p) = 0

o {

PT model

Op+0x (pV) =0

dp + 0x (pv(p,q)) =0
9tq + 9x(qv(p,q)) =0

X

Solutionatx =0

@ Conservation of the number of cars: equality of the fluxes
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LWR-PT

LWR PT model

Qs Otp + Ox (pV):O

Q.- dp + 0x (pv(p,q)) =0
“ 8:q + 9« (qv(p,q)) =0

Bip + Bxf (p) = 0

X
0

Solutionatx =0

@ Conservation of the number of cars: equality of the fluxes
@ Maximization of the flux
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LWR-PT: Cauchy problem

Theorem [GP, JHDE, to appear]
For every T > 0, the Cauchy problem admits a weak solution.
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LWR-PT: Cauchy problem

Theorem [GP, JHDE, to appear]
For every T > 0, the Cauchy problem admits a weak solution.

@ The proof is based on the wave-front tracking technique
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LWR-PT: Cauchy problem

Theorem [GP, JHDE, to appear]
For every T > 0, the Cauchy problem admits a weak solution.

@ The proof is based on the wave-front tracking technique
@ ltis just an existence result
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LWR-PT: Cauchy problem

Theorem [GP, JHDE, to appear]
For every T > 0, the Cauchy problem admits a weak solution.

@ The proof is based on the wave-front tracking technique
@ ltis just an existence result
@ The same result holds for the case PT-LWR
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LWR-PT: Cauchy problem — sketch of proof

e Fi(t)= TV £(p(t,-))+ TV (pv(p, q))
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LWR-PT: Cauchy problem — sketch of proof

® F(t) =TV 1(p(t,))) + TV (pv(p.q))
W(t) = erm UPT t)‘AV( x)| +Zx€2(t)UPT (1 ‘Ap(gjg

TRAM2, March 21, 2013 Various possibilities for solving Riemann problems at junctions



LWR-PT: Cauchy problem — sketch of proof

@ Fi(t)= TV f(p(t,-)) + TV (pv(p,q))
q(t,x)

W(t) = X xermupren 1AV (8 X)| + X xeamuprn ‘Ap(l‘x)
® fo(t) =TV 1(p(t,)) + W(t)

~
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LWR-PT: Cauchy problem — sketch of proof

® Fi(t) =TV 1(p(t,-)) + TV (pv(p, q))

t
°© W(t) =2 xcimuprn 1AV (1, X)| + X xeaiupt(t) \Apaﬁ?

@ Fo(t) = TV 1(p(t,-)) + W(t)
@ Interactionatx =0: AF; =0and AF> >0
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LWR-PT: Cauchy problem — sketch of proof

Fi(t) = TV f(p(t,-)) + TV (pv(p, q))
q(t,
W(t) = > xernupreey AV (5 X)] + X xeayupr(n) ‘Ap(zg
Fo(t) = TV f(p(t,-)) + W()
Interactionat x =0: AFf =0and AF> >0
Interactionat x #0: AF; >0and AF, =0
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LWR-PT: Cauchy problem — sketch of proof

Fi(t) = TV f(p(t,-)) + TV (pv(p, q))

W(t) = > xernupreey AV (5 X)] + X xeayupr(n) \Ap(ﬁﬁg
Fo(t) =TV E(p(t,:)) + W(t)
Interactionat x =0: AFf =0and AF> >0
Interactionat x 20: AFf >0and AF> =0
Fi(t) < Kr,(0)
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LWR-PT: Cauchy problem — sketch of proof

Fi(t) = TV H(p(t,-)) + TV (pv(p. 9))
q(t,x)

W(t) = > xe1iupr(n |AV (1 X)] + Xxeatyupt(t) ‘Ap(l‘x)
Fo(t) =TV E(p(t,:)) + W(t)
Interactionat x =0: AF; =0and AF>, >0
Interactionat x 20: AFf >0and AF> =0
Fi(t) < Kr,(0)

Under suitable assumptions:
Ci1F1(t) < Fo(t) < CoF4(t) + Cs - {number of PT waves}
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LWR-PT: Cauchy problem — sketch of proof

® Fi(t) =TV 1(p(t,-)) + TV (pv(p, q))
°© W(t) =2 xcimuprn 1AV (1, X)| + X xeaiupt(t) \Ap(ﬁﬁg
@ F(t)=TVf(p(t,-)) + W(t)
@ Interactionatx =0: AF; =0and AF> >0
@ Interactionat x #0: AF; >0and Af> =0
@ Fi(t) < Kk (0
@ Under suitable assumptions:
Ci1F1(t) < Fo(t) < CoF4(t) + Cs - {number of PT waves}
° F(t)<M
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LWR-PT: Cauchy problem — sketch of proof

® Fi(t) =TV 1(p(t,-)) + TV (pv(p, q))
°© W(t) =2 xcimuprn 1AV (1, X)| + X xeaiupt(t) \Ap(ﬁﬁg
@ F(t)=TVf(p(t,-)) + W(t)
@ Interactionatx =0: AF; =0and AF> >0
@ Interactionat x #0: AF; >0and Af> =0
@ Fi(t) < Kk (0
@ Under suitable assumptions:
Ci1F1(t) < Fo(t) < CoF4(t) + Cs - {number of PT waves}
° F(t)<M

@ estimate on the number of waves and interactions
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