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First order scalar conservation law models

e Traffic state: density p(¢, ) of vehicles at time ¢ and location
* Scalar one dimensional conservation law, transport equation

Op | 9Q(p) _
Ot | ox =0

* Empirical flux function: the fundamental diagram

Newell-Daganzo Greenshields Kerner, Papageorgiou,Li

Q(p) : Q) 1 Q(p)

P R/2 P pc p
with R the maximal or jam density, and p. the critical density

* Flux is increasing for p < p. : free-flow phase
* Flux is decreasing for p = pc : congestion phase

[Lighthill, Whitham, 1955], [Richards, 1956], [Greenshields, 1935],[Garavello, Piccoli, 2006 ]e 2013 18M Corporation



Motivation for higher-order models

* Traffic satisfies “mass” conservation, what about other fundamental
conservation principles from fluid dynamics; conservation of momentum,
conservation of energy

[Lesort, Bourrel, Henn, 2003] ©2013 IBM Corporation



Motivation for higher-order models

* Traffic satisfies “mass” conservation, what about other fundamental
conservation principles from fluid dynamics; conservation of momentum,
conservation of energy

* Experimental observations of fundamental diagrams are more complex than
postulated by first order traffic models

NGSIM
: 1-80

NGSIM
: 1-80

[Blandin, Bretti, Cutolo, Piccoli, AMC, 2009]
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Motivation for higher-order models
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Motivation for higher-order models

* Traffic satisfies “mass” conservation, what about other fundamental
conservation principles from fluid dynamics; conservation of momentum,
conservation of energy

* Experimental observations of fundamental diagrams are more complex than
postulated by first order traffic models

* Experimental observations of real-time dynamics show phenomena that are
not accounted for by first-order models

* Need for model able to integrate measurements of different traffic quantities
(density/occupancy, flow, speed): data fusion

[Work, Blandin,Tossavainen, Piccoli, Bayen, 2010] ©2013 IBM Corporation



New data sources are available for understanding mobility patterns

= Trip statistics [LTA, 2012]
« 9.9 million trips per day (2010)
« 5 millions public transport trips (2010)

» Citizen as Sensors
— Mobile phones statistics [IDA, 2011]
. Mobile phone penetration in Singapore: 149.6% (2011)
. Penetration of 3G phones: 74.2% (2011)
Data volume: 2300 Millions SMS (Dec. 2011)

= Fused to form Real-time travel information

— Integrate EZ-Link data with the telco data for a more
complete picture of travel patterns

= Considerations: Citizen Privacy

— Benefits from new insights should be balanced against risk
of privacy infringement

Mobile Phones
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Need for data fusion

PeMS Ioop detector statlons Mobile Millennium, GPS point
‘ 3 j speeds July 29th 2010

*Loop detectors *Personal GPS
*Count and occupancy *Point speeds
*Localized in space *Distributed across the road:netweark



Need for data fusion
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Outline

* Motivation and history of macroscopic models of traffic flow
* Definition, properties and physical interpretation of phase transition model
e Junction problem formulation

* Numerical scheme for the phase transition model: the modified Godunov
scheme

* Performance of phase transition model on NGSIM datasets

© 2013 IBM Corporation



Macroscopic models of traffic flow

* First traffic measurements and
traffic relationships (ancestor of the
fundamental diagrams):
[Greenshields, 1934], [Greenberg,
1938], [Edie, 1960]

* “A 16 mm Simplex movie camera
was set about 350 feet from the
roadway so that each vehicle would
appear at least in two frames”.

* “Frames of picture” were
“superimposed upon a scale to show
the distance traveled”.

