How Can Macroscopic Models Reveal Self-Organization in Traffic Flow?

E. Cristiani, B. Piccoli, A. Tosin

Traffic Modeling and Management: Trends and Perspectives VI Workshop on Mathematical Foundations of Traffic Sophia Antipolis, France

March 20-22, 2013

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

March 20-22, 2013 1 / 14

通 ト イヨ ト イヨト

We are interested in modeling N agents moving in a domain Ω .

Their positions are denoted by

$$X = ig(X^1(t),\ldots,X^N(t)ig)\in \Omega^N, \quad t>0$$

and their average density by

$$\rho(x,t), \quad x \in \Omega, \ t > 0$$

3

< 回 ト < 三 ト < 三 ト

If we have...

...a microscopic model...

$$\dot{X}^{i} = \mathbf{v_{m}}[X], \ i = 1, ..., N,$$
 $\mathbf{v_{m}}[X](X^{i}) = \mathbf{v_{des}} + \sum_{j} F(X^{i}; X^{j})$

If we have ...

...a microscopic model...

$$\dot{X}^{i} = \mathbf{v_{m}}[X], \ i = 1, ..., N,$$
 $\mathbf{v_{m}}[X](X^{i}) = \mathbf{v_{des}} + \sum_{j} F(X^{i}; X^{j})$

... and a macroscopic model...

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v_M[\rho]) = 0, \qquad v_M[\rho(\cdot, t)](x) = v_{\mathsf{des}} + \int_{\Omega} F(x; y) \rho(y, t) dy$$

- 2

イロト イポト イヨト イヨト

If we have ...

...a microscopic model...

$$\dot{X}^{i} = \mathbf{v_{m}}[X], \ i = 1, ..., N,$$
 $\mathbf{v_{m}}[X](X^{i}) = \mathbf{v_{des}} + \sum_{j} F(X^{i}; X^{j})$

... and a macroscopic model...

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v_M[\rho]) = 0, \qquad v_M[\rho(\cdot, t)](x) = v_{\mathsf{des}} + \int_{\Omega} F(x; y) \rho(y, t) dy$$

we can couple them by means of the velocity field

$$\nu_{mM}[X,\rho(t)](x) = \theta \nu_m[X](x) + (1-\theta) \Lambda \nu_M[\rho(\cdot,t)](x), \quad \theta \in [0,1]$$

Then, both models evolve driven by v_{mM}

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

March 20-22, 2013 3 / 14

Mathematical justification [CPT2011]¹

The system is described by one equation for a time-evolving measure μ_t ,

 $\mu_t(E) =$ mass of observed material in $E, \quad \forall E \in \mathbb{R}^d, \quad \forall t > 0$

Equation for μ_t (conservation law for the mass)

$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\mu_t \ \mathbf{v}[\mu_t]) = 0, \qquad \mathbf{v}[\mu_t](\mathbf{x}) = \mathbf{v}_{des} + \int_{\Omega} F(\mathbf{x}; \mathbf{y}) d\mu_t(\mathbf{y})$$

where

$$\mu_t = \sum_{i=1}^N \delta_{X^i(t)}$$

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

¹E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155–182. €

Mathematical justification [CPT2011]¹

The system is described by one equation for a time-evolving measure μ_t ,

 $\mu_t(E) =$ mass of observed material in $E, \quad \forall E \in \mathbb{R}^d, \quad \forall t > 0$

Equation for μ_t (conservation law for the mass)

$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\mu_t \ \mathbf{v}[\mu_t]) = 0, \qquad \mathbf{v}[\mu_t](x) = \mathbf{v}_{des} + \int_{\Omega} F(x; y) d\mu_t(y)$$

where

$$\mu_t = \Lambda \rho(\cdot, t) \mathcal{L}^d$$

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

March 20-22, 2013 4 / 14

¹E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155–182. €

Mathematical justification [CPT2011]¹

The system is described by one equation for a time-evolving measure μ_t ,

 $\mu_t(E) =$ mass of observed material in $E, \quad \forall E \in \mathbb{R}^d, \quad \forall t > 0$

