Various possibilities for solving Riemann problems at junctions

Mauro Garavello

Department of Mathematics and Applications University of Milano Bicocca mauro.garavello@unimib.it

Joint works with: G. M. Coclite, P. Goatin, B. Piccoli

• finite number of roads and junctions

- finite number of roads and junctions
- each arc can be modeled by [a, b]

- finite number of roads and junctions
- each arc can be modeled by [a, b]
- a macroscopic traffic model on each arc

• *n* incoming arcs

- *n* incoming arcs
- *m* outgoing arcs

- *n* incoming arcs
- m outgoing arcs
- a traffic model on each arc

- *n* incoming arcs
- m outgoing arcs
- a traffic model on each arc

LWR Aw-Rascle-Zhang Phase-Transitions models

$$\rho_t + f(\rho)_x = 0$$

$$\rho_t + f(\rho)_x = 0$$

$$\rho_t + f(\rho)_x = 0$$

- \bullet $\rho(t,x)$ denotes the density of cars at time t>0 and in the position x
- $f(\rho)$ is the flux

$$\rho_t + f(\rho)_X = 0$$

- \bullet $\rho(t,x)$ denotes the density of cars at time t>0 and in the position x
- $f(\rho)$ is the flux and it is given by $f(\rho) = \rho v$, where v is the average velocity

$$\rho_t + f(\rho)_x = 0$$

- \bullet $\rho(t,x)$ denotes the density of cars at time t>0 and in the position x
- $f(\rho)$ is the flux and it is given by $f(\rho) = \rho v$, where v is the average velocity
- lacktriangle v depends only on ρ in a decreasing way

$$\rho_t + f(\rho)_x = 0$$

- \bullet $\rho(t,x)$ denotes the density of cars at time t>0 and in the position x
- $f(\rho)$ is the flux and it is given by $f(\rho) = \rho v$, where v is the average velocity
- v depends only on ρ in a decreasing way
- $f(0) = f(\rho_{max}) = 0$ is a strictly concave function

$$\rho_t + f(\rho)_x = 0$$

- \bullet $\rho(t,x)$ denotes the density of cars at time t>0 and in the position x
- $f(\rho)$ is the flux and it is given by $f(\rho) = \rho v$, where v is the average velocity
- v depends only on ρ in a decreasing way
- $f(0) = f(\rho_{max}) = 0$ is a strictly concave function

Free phase Ω_f :	$\partial_{t}\rho+\partial_{x}\left(\rho V\right)=0$
Congested phase Ω_c :	$\begin{cases} \partial_t \rho + \partial_x \left(\rho \mathbf{v}(\rho, \mathbf{q}) \right) = 0 \\ \partial_t \mathbf{q} + \partial_x \left(\mathbf{q} \mathbf{v}(\rho, \mathbf{q}) \right) = 0 \end{cases}$

Free phase Ω_f :

$$\partial_{t}\rho + \partial_{x} (\rho V) = 0$$

$$\partial_{t}\rho + \partial_{x} (\rho V(\rho, q)) = 0$$

$$\partial_{t}q + \partial_{x} (q V(\rho, q)) = 0$$

Free phase Ω_f :

$$\partial_t \rho + \partial_X \left(\rho V \right) = 0$$

$$\begin{cases} \partial_t \rho + \partial_x \left(\rho v(\rho, q) \right) = 0 \\ \partial_t q + \partial_x \left(q v(\rho, q) \right) = 0 \end{cases}$$

- Colombo, Marcellini, Rascle. A 2-phase traffic model based on a speed bound. SIMA 2010.
- Blandin, Work, Goatin, Piccoli, Bayen. A general phase transition model for vehicular traffic. SIMA 2011.

Free phase Ω_f :

$$\partial_t \rho + \partial_x \left(\rho V \right) = 0$$

$$\begin{cases} \partial_t \rho + \partial_x \left(\rho v(\rho, q) \right) = 0 \\ \partial_t q + \partial_x \left(q v(\rho, q) \right) = 0 \end{cases}$$

- Colombo, Marcellini, Rascle. A 2-phase traffic model based on a speed bound. SIMA 2010.
- Blandin, Work, Goatin, Piccoli, Bayen. A general phase transition model for vehicular traffic. SIMA 2011.

