The fundamental diagram of traffic flow and its role in modeling traffic dynamics

A Seminar Presentation at

Traffic Modeling and Management: Trends and Perspectives at <u>INRIA Sophia Antipolis – Méditerranée</u>

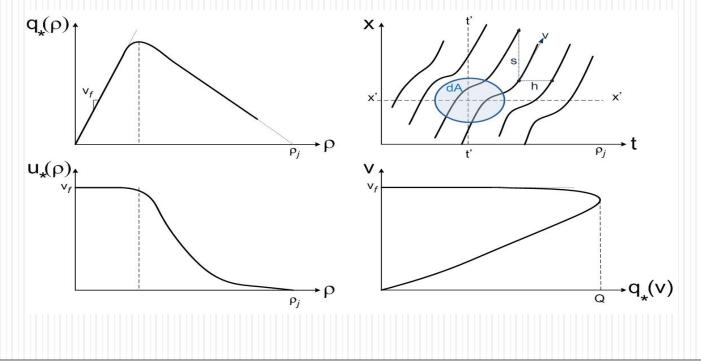
> H. Michael Zhang Civil and Environmental Engineering University of California Davis, USA March 22, 2013

Outline of Presentation

- Concepts of the fundamental diagram (FD) and its role in mathematical traffic flow theory
- Overview of various forms of the FD and their empirical evidence
- The use of boundary conditions for screening FD forms
- The FD's influence on traffic dynamics
- Summary and outlook

The fundamental diagram of traffic flow

- First coined by Haight (1963), it refers to the flow-density curve either observed empirically or obtained from car-following models at that time
- In this talk we use the term to refer *any* of the pair-wise relations between flow (headway), density (spacing), and speed either at a fixed location, or for a moving platoon of vehicles



The Fundamental Diagram (FD)

- Embodies driver behavior that separates traffic flow from other material fluids
- Forms the foundation of some transportation applications (e.g., highway capacity and level of service analysis)
- Permeates in all levels of mathematical description of traffic flow
 - In microscopic, they are linked to steady-state behavior of carfollowing or CA models, or enter these models a priori
 - In macroscopic or mesoscopic, it enters into the relaxation process of the acceleration or "momentum" equation

The role of the FD in traffic models

- Microscopic
 - Modified Pipes' model
 - Newell' Model
 - Bando' model

$$\dot{x}_{n} = \min\left\{v_{f}, \left(s_{n}(t)-l\right)/\tau\right\}$$
$$\dot{x}_{n}(t+\tau) = v_{f}\left[1-\exp\left\{-\lambda(s_{n}(t)-l)/v_{f}\right\}\right]$$
$$\ddot{x}_{n}(t) = a\left[\left(u_{*}(s_{n})-\dot{x}_{n}\right)(t)\right], a = 1/\tau$$

$$\rho = 1/s, u_*(s) = v_*(\rho), q = \rho v, q_*(\rho) = \rho v_*(\rho)$$

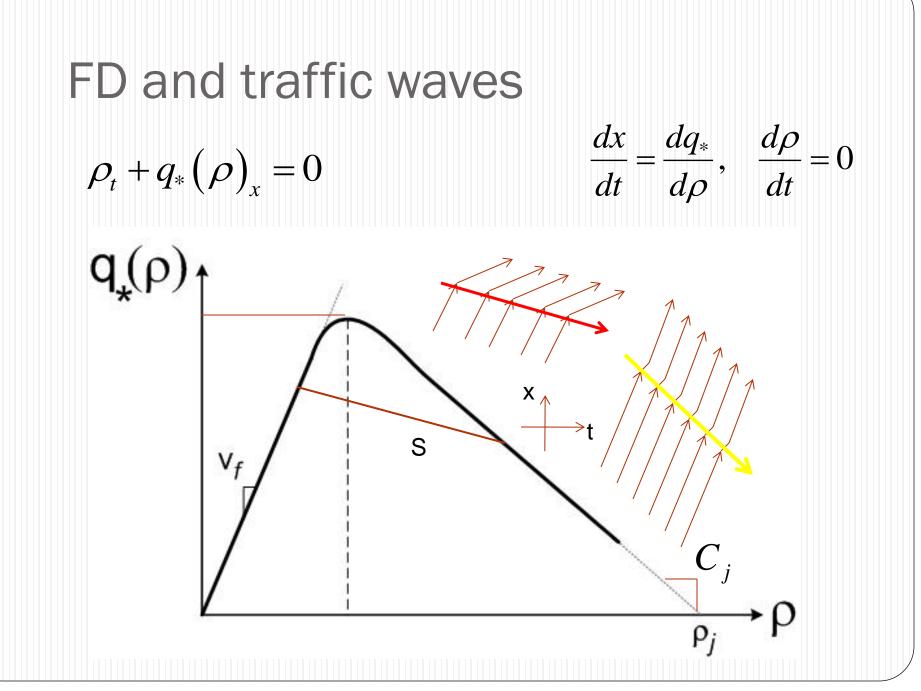
- Macroscopic continuum
 - LWR model
 - Payne-Whitham model
 - Aw-Rascle, Zhang model