Equation for μ_t (conservation law for the mass)

$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\mu_t \ \mathbf{v}[\mu_t]) = 0, \qquad \mathbf{v}[\mu_t](\mathbf{x}) = \mathbf{v}_{des} + \int_{\Omega} F(\mathbf{x}; \mathbf{y}) d\mu_t(\mathbf{y})$$

where

$$\mu_t = heta \sum_{i=1}^N \delta_{X^i(t)} + (1- heta) \Lambda
ho(\cdot, t) \mathcal{L}^d, \quad heta \in [0, 1]$$

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

¹E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155–182. €

Important remarks

Both models are used

Both scales are observed (θ tunes the contributions of the scales)

Both discrete positions X^i and average density ρ are tracked

A B M A B M

Important remarks

Both models are used

Both scales are observed (θ tunes the contributions of the scales)

Both discrete positions X^i and average density ρ are tracked

Advantages

Catch at large scale complex phenomena caused by granularity visible at small scale.

Take into account differences among individuals and random fluctuations in an averaged context.

くほと くほと くほと

Important remarks

Both models are used

Both scales are observed (θ tunes the contributions of the scales)

Both discrete positions X^i and average density ρ are tracked

Advantages

Catch at large scale complex phenomena caused by granularity visible at small scale.

Take into account differences among individuals and random fluctuations in an averaged context.

Drawbacks

A more complex algorithm and an higher CPU time.

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

An application to pedestrian flow

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

A D A D A D A

Setting: 2 roads + 1 junction

No traffic light, no priorities, no rules (Roman style)

E. Cristiani (TRAM2 2013)

___ ▶

3

Toward vehicular traffic modeling

2D dynamics

 $v_{des} = constant speed in the road direction$

$$F(x;y) = \frac{-\mathcal{C}}{|y-x|^{\gamma}} \mathbf{1}_{\mathcal{S}(x)}(y) \frac{y-x}{|y-x|}$$

1D-2D coupling

If a 2D microscopic approach is possible, a 2D macroscopic approach is unfeasible. BCs at road sides are also numerically intractable.

After the evaluation of a fully 2D velocity field v_{mM} , the macroscopic scale is evolved by means of the projection of v_{mM} along the leading space dimension.

In this way we are able to couple a 2D microscopic model with a 1D macroscopic model.

Numerical results

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Numerical results

Micro dynamics induces a self-organized oscillatory pattern at junction

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

March 20-22, 2013 9 / 14

< 一型

Space-dependent θ

The multiscale parameter θ is assumed to be space-dependent, i.e. $\theta = \theta(x)$.

This way we account for the proper scale in the proper portion of the domain.

NATURAL CHOICE: micro at junctions, macro elsewhere.

Numerical results for space-dependent θ

$$heta(x) = \left\{egin{array}{cc} 1 & x \in V \ 0 & x \in (\Omega^1 \cup \Omega^2) ig V \end{array}
ight.$$

E. Cristiani (TRAM2 2013)

-March 20-22, 2013 11 / 14

- 一司

3

Numerical results for space-dependent θ

$$heta(x) = \left\{egin{array}{cc} 1 & x \in V \ 0 & x \in (\Omega^1 \cup \Omega^2) ig V \end{array}
ight.$$

Space-dependent θ

E. Cristiani (TRAM2 2013)

Self-Organization in Traffic Flow

Conclusions and future work

Conclusions

We got macroscopic simulations where granular effects are not lost.

Future work

- Explore the potential of this technique investigating other fields of applications.
- Control of traffic flow

くほと くほと くほと

- E. Cristiani, B. Piccoli, A. Tosin, *Multiscale modeling of granular flows with application to crowd dynamics*, Multiscale Model. Simul., 9 (2011), pp. 155–182.
- E. Cristiani, B. Piccoli, A. Tosin, How can macroscopic models reveal self-organization in traffic flow?, Proc. IEEE CDC 2012 Conference, Maui, HI, December 10-13, 2012.