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Notations

We are interested in modeling N agents moving in a domain Ω.

Their positions are denoted by

X =
(
X 1(t), . . . ,XN(t)

)
∈ ΩN , t > 0

and their average density by

ρ(x , t), x ∈ Ω, t > 0
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If we have...

...a microscopic model...

Ẋ i = vm[X ], i = 1, . . . ,N, vm[X ](X i ) = vdes +
∑
j

F (X i ; X j)

... and a macroscopic model...

∂ρ

∂t
+∇ · (ρvM [ρ]) = 0, vM [ρ(·, t)](x) = vdes +

∫
Ω

F (x ; y)ρ(y , t)dy

we can couple them by means of the velocity field

vmM [X , ρ(t)](x) = θvm[X ](x) + (1− θ)ΛvM [ρ(·, t)](x), θ ∈ [0, 1]

Then, both models evolve driven by vmM
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Mathematical justification [CPT2011]1

The system is described by one equation for a time-evolving measure µt ,

µt(E ) = mass of observed material in E , ∀E ∈ Rd , ∀t > 0

Equation for µt (conservation law for the mass)

∂µt
∂t

+∇ · (µt v [µt ]) = 0, v [µt ](x) = vdes +

∫
Ω

F (x ; y)dµt(y)

where

µt =
N∑
i=1

δX i (t)

1
E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,

Multiscale Model. Simul., 9 (2011), 155–182.
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Important remarks

Both models are used

Both scales are observed (θ tunes the contributions of the scales)

Both discrete positions X i and average density ρ are tracked

Advantages

Catch at large scale complex phenomena caused by granularity visible at
small scale.
Take into account differences among individuals and random fluctuations
in an averaged context.

Drawbacks

A more complex algorithm and an higher CPU time.
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An application to pedestrian flow
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Setting: 2 roads + 1 junction

No traffic light, no priorities, no rules (Roman style)

Ω2

Ω1

x1

x2

v1des

v2des
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Toward vehicular traffic modeling

2D dynamics

vdes = constant speed in the road direction

F (x ; y) =
−C

|y − x |γ
1S(x)(y)

y − x

|y − x |

1D-2D coupling

If a 2D microscopic approach is possible, a 2D macroscopic approach is
unfeasible. BCs at road sides are also numerically intractable.

After the evaluation of a fully 2D velocity field vmM , the macroscopic scale
is evolved by means of the projection of vmM along the leading space
dimension.

In this way we are able to couple a 2D microscopic model with a 1D
macroscopic model.
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Numerical results
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Micro dynamics induces a self-organized oscillatory pattern at junction
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Space-dependent θ

Space-dependent θ

The multiscale parameter θ is assumed to be space-dependent, i.e.
θ=θ(x).
This way we account for the proper scale in the proper portion of the
domain.

NATURAL CHOICE: micro at junctions, macro elsewhere.
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Numerical results for space-dependent θ

θ(x) =

{
1 x ∈ V
0 x ∈ (Ω1 ∪ Ω2)\V
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Space-dependent θ

0 50 100 150 200
0

0.5

1

macro everywhere

0 50 100 150 200
0

0.5

1

micro everywhere

0 50 100 150 200
0

0.5

1

switch micro−macro

E. Cristiani (TRAM2 2013) Self-Organization in Traffic Flow March 20–22, 2013 12 / 14



Conclusions and future work

Conclusions

We got macroscopic simulations where granular effects are not lost.

Future work

Explore the potential of this technique investigating other fields of
applications.

Control of traffic flow
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