$$\rho_{t} + q_{*}(\rho)_{x} = 0$$

$$\rho_{t} + (\rho v)_{x} = 0, \quad v_{t} + (vv)_{x} + \frac{c_{0}^{2}}{\rho}\rho_{x} = \frac{v_{*}(\rho) - v}{\tau}$$

$$\rho_{t} + (\rho v)_{x} = 0, \quad v_{t} + (v - c(\rho))v_{x} = \frac{v_{*}(\rho) - v}{\tau}$$

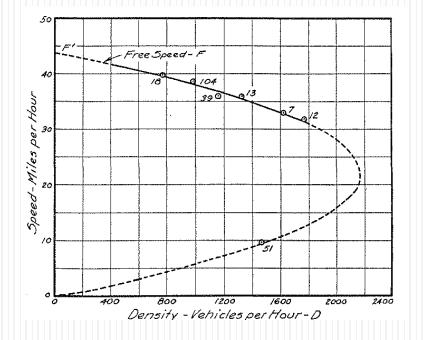
 $c(\rho) = -\rho v_*(\rho)$



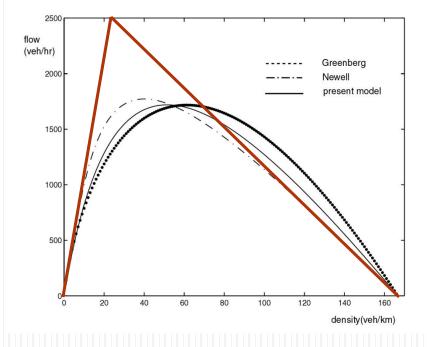
The FD comes in many forms

- Continuous/smooth and concave
- Continuous/smooth and concave-convex
- Discontinuous, piece-wise smooth (possibly multi-valued)
- Multi-phase, set-valued

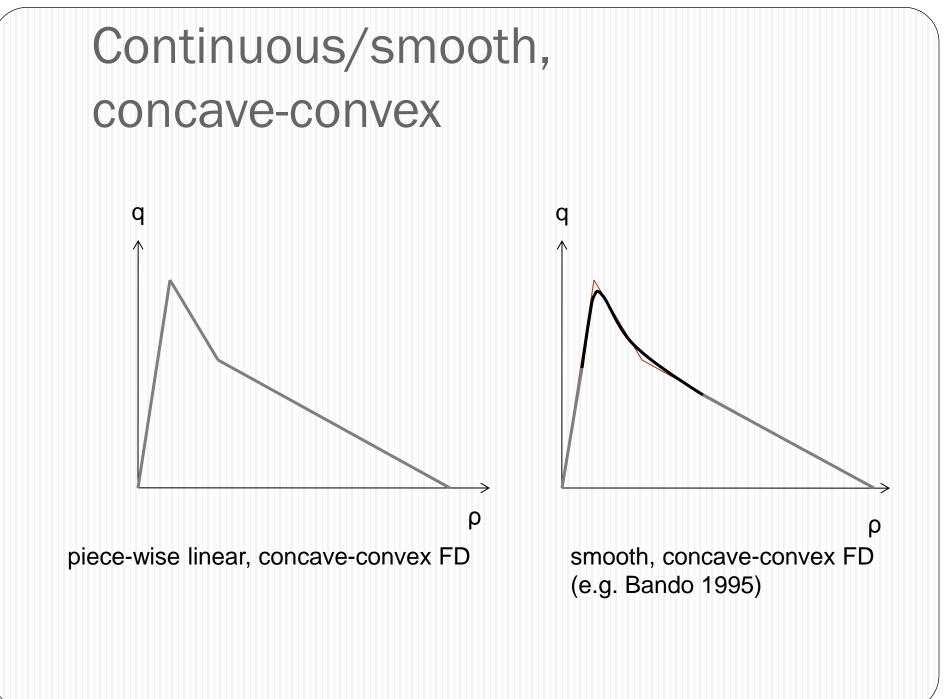
Continuous/smooth, concave FD $u_*(s) = v_f \left[1 - \exp\{-\lambda(s-l)/v_f\}\right]$