Greenshield, 1935

© 2013 IBM Corporation




Macroscopic models of traffic flow

* First traffic measurements and
traffic relationships (ancestor of the
fundamental diagrams):
[Greenshields, 1934], [Greenberg, ;
1938], [Edie, 1960] Rz

* First-order models: [Lighthill and
Whitham, 1956], [Richards, 1956]

Op | 0Q(p) __
Ot oxr 0

© 2013 IBM Corporation
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Macroscopic models of traffic flow

* First traffic measurements and
traffic relationships (ancestor of the
fundamental diagrams):
[Greenshields, 1934], [Greenberg, ;
1938], [Edie, 1960] Rz

* First-order models: [Lighthill and dp | aQ(P) — ()
Whitham, 1956], [Richards, 1956] ot ' Ox

* Applicability of Godunov scheme
for discretization of macroscopic
traffic models: [Lebacque, 1996]

At
pitt = pl 4 A (qa(pi1, PT) — qc (P}, piie))

© 2013 IBM Corporation
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Macroscopic models of traffic flow

* First traffic measurements and
traffic relationships (ancestor of the
fundamental diagrams):
[Greenshields, 1934], [Greenberg,
1938], [Edie, 1960]

* First-order models: [Lighthill and
Whitham, 1956], [Richards, 1956]

* Applicability of Godunov scheme
for discretization of macroscopic
traffic models: [Lebacque, 1996]

* Exhaustive analysis of case of
triangular fundamental diagram:
[Newell, Daganzo, 1990’s]

Q(p)
op | 8@(:0) _ O
ot ox

At

pitt = pl 4 A (qa(pi1, PT) — qc (P}, piie))

Q(p)

/ pc R

e
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Macroscopic models of traffic flow

* First traffic measurements and
traffic relationships (ancestor of the
fundamental diagrams):
[Greenshields, 1934], [Greenberg, }

1938], [Edie, 1960] Rz

* First-order models: [Lighthill and op | 0Q(p) — ()
Whitham, 1956], [Richards, 1956] ot = Ox

* Applicability of Godunov scheme ntl o AL o -
for discretization of macroscopic pi =Pt AL (ac(pi=1, pi') — ac(pi', Pis1))
traffic models: [Lebacque, 1996]

Q(p)

* Exhaustive analysis of case of /
triangular fundamental diagram: /
[Newell, Daganzo, 1990’s]

 Mathematical results for first-order
traffic flow models on networks:
[Garavello & Piccoli, 2003] ©20131BM Corporation



Macroscopic models of traffic flow

|

9p 4 Opv
8t+8a:

ov ov
ot TVa; =

=0

_ % dp
p Ox

4 Ve (,?r)—v

* First macroscopic models with two
variables (2 X 2 sytems of PDEs):
[Payne, 71], conservation of mass
and momentum

* Modified discretized version for
networks: [Papageorgiou et al, 90]

© 2013 IBM Corporation



Macroscopic models of traffic flow

+ apv —0 * First macroscopic models with two
- , ) variables (2 X 2 sytems of PDEs):
_ % 0p 4 v«(p)—v P 71 i f
8t vy &E _ poax + 5 [Payne, 71], conservation of mass

and momentum

* Modified discretized version for
networks: [Papageorgiou et al, 90]
* Critics of these 2 X 2 models: [Del
Castillo et al, 94], [Daganzo, 95]

* Drivers should have only positive I
speed Jacy(p,v) (—ﬁ v
* Drivers should have zero speed
only at maximal density Ax(p,v) = v % co

* Anisotropy: drivers should react
only to stimuli from the front

p

with f the Payne-Whitham flux

© 2013 IBM Corporation
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Macroscopic models of traffic flow

o | v _ * First macroscopic models with two
ot dx , 0 variables (2 X 2 sytems of PDEs):

v dv @ 0p 4 vx(p)=v Payne, 71], conservation of mass
875_'_@8:1:_ pax—i_ T [Payne, 71],

and momentum

* Modified discretized version for
networks: [Papageorgiou et al, 90]
* Critics of these 2 X 2 models: [Del
Castillo et al, 94], [Daganzo, 95]

* [Aw, Rascle, 2000]: “Resurrection
of second-order models of traffic
flows”