Free phase Ω_f :

$$\partial_t \rho + \partial_x \left(\rho V \right) = 0$$

$$\begin{cases} \partial_t \rho + \partial_x \left(\rho v(\rho, q) \right) = 0 \\ \partial_t q + \partial_x \left(q v(\rho, q) \right) = 0 \end{cases}$$

- Colombo, Marcellini, Rascle. A 2-phase traffic model based on a speed bound. SIMA 2010.
- Blandin, Work, Goatin, Piccoli, Bayen. A general phase transition model for vehicular traffic. SIMA 2011.

LWR: Riemann problem at a junction

n incoming and m outgoing arcs

$$\begin{cases} \frac{\partial}{\partial t}\rho_I + \frac{\partial}{\partial x}f(\rho_I) = 0\\ \rho_I(0, x) = \rho_{I,0} \end{cases} I = 1, \dots, n + m$$

n incoming and m outgoing arcs

- n incoming and m outgoing arcs
- Distribution matrix $A \in M^{m \times n}$

- n incoming and m outgoing arcs
- Distribution matrix $A \in M^{m \times n}$
- Constraints

$$A \cdot (f(\rho_1), \ldots, f(\rho_n))^T = (f(\rho_{n+1}), \ldots, f(\rho_{n+m}))^T$$

on the fluxes at J

- n incoming and m outgoing arcs
- Distribution matrix $A \in M^{m \times n}$
- Constraints

$$A \cdot (f(\rho_1), \ldots, f(\rho_n))^T = (f(\rho_{n+1}), \ldots, f(\rho_{n+m}))^T$$

on the fluxes at J

• Choose the solution maximizing $\sum_{i=1}^{n} f(\rho_i)$

- n incoming and m outgoing arcs
- Distribution matrix $A \in M^{m \times n}$
- Constraints

$$A \cdot (f(\rho_1), \ldots, f(\rho_n))^T = (f(\rho_{n+1}), \ldots, f(\rho_{n+m}))^T$$

on the fluxes at J

• Choose the solution maximizing $\sum_{i=1}^{n} f(\rho_i)$

• *n* incoming and *m* outgoing arcs

- n incoming and m outgoing arcs
- Maximize the fluxes $\Gamma = \sum_{i=1}^{n} f(\rho_i) = \sum_{j=n+1}^{n+m} f(\rho_i)$

- n incoming and m outgoing arcs
- Maximize the fluxes $\Gamma = \sum_{i=1}^{n} f(\rho_i) = \sum_{j=n+1}^{n+m} f(\rho_i)$
- Distribution over incoming roads and over outgoing roads

- *n* incoming and *m* outgoing arcs
- Maximize the fluxes $\Gamma = \sum_{i=1}^{n} f(\rho_i) = \sum_{j=n+1}^{n+m} f(\rho_i)$
- Distribution over incoming roads and over outgoing roads

Theorem [CGP 2005, AIP 2009]

Let RS be the Riemann solver 1 or 2.

For every T>0, there exists a solution $(\rho_1,\ldots,\rho_{n+m})$ for the Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t}\rho_{I} + \frac{\partial}{\partial x}f(\rho_{I}) = 0\\ \rho_{I}(0, x) = \rho_{I,0}(x) \end{cases} I = 1, \dots, n + m$$

such that

$$\mathcal{RS}(\rho_1(t,0),\ldots,\rho_{n+m}(t,0)) = (\rho_1(t,0),\ldots,\rho_{n+m}(t,0))$$

for a.e. $t \in [0, T]$.

Some comments...

Some comments...

• the proof is based on the wave-front tracking technique

Some comments...

- the proof is based on the wave-front tracking technique
- the same results hold for more general Riemann solvers

Some comments...

- the proof is based on the wave-front tracking technique
- the same results hold for more general Riemann solvers
- RS1: counterexample to the Lipschitz continuous dependence w.r.t. the initial condition

LWR on a junction: existence result

Some comments...