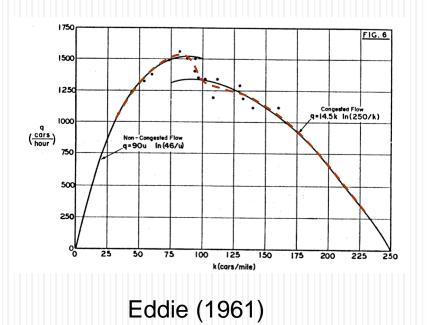
Greenshields (1935)

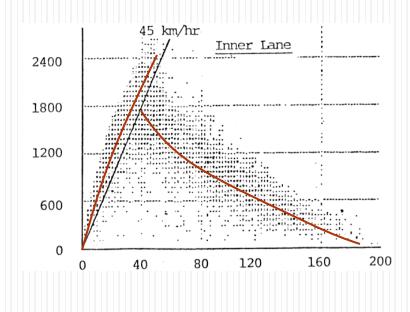


Other common concave FDs



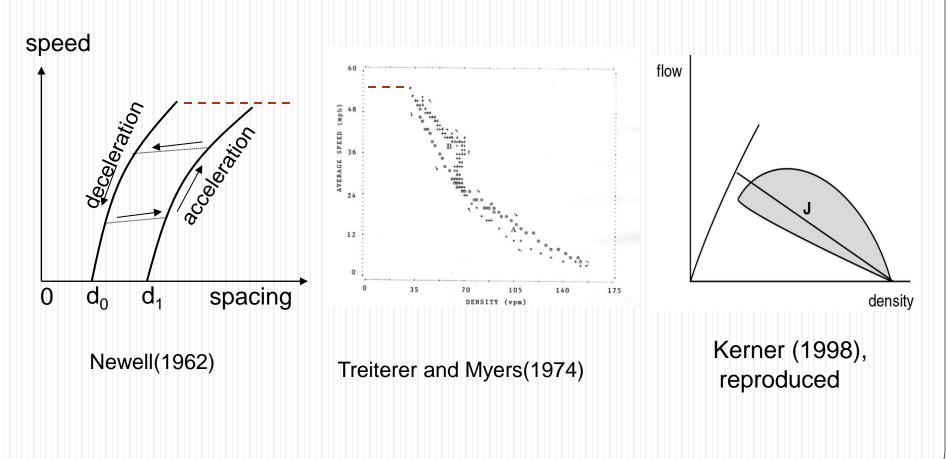
Discontinuous, piece-wise smooth (possibly multi-valued)





Koshi et al. (1983)

Multi-phase, set-valued



Essential properties of FD

- No vehicle, no flow
- Physical limit on speed (vf)
- Physical storage limit (jam density)
- Jam packed, no velocity
- Physical bound on flow
 vf /min safe spacing (=vf*reaction1+veh length)
- Jam dissipation
 - Wave speed