* Non-equilibrium model: [Zhang,
2002]

© 2013 IBM Corporation
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Macroscopic models of traffic flow

9p 4 9pv _
8t+8w_0

v o _ _cgdp | v(p)—v
ot TVa; = +

p Ox

* Critics of these 2 X 2 models: [Del

Castillo et al, 94], [Daganzo, 95]

ov ov / ov

o T Vs, =P %(P)a—m
(v

Tocre ) =0 vt plle)

* First macroscopic models with two
variables (2 X 2 sytems of PDEs):
[Payne, 71], conservation of mass
and momentum

* Modified discretized version for
networks: [Papageorgiou et al, 90]

* [Aw, Rascle, 2000]: “Resurrection
of second-order models of traffic
flows”

* Non-equilibrium model: [Zhang,
2002]

© 2013 IBM Corporation
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Macroscopic models of traffic flow

9p 4 9pv _
8t+8w_0

v o _ _cgdp | v(p)—v
ot TVa; = +

p Ox

* Critics of these 2 X 2 models: [Del
Castillo et al, 94], [Daganzo, 95]

0 0 / 0

% 40— o (p) 2
(v p

Tocre ) =0 vt plle)

* First macroscopic models with two
variables (2 X 2 sytems of PDEs):
[Payne, 71], conservation of mass
and momentum

* Modified discretized version for
networks: [Papageorgiou et al, 90]

* [Aw, Rascle, 2000]: “Resurrection
of second-order models of traffic
flows”

* Non-equilibrium model: [Zhang,
2002]

* Phase transition model: [Colombo,
2003], [Blandin et al, 2011]

© 2013 IBM Corporation



Outline

* Motivation and history of macroscopic models of traffic flow

* Definition, properties and physical interpretation of phase transition
models

* Junction problem formulation

* Numerical scheme for the phase transition model: the modified Godunov
scheme

* Performance of phase transition model on NGSIM datasets
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Phase transition model definition

» Definition of traffic state as

* in free-flow phase

*(p,q) incongestion phase
* Definition of the standard speed function

() vV in free-flow
v(p) =9 . in congestion
v (p) :
where v5(-)is smooth with positive values.

* Definition of speed as a perturbation around the standard speed in

congestion
8 {V in free-flow
’U p—

vc(p, Q) = ’U(S:(p)(]_ + q) in congestion

e Definition of

Oep+ Ox(pv) =0 in free-flow
Otp + Oz(pv) =0 in congestion
&thFaL(GI) = ()

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011] © 2013 IBM Corporation



Representations of phase transition model
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Phase transition model definition

* Analysis of congestion phase
* Eigenvalues and eigenvectors of Jacobian of flux
e Lax-curve: integral curve of eigenvectors
* Riemann-invariant: scalar quantity constant along Lax-curve

Eigenvalues | A1(p,q) =p(1+q)0pvi(p)trvilp) (1+2q) | Aa(p.q) = vilp) (1l +4q)
veenvectors | o= [ P = ve(p)
Eigenvectors Ty = ( p ) Ty = ( —(1+ q) 5,01’2{4'9} )
Nature of the [ VAi1.r1 = p“(1 + q)05,v3(p) + 2p(1 + N

Lax curves 2q)0,vi(p)+2qvi(p) VAzrz =0

Riemann-
invariants

q ffp

vel(p) (1 +4q)

* First family of Lax-curves is not genuinely-non-linear (in flux-density
coordinates curves GNL equivalent to all Lax-curves have same concavity)

» Second family of Lax-curves is linearly degenerate (information propagates
at a constant speed)

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011]

© 2013 IBM Corporation



Phase transition model definition

 Definition of free-flow and congestion phase as invariant domains of
dynamics

Qp={(p,a) [ (p,q) € [0, R] X [0,+00[ ,ve(p,q) =V , 0<p<
Qe = {(p, q) | (p.q) € [0.R] x [0,400] ,ve(p,q) <V , %z <