- the proof is based on the wave-front tracking technique
- the same results hold for more general Riemann solvers
- RS1: counterexample to the Lipschitz continuous dependence w.r.t. the initial condition
- RS2: Lipschitz continuous dependence w.r.t. the initial condition

$$\partial_t \rho + \partial_x f(\rho) = 0$$

$$0$$

f and g concave functions

- f and g concave functions
- f(0) = 0 and g(0) = 0

- f and g concave functions
- f(0) = 0 and g(0) = 0
- $f(\rho_{max}) = 0$ and $g(\rho_{max}) = 0$

- f and g concave functions
- f(0) = 0 and g(0) = 0
- $f(\rho_{max}) = 0$ and $g(\rho_{max}) = 0$
- f and g have a unique point of maximum

Bottleneck: solutions x = 0

• For each $\gamma \in [0, \min{\{\max{f}, \max{g}\}}]$ there exists a Riemann solver \mathcal{RS}_{γ} , which selects a solution with flux lower than γ at x = 0

- For each $\gamma \in [0, \min{\{\max{f}, \max{g}\}}]$ there exists a Riemann solver \mathcal{RS}_{γ} , which selects a solution with flux lower than γ at x = 0
- For each \mathcal{RS}_{γ} and T > 0 there is a unique solution (ρ_1, ρ_2) for the Cauchy problem

$$\begin{cases} \partial_{t}\rho + \partial_{x}f(\rho) = 0 & x < 0 \\ \partial_{t}\rho + \partial_{x}g(\rho) = 0 & x > 0 \\ \rho_{1}(0, x) = \rho_{1,0}(x) & x < 0 \\ \rho_{2}(0, x) = \rho_{2,0}(x) & x > 0 \end{cases}$$

- For each $\gamma \in [0, \min{\{\max{f}, \max{g}\}}]$ there exists a Riemann solver \mathcal{RS}_{γ} , which selects a solution with flux lower than γ at x = 0
- For each \mathcal{RS}_{γ} and T > 0 there is a unique solution (ρ_1, ρ_2) for the Cauchy problem

$$\begin{cases} \partial_{t}\rho + \partial_{x}f(\rho) = 0 & x < 0 \\ \partial_{t}\rho + \partial_{x}g(\rho) = 0 & x > 0 \\ \rho_{1}(0, x) = \rho_{1,0}(x) & x < 0 \\ \rho_{2}(0, x) = \rho_{2,0}(x) & x > 0 \end{cases}$$

- [NHM 2007]
- Colombo, Goatin. A well posed conservation law with a variable unilateral constraint. J. Differential Equations 2007.

 Applications: telecommunications, car traffic, supply chains.

- Applications: telecommunications, car traffic, supply chains.
- Herty, Klar, Piccoli. Existence of solutions for supply chain models based on partial differential equations. SIMA, 2007.

- Applications: telecommunications, car traffic, supply chains.
- Herty, Klar, Piccoli. Existence of solutions for supply chain models based on partial differential equations. SIMA, 2007.
- Herty, Lebacque, Moutari. A novel model for intersections of vehicular traffic flow. NHM, 2009.

$$\begin{cases} \partial_{t}\rho_{I}(t,x) + \partial_{x}f(\rho_{I}(t,x)) = 0, \\ r'(t) = \sum_{i=1}^{n} f(\rho_{i}(t,0-)) - \sum_{j=n+1}^{n+m} f(\rho_{j}(t,0+)), \\ \rho_{I}(0,x) = \bar{\rho}_{I,0}, \\ r(0) = r_{0}, \end{cases}$$

$$I \in \{1, \dots, n+m\}$$

Case
$$0 < r_0 < r_{max}$$

 Γ¹_{inc}, Γ¹_{out}: maximal possible fluxes on incoming and outgoing arcs

Case $0 < r_0 < r_{max}$

- Γ¹_{inc}, Γ¹_{out}: maximal possible fluxes on incoming and outgoing arcs
- $\Gamma_{inc} = \min \left\{ \Gamma_{inc}^1, \mu \right\}$ and $\Gamma_{out} = \min \left\{ \Gamma_{out}^1, \mu \right\}$

