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Road networks

finite number of roads and junctions
each arc can be modeled by [a,b]

a macroscopic traffic model on each arc
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Junctions

n incoming arcs

m outgoing arcs
a traffic model on each
arc

LWR
Aw-Rascle-Zhang
Phase-Transitions models
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The LWR model

ρt + f (ρ)x = 0

ρ(t , x) denotes the density of cars at time t > 0 and in the position x

f (ρ) is the flux

and it is given by f (ρ) = ρv , where v is the average velocity

v depends only on ρ in a decreasing way

f (0) = f (ρmax ) = 0 is a strictly concave function

v

ρ

vmax

ρmax

f

ρρmax
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A Phase-Transition model

Free phase Ωf : ∂tρ+ ∂x (ρV ) = 0

Congested phase Ωc :
{
∂tρ+ ∂x (ρv(ρ,q)) = 0
∂tq + ∂x (qv(ρ,q)) = 0

q

ρ

0

v

ρ

Colombo, Marcellini, Rascle. A 2-phase traffic model based on a speed bound.
SIMA 2010.

Blandin, Work, Goatin, Piccoli, Bayen. A general phase transition model for
vehicular traffic. SIMA 2011.
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LWR: Riemann problem at a junction

n incoming and m outgoing arcs

{
∂
∂t ρl + ∂

∂x f (ρl) = 0

ρl(0, x) = ρl,0
l = 1, . . . ,n + m
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LWR on a junction: Riemann solver 1.

n incoming and m outgoing arcs

Distribution matrix A ∈ Mm×n

Constraints

A · (f (ρ1), . . . , f (ρn))T = (f (ρn+1), . . . , f (ρn+m))T

on the fluxes at J
Choose the solution maximizing

∑n
i=1 f (ρi)

γ2

γ1
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LWR on a junction: Riemann solver 2

n incoming and m outgoing arcs

Maximize the fluxes Γ =
∑n

i=1 f (ρi) =
∑n+m

j=n+1 f (ρi)

Distribution over incoming roads and over outgoing roads

γ2

γ1

γ4

γ3

TRAM2, March 21, 2013 Various possibilities for solving Riemann problems at junctions



LWR on a junction: Riemann solver 2

n incoming and m outgoing arcs
Maximize the fluxes Γ =

∑n
i=1 f (ρi) =

∑n+m
j=n+1 f (ρi)

Distribution over incoming roads and over outgoing roads

γ2

γ1

γ4

γ3

TRAM2, March 21, 2013 Various possibilities for solving Riemann problems at junctions



LWR on a junction: Riemann solver 2

n incoming and m outgoing arcs
Maximize the fluxes Γ =

∑n
i=1 f (ρi) =

∑n+m
j=n+1 f (ρi)

Distribution over incoming roads and over outgoing roads

γ2

γ1

γ4

γ3

TRAM2, March 21, 2013 Various possibilities for solving Riemann problems at junctions



LWR on a junction: Riemann solver 2

n incoming and m outgoing arcs
Maximize the fluxes Γ =

∑n
i=1 f (ρi) =

∑n+m
j=n+1 f (ρi)

Distribution over incoming roads and over outgoing roads

γ2

γ1

γ4

γ3

TRAM2, March 21, 2013 Various possibilities for solving Riemann problems at junctions



LWR on a junction: existence result

Theorem [CGP 2005, AIP 2009]

Let RS be the Riemann solver 1 or 2.
For every T > 0, there exists a solution (ρ1, . . . , ρn+m) for the Cauchy
problem {

∂
∂t ρl + ∂

∂x f (ρl ) = 0

ρl (0, x) = ρl,0(x)
l = 1, . . . ,n + m

such that

RS(ρ1(t ,0), . . . , ρn+m(t ,0)) = (ρ1(t ,0), . . . , ρn+m(t ,0))

for a.e. t ∈ [0,T ].
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LWR on a junction: existence result

Some comments...

the proof is based on the wave-front tracking technique
the same results hold for more general Riemann solvers
RS1: counterexample to the Lipschitz continuous
dependence w.r.t. the initial condition
RS2: Lipschitz continuous dependence w.r.t. the initial
condition
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Bottleneck

x
0

f and g concave functions
f (0) = 0 and g(0) = 0
f (ρmax ) = 0 and g(ρmax ) = 0
f and g have a unique point of maximum
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Bottleneck: solutions x = 0