* Model parameters

* Free-flow speed 1/, jam density R, critical densityg, upper and lower
bound for perturbation,q_and ¢, .
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Fundamental diagram for higher-order models

* Non-equilibrium model (left), phase transition model (right)
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[Blandin, Argote, Bayen, Work, TR-B, 2012]
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Phase transition model: Riemann problem

Free-flow to free—flow Free-flow to free—flow

Udown

u
up

Flow
Space

Density Time

[Blandin, Argote, Bayen, Work, TR-B, 2012] ©2013 IBM Corporation



Phase transition model: Riemann problem

Congestion to congestion Congestion to congestion

udown

Flow
Space

Density Time

[Blandin, Argote, Bayen, Work, TR-B, 2012] ©2013 IBM Corporation
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Phase transition model: Riemann problem
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Congestion to free—flow
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Phase transition model: Riemann problem

Flow

Free-flow to congestion
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[Blandin, Argote, Bayen, Work, TR-B, 2012]
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Phase transition model properties

* Riemann problem with initial data:

Uit = (pA, VA)
Uright = (pB. VB)

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011] ©2013 IBM Corporation



Phase transition model properties

e Scalar conservation law: solution given by a contact discontinuity between

A’ and B’.

Qle) | B
B.’

LH"""&-

* Stationary state is A’

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011]

© 2013 IBM Corporation
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Phase transition model properties

* Phase transition model: solution given by a backward moving shockwave
between A and C and by a forward moving contact discontinuity between C
and B

LH"'“‘""-—*

* Stationary state is C

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011] ©2013 IBM Corporation



Modeling forward moving discontinuity in congestion

Flow

Forward-moving discontinuity
in congestion
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[Blandin, Argote, Bayen, Work, TR-B, 2012]
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Forward moving discontinuity in congestion: NGSIM data

Densm,r 180 5-5:30
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Hysteresis and disturbances

Clockwise loop speed decreasing

Flow

Density

Counter clockwise loop speed decreasing

Flow

Density

Clockwise loop speed increasing
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Flow
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Outline

* Motivation and history of macroscopic models of traffic flow
* Definition, properties and physical interpretation of phase transition model
* Junction problem formulation

* Numerical scheme for the phase transition model: the modified Godunov
scheme

* Performance of phase transition model on NGSIM datasets
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Junction formulation

e Given an assignment matrix, an admissible solution to the network phase
transition model should conserve the number of vehicles at the junction
(conservation of the perturbation is not required)

* We require that the solution consists of
e waves with negative speeds on incoming links
e waves with positive speeds on outgoing links

* For uniqueness, we require that that flux at the junction is maximized
under the constraints above

* The junction problem is formulated as
 Computation of allowable states on incoming links and outgoing links

* Computation of maximum allowable flux for each incoming and
outgoing link

* Maximization of flux across the junction

[Garavello, Piccoli, 2006], [Blandin, Goatin, Piccoli, Bayen, Work, 2012] ©2013 IBM Corporation



Admissible flux on incoming roads

L o JI0,pip V] ifug € Qyp,
P Pi0 Oi(wio) = {[0, pn V] ifug € Q,
ve(Uy) =V,
pV pv
N ,
\\

P 0 Om Pi0 R p

[Blandin, Goatin, Piccoli, Bayen, Work, 2012] ©2013 IBM Corporation



Admissible flux on outgoing roads

max

P P+ [0, F] if ujo € Ly

= . . , = ’ }0 f ’
xR Oj(ujo) = { [0, /™ (u;0)]  ifuj € Q,
ve(u™™) = ve(ujo).
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[Blandin, Goatin, Piccoli, Bayen, Work, 2012] ©2013 IBM Corporation



Outline

* Motivation and history of macroscopic models of traffic flow
* Definition, properties and physical interpretation of phase transition model
e Junction problem formulation