Case $0 < r_0 < r_{max}$

- Γ¹_{inc}, Γ¹_{out}: maximal possible fluxes on incoming and outgoing arcs
- $\Gamma_{inc} = \min \left\{ \Gamma_{inc}^1, \mu \right\}$ and $\Gamma_{out} = \min \left\{ \Gamma_{out}^1, \mu \right\}$
- distribution on the arcs

Case $0 < r_0 < r_{max}$

- Γ¹_{inc}, Γ¹_{out}: maximal possible fluxes on incoming and outgoing arcs
- $\Gamma_{inc} = \min \left\{ \Gamma_{inc}^1, \mu \right\}$ and $\Gamma_{out} = \min \left\{ \Gamma_{out}^1, \mu \right\}$
- distribution on the arcs
- $r'(t) = \Gamma_{inc} \Gamma_{out}$

Case $r_0 = 0$

- Γ^1_{inc} , Γ^1_{out} : maximal possible fluxes on incoming and outgoing arcs
- $\Gamma_{inc} = \min \left\{ \Gamma_{inc}^1, \mu \right\}$ and $\Gamma_{out} = \min \left\{ \Gamma_{inc}^1, \Gamma_{out}^1, \mu \right\}$
- distribution on the arcs
- $r'(t) = \Gamma_{inc} \Gamma_{out}$

Case $r_0 = r_{max}$

- Γ¹_{inc}, Γ¹_{out}: maximal possible fluxes on incoming and outgoing arcs
- $\Gamma_{inc} = \min \left\{ \Gamma_{inc}^1, \Gamma_{out}^1, \mu \right\}$ and $\Gamma_{out} = \min \left\{ \Gamma_{out}^1, \mu \right\}$
- distribution on the arcs
- $r'(t) = \Gamma_{inc} \Gamma_{out}$

Junction with buffer: Cauchy problem

$$\begin{cases} \partial_{t}\rho_{I}(t,x) + \partial_{x}f(\rho_{I}(t,x)) = 0, \\ r'(t) = \sum_{i=1}^{n} f(\rho_{i}(t,0-)) - \sum_{j=n+1}^{n+m} f(\rho_{j}(t,0+)), \\ \rho_{I}(0,x) = \rho_{I,0}(x), \\ r(0) = r_{0}, \end{cases} I \in \{1,\ldots,n+m\}$$

Junction with buffer: Cauchy problem

$$\begin{cases} \partial_{t}\rho_{I}(t,x) + \partial_{x}f(\rho_{I}(t,x)) = 0, \\ r'(t) = \sum_{i=1}^{n} f(\rho_{i}(t,0-)) - \sum_{j=n+1}^{n+m} f(\rho_{j}(t,0+)), \\ \rho_{I}(0,x) = \rho_{I,0}(x), \\ r(0) = r_{0}, \end{cases} I \in \{1,\ldots,n+m\}$$

Theorem [DCDS-A, 2012]

For every T > 0, the Cauchy problem admits a weak solution.

Junction with buffer: Cauchy problem

$$\begin{cases} \partial_{t}\rho_{I}(t,x) + \partial_{x}f(\rho_{I}(t,x)) = 0, \\ r'(t) = \sum_{i=1}^{n} f(\rho_{i}(t,0-)) - \sum_{j=n+1}^{n+m} f(\rho_{j}(t,0+)), \\ \rho_{I}(0,x) = \rho_{I,0}(x), \\ r(0) = r_{0}, \end{cases} I \in \{1,\ldots,n+m\}$$

Theorem [DCDS-A, 2012]

For every T>0, the Cauchy problem admits a weak solution. Moreover the solution depends in a Lipschitz continuous way w.r.t the initial conditions.