For each γ ∈ [0,min {max f ,max g}] there exists a
Riemann solver RSγ , which selects a solution with flux
lower than γ at x = 0

For each RSγ and T > 0 there is a unique solution (ρ1, ρ2)
for the Cauchy problem

∂tρ+ ∂x f (ρ) = 0 x < 0
∂tρ+ ∂xg (ρ) = 0 x > 0
ρ1(0, x) = ρ1,0(x) x < 0
ρ2(0, x) = ρ2,0(x) x > 0

[NHM 2007]

Colombo, Goatin. A well posed conservation law with a variable
unilateral constraint. J. Differential Equations 2007.
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Junction with buffer

Applications: telecommunications, car traffic, supply
chains.
Herty, Klar, Piccoli. Existence of solutions for supply chain
models based on partial differential equations. SIMA, 2007.
Herty, Lebacque, Moutari. A novel model for intersections of
vehicular traffic flow. NHM, 2009.
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Junction with buffer: Riemann problem



∂tρl(t , x) + ∂x f (ρl(t , x)) = 0,

r ′(t) =
n∑

i=1

f (ρi(t ,0−))−
n+m∑

j=n+1

f (ρj(t ,0+)),

ρl(0, x) = ρ̄l,0,

r(0) = r0,

l ∈ {1, . . . ,n + m}
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Junction with buffer: Riemann problem

Case 0 < r0 < rmax

Γ1
inc , Γ

1
out : maximal possible fluxes on incoming and

outgoing arcs

Γinc = min
{

Γ1
inc , µ

}
and Γout = min

{
Γ1

out , µ
}

distribution on the arcs
r ′(t) = Γinc − Γout
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Junction with buffer: Riemann problem

Case r0 = 0

Γ1
inc , Γ

1
out : maximal possible fluxes on incoming and

outgoing arcs
Γinc = min

{
Γ1

inc , µ
}

and Γout = min
{

Γ1
inc , Γ

1
out , µ

}
distribution on the arcs
r ′(t) = Γinc − Γout
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Junction with buffer: Cauchy problem



∂tρl(t , x) + ∂x f (ρl(t , x)) = 0,

r ′(t) =
n∑

i=1

f (ρi(t ,0−))−
n+m∑

j=n+1

f (ρj(t ,0+)),

ρl(0, x) = ρl,0(x),

r(0) = r0,

l ∈ {1, . . . ,n + m}

Theorem [DCDS-A, 2012]

For every T > 0, the Cauchy problem admits a weak solution.

Moreover the solution depends in a Lipschitz continuous way
w.r.t the initial conditions.
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Multi-buffers
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Multi-buffers: Riemann problem [GP, 2013]

n incoming, m outgoing arcs, m buffers

Distribution matrix A ∈ Mm×n

Constraints

A · (f (ρ1), . . . , f (ρn))T = (γn+1, . . . , γn+m)T

on the fluxes at J
Maximization
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LWR-PT

x
0

Solution at x = 0

Conservation of the number of cars: equality of the fluxes
Maximization of the flux
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LWR-PT: Cauchy problem

Theorem [GP, JHDE, to appear]

For every T > 0, the Cauchy problem admits a weak solution.

The proof is based on the wave-front tracking technique
It is just an existence result
The same result holds for the case PT-LWR
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LWR-PT: Cauchy problem — sketch of proof

F1(t) = TV f (ρ(t , ·)) + TV (ρv(ρ,q))

W (t) =
∑

x∈1(t)∪PT (t) |∆v (t , x)|+
∑

x∈2(t)∪PT (t)

∣∣∣∆q(t ,x)
ρ(t ,x)

∣∣∣
F2(t) = TV f (ρ(t , ·)) + W (t)
Interaction at x = 0: ∆F1 = 0 and ∆F2 ≥ 0
Interaction at x 6= 0: ∆F1 ≥ 0 and ∆F2 = 0
F1(t) ≤ KF1(0)

Under suitable assumptions:
C1F1(t) ≤ F2(t) ≤ C2F1(t) + C3 · {number of PT waves}
F2(t) ≤ M
estimate on the number of waves and interactions
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