* Numerical scheme for the phase transition model: the modified Godunov
scheme

* Performance of phase transition model on NGSIM datasets
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Solution method: Godunov scheme

* Notations
* space-time discretization with cells of size At , Ax
* u7 denotes value of solution at time n Atat location (j — 1/2) Ax

— —n—-—ll —n—-—ll

t T 19 T/
| | [ I
| | [ I
I | I |
| | I I

n I I I I

' | |

Tj—-1 Lj Tj+1

* Numerical scheme:
* Solve the Riemann problem between two neighboring cells
* Average solutions on each cell at the next time step
* |terate 4 b

a0+

O_ 0 04 R 14 o_ .O' o4 Rp

[GOdunOV, 1959] w 2u 10 10wl Corporation
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Solution method: modified Godunov scheme

* Modified Godunov scheme
* Riemann problems solved between neighboring cells
* Solution averaged over single phases
* Projection step in the case of congestion

* Sampling method added to compute solution on original cells (Van
der Corput sequence)

—L = ] —1141 =41
ﬂu:r:j_] 5 .ﬂ;:r:j ﬁ::r:j_l_]

At| | :

—n —n+1 __ S . n,— o TV T _n , n,— ST T

J
. n,+ .n ,n)\ _ . n , n,+ . n  ,n
+At (g (yj_l/z, Ui_q, u,-j) Vi 19 UR (ij_l/z, ui_y,u; )) :

[Chalons, Goatin, 2008], [Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011] ©2013 IBM Corporation
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* Motivation and history of macroscopic models of traffic flow
* Definition, properties and physical interpretation of phase transition model
e Junction problem formulation

* Numerical scheme for the phase transition model: the modified Godunov
scheme

* Performance of phase transition model on NGSIM datasets
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NGSIM dataset

Densnty ISO 4-4:15
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Parameter calibration

* Minimization of L1 error metric for density, flow and speed

*1-80 4-4:15

Error variable Optimal parameters L' Error

k_; y;-uax w’ pl‘]'lil'l p‘r‘nax k q v
Density (k) 160 50 14 —-0.01 0.94 0.152 0.185 0.164
Flow (q) 150 40 15.5 -0.21 0.77 0.164 0.176 0.157
Speed () 120 40 135 -0.99 0.99 0.160 0.190 0.137

* [-80 5-5:30

Error variable Optimal parameters L! error

k} yﬁmx W- p]‘]][n p;nax k v
Density (k) 190 55 13 -0.25 0.95 0.130 0.170 0.165
Flow (q) 180 55 135 -0.75 0.45 0.141 0.164 0.170
Speed (v) 150 55 13 -0.05 0.35 0.145 0.172 0.161

© 2013 IBM Corporation
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Parameter calibration

* Model performance

Density Flow Speed
(a) Optimal density parameters
PTM 0.139 0.167 0.165
CT™M 0.146 0.242 0.227
(b) Optimal flow parameters
PTM 0.141 0.173 0.163
CT™M 0.146 0.195 0.191
(c) Optimal speed parameters
PTM 0.142 0.171 0.165
CTM 0.147 0.190 0.189

© 2013 IBM Corporation
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Parameter calibration

* Model performance

Density Flow Speed
(a) Optimal density parameters
PTM 0.139 0.167 0.165
CT™M 0.146 0.242 0.227
(b) Optimal flow parameters
PTM 0.141 0.173 0.163
CT™M 0.146 0.195 0.191
(c) Optimal speed parameters
PTM 0.142 0.171 0.165
CTM 0.147 0.190 0.189

* Sensitivity to model parameters

L1 error

017¢

0.165f

0.16¢

0.155

0.15

= = - -
-

Total sensitivity

13.5 14 14.5 15
Congestion wave speed

021

Partial sensitivity

13 13.5 14

14.5
Conagestion wave speed

15

© 2013 IBM Corporation



Speed distribution on a link
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