Multi-buffers

Multi-buffers

Multi-buffers

• *n* incoming, *m* outgoing arcs, *m* buffers

- *n* incoming, *m* outgoing arcs, *m* buffers
- Distribution matrix $A \in M^{m \times n}$

- *n* incoming, *m* outgoing arcs, *m* buffers
- Distribution matrix $A \in M^{m \times n}$
- Constraints

$$A \cdot (f(\rho_1), \ldots, f(\rho_n))^T = (\gamma_{n+1}, \ldots, \gamma_{n+m})^T$$

on the fluxes at J

- *n* incoming, *m* outgoing arcs, *m* buffers
- Distribution matrix $A \in M^{m \times n}$
- Constraints

$$A \cdot (f(\rho_1), \ldots, f(\rho_n))^T = (\gamma_{n+1}, \ldots, \gamma_{n+m})^T$$

on the fluxes at J

Maximization

LWR-PT

LWR

$$\partial_t \rho + \partial_x f(\rho) = 0$$

0

X

LWR-PT

LWR-PT

Solution at x = 0

LWR-PT

Solution at x = 0

• Conservation of the number of cars: equality of the fluxes

LWR-PT

Solution at x = 0

- Conservation of the number of cars: equality of the fluxes
- Maximization of the flux

Theorem [GP, JHDE, to appear]

For every T > 0, the Cauchy problem admits a weak solution.

Theorem [GP, JHDE, to appear]

For every T > 0, the Cauchy problem admits a weak solution.

• The proof is based on the wave-front tracking technique

Theorem [GP, JHDE, to appear]

For every T > 0, the Cauchy problem admits a weak solution.

- The proof is based on the wave-front tracking technique
- It is just an existence result

Theorem [GP, JHDE, to appear]

For every T > 0, the Cauchy problem admits a weak solution.

- The proof is based on the wave-front tracking technique
- It is just an existence result
- The same result holds for the case PT-LWR

•
$$F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$$

- $F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$

- $F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$

- $\bullet \ F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$
- Interaction at x = 0: $\Delta F_1 = 0$ and $\Delta F_2 \ge 0$

- $\bullet \ F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$
- Interaction at x = 0: $\Delta F_1 = 0$ and $\Delta F_2 \ge 0$
- Interaction at $x \neq 0$: $\Delta F_1 \geq 0$ and $\Delta F_2 = 0$

- $F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$
- Interaction at x = 0: $\Delta F_1 = 0$ and $\Delta F_2 \ge 0$
- Interaction at $x \neq 0$: $\Delta F_1 \geq 0$ and $\Delta F_2 = 0$
- $F_1(t) \leq K_{F_1(0)}$

- $F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$
- Interaction at x = 0: $\Delta F_1 = 0$ and $\Delta F_2 \ge 0$
- Interaction at $x \neq 0$: $\Delta F_1 \geq 0$ and $\Delta F_2 = 0$
- $F_1(t) \leq K_{F_1(0)}$
- Under suitable assumptions:

$$C_1F_1(t) \le F_2(t) \le C_2F_1(t) + C_3 \cdot \{\text{number of PT waves}\}\$$

- $F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} |\Delta \frac{q(t, x)}{\rho(t, x)}|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$
- Interaction at x = 0: $\Delta F_1 = 0$ and $\Delta F_2 \ge 0$
- Interaction at $x \neq 0$: $\Delta F_1 \geq 0$ and $\Delta F_2 = 0$
- $F_1(t) \leq K_{F_1(0)}$
- Under suitable assumptions:

$$C_1F_1(t) \le F_2(t) \le C_2F_1(t) + C_3 \cdot \{\text{number of PT waves}\}\$$

• $F_2(t) \leq M$

- $F_1(t) = TV f(\rho(t,\cdot)) + TV (\rho v(\rho,q))$
- $W(t) = \sum_{x \in 1(t) \cup PT(t)} |\Delta v(t, x)| + \sum_{x \in 2(t) \cup PT(t)} \left| \Delta \frac{q(t, x)}{\rho(t, x)} \right|$
- $F_2(t) = TV f(\rho(t,\cdot)) + W(t)$
- Interaction at x = 0: $\Delta F_1 = 0$ and $\Delta F_2 \ge 0$
- Interaction at $x \neq 0$: $\Delta F_1 \geq 0$ and $\Delta F_2 = 0$
- $F_1(t) \leq K_{F_1(0)}$
- Under suitable assumptions: $C_1F_1(t) \le F_2(t) \le C_2F_1(t) + C_3 \cdot \{\text{number of PT waves}\}$
- $F_2(t) < M$
- estimate on the number of waves and interactions