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Outline of Presentation 

 Concepts of the fundamental diagram (FD) and 

its role in mathematical traffic flow theory 

 Overview of various forms of the FD and their 

empirical evidence 

 The use of boundary conditions for screening FD 

forms 

 The FD’s influence on traffic dynamics 

 Summary and outlook 

 

 



The fundamental diagram of traffic flow 

 First coined by Haight (1963),it refers to the flow-density curve 

either observed empirically or obtained from car-following 

models at that time 

 In this talk we use the term to refer any of the pair-wise relations 

between flow (headway),  density (spacing), and speed either at a 

fixed location, or for a moving platoon of vehicles 

   

 

 



The Fundamental Diagram (FD) 

 Embodies driver behavior that separates traffic flow from 

other material fluids 

 Forms the foundation of some transportation applications 

(e.g., highway capacity and level of service analysis) 

 Permeates in all levels of mathematical description of traffic 

flow 

 In microscopic, they are linked to steady-state behavior of car-

following or CA models, or enter these models a priori 

 In macroscopic or mesoscopic, it enters into the relaxation 

process of the acceleration or  “momentum” equation 



The role of the FD in traffic models 

 Microscopic 

 Modified Pipes’ model   

 Newell’ Model 

 Bando’ model 

 

 Macroscopic continuum  

 LWR model 

 Payne-Whitham model 

 Aw-Rascle, Zhang model 
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FD and traffic waves 

jC

S 

 * 0t x
q   0,* 

dt

d

d

dq

dt

dx 



x 

t 



The FD comes in many forms 

 Continuous/smooth and concave 

 Continuous/smooth and concave-convex 

 Discontinuous, piece-wise smooth (possibly multi-valued) 

 Multi-phase, set-valued 

 

 

 

 

 

 



Continuous/smooth, concave FD 

Greenshields (1935) Other common concave FDs 
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Continuous/smooth,  

concave-convex 

ρ 

q 

ρ 

q 

piece-wise linear, concave-convex FD  smooth, concave-convex FD  

 (e.g. Bando 1995)  



Discontinuous, piece-wise smooth 

(possibly multi-valued) 

Eddie (1961) Koshi et al. (1983) 



Multi-phase, set-valued 

 Kerner (1998),  

  reproduced 

0 spacing 

speed 

d0 d1 

Newell(1962) Treiterer and Myers(1974) 



Essential properties of FD 
 No vehicle, no flow  

 Physical limit on speed (vf) 

 Physical storage limit (jam density) 

 Jam packed, no velocity 

 Physical bound on flow 

  vf /min safe spacing (=vf*reaction1+veh length) 

 Jam dissipation  

 Wave speed 

  Vehicle length / reaction time2 

    (-) 6 meter / 1 sec  = 21.6 km/hr = 13.4 mph 

    (-) 6 meter / 1.8 sec =12 km/hr = 7.5 mph 

 Flow discharge rate 

    2 seconds headway => 1800 vph 
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Empirical evidence: fixed locations 

5                           4                 3                 2                             1 

I80 EB near UC Davis (not to scale) 



Empirical evidence: bottleneck effects 



Empirical evidence: moving platoons (1)  

Vehicle platoon traveling through 

two shock waves  

flow-density phase plot 



Empirical evidence: moving platoons (2)  

Vehicle platoon traveling through 

one shock wave  

flow-density phase plot 



Phase plots of both platoons 



Empirical evidence: stochasticity in 

a large ensemble 



Empirical evidence: stationary flow 

Cassidy (1998) [QEW data] Del Castillo (1995) [Freeway A2  

Amsterdam data]  



Which form after all? 
 The form we choose must 

 Respect the boundary conditions at 

zero and jam densities 

 Have physically meaningful and 

calibratable parameters 

 Produce reasonable capacity 

 Capture the flow drop at  free-flow to 

congestion transition 

 Be simple, yet produce the essential 

dynamic features of traffic flow, such as 

accel/decel asymmetry,  when being 

incorporated in traffic models 

 The answer: single-valued concave-

convex FD  
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Linear stability analysis 
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Newell 

Bando 

Payne-Whitham 

Obtained by perturbing a steady-state solution and study the  

growth/decay of the perturbation over vehicle numbers (micro) 

or time-space (macro) using Fourier transforms 



Instability and its relation to the 

shape of the fundamental diagram 
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Illustration: cluster solutions in the 

Bando model with a non-concave FD 

L=6,000 m, l=6m, T=600s, dt=0.1s, j=167 veh/km,  

N=300 veh,  average gap=14 m, Avg. occ is 0.3 . 

Vehicles randomly placed on circular road with 0 speed 
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Illustration: cluster solutions in the 

Bando model with a non-concave FD 
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Snap shot at t=600s 
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Illustration: cluster solutions in PW 

model with a non-concave FD 

L=22.4km, T=0.7 hr 

=5s,  



Illustration: cluster solutions in PW 

model with a non-concave FD 

s
p
e
e
d
 

location 

Time=500  



Concluding remarks 

 The FD plays a pivotal role in traffic flow models and 

applications 

 Diverse forms have been suggested in response to observed 

complexity in traffic flow 

 Showed that the single-valued, continuous, non-concave FD, 

exhibits complexity with simplicity, and can be adopted to 

model quasi steady state flow (transitions between 

equilibrium states) 

 



Concluding remarks 

 The FD plays a pivotal role in traffic flow models and 

applications 

 Diverse forms have been suggested in response to observed 

complexity in traffic flow 

 Provided a set of criteria for assessing FD forms 

 Showed that the single-valued, continuous, non-concave FD, 

exhibits complexity with simplicity, and can be adopted to 

model quasi steady state flow (transitions between 

equilibrium states) 

 



Concluding remarks-continued 

 One can extend the modeling capabilities of the simpler FDs by 

 ascribing each lane a FD to reflect lane differences in macro 

models  

 ascribing each group of drivers/vehicles a unique FD to reflect 

diversity in driver/vehicle units in micro models  

 It is possible to incorporate more complex FDs, such as FDs 

with hysteresis, into mico or macro models, or in the extreme 

ascribe to each vehicle a unique complex FD.   

 Realism, tractability, numerics 



Discovery of a New Hysteresis 