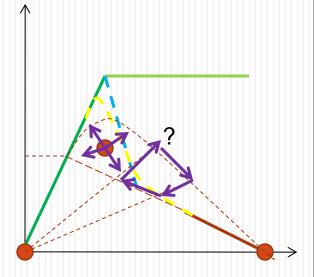
Vehicle length / reaction time2

(-) 6 meter / 1 sec = 21.6 km/hr = 13.4 mph

(-) 6 meter / $1.8 \sec = 12 \text{ km/hr} = 7.5 \text{ mph}$

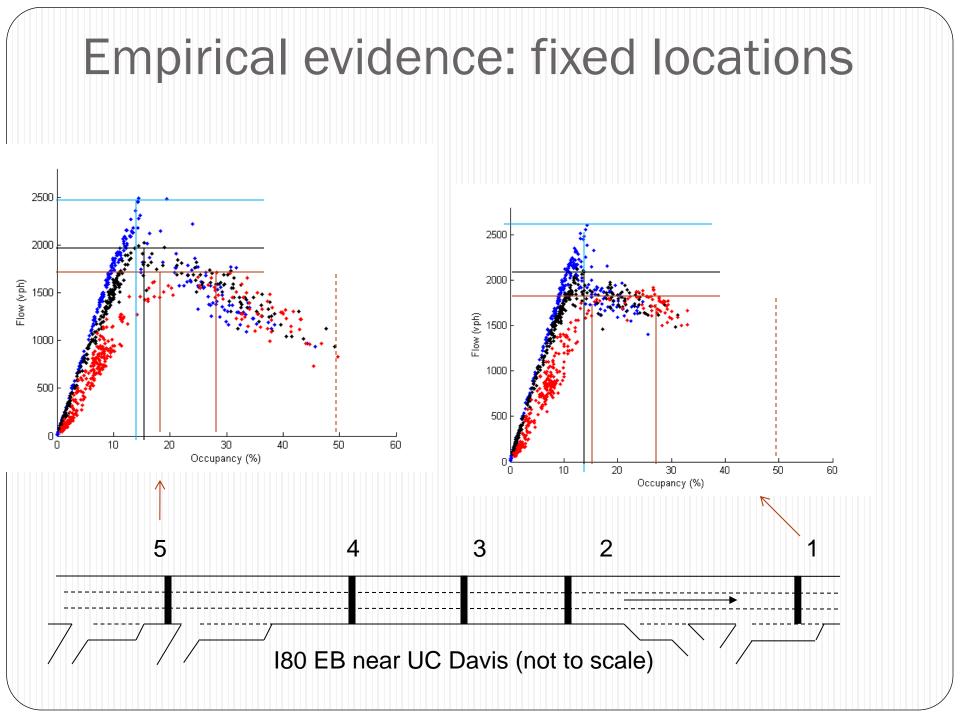
• Flow discharge rate

2 seconds headway = 1800 vph

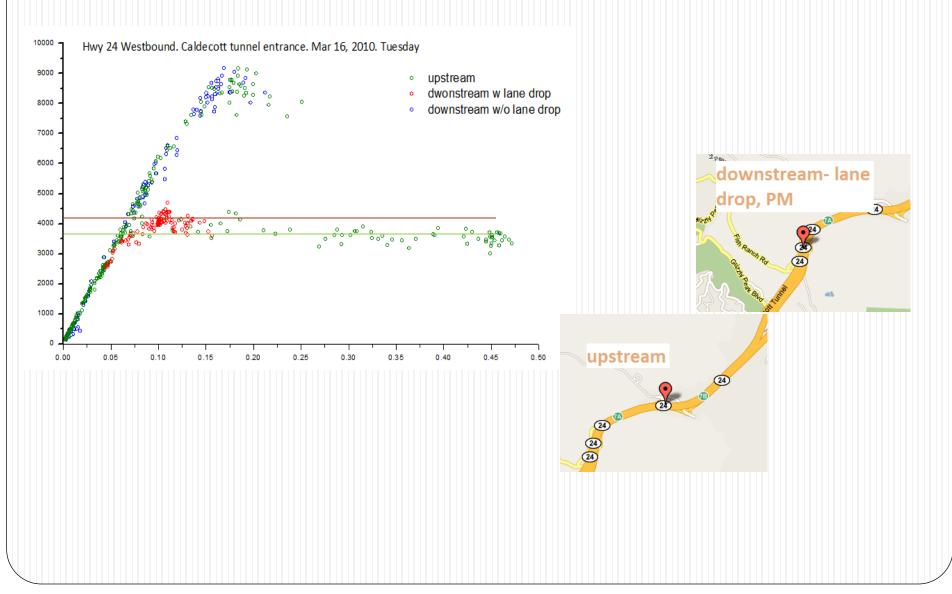


ρ

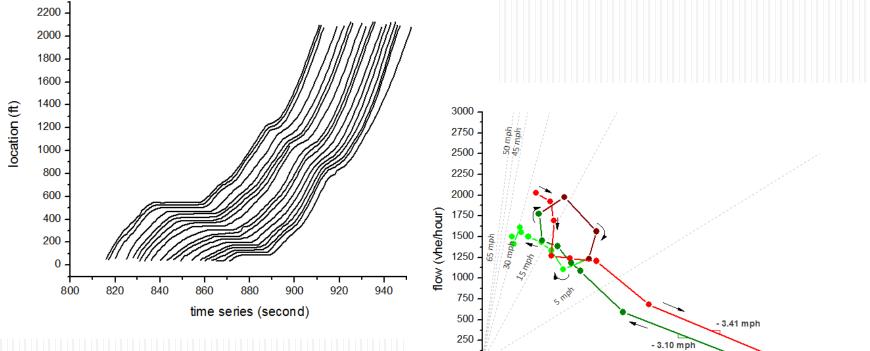
q



Empirical evidence: bottleneck effects



Empirical evidence: moving platoons (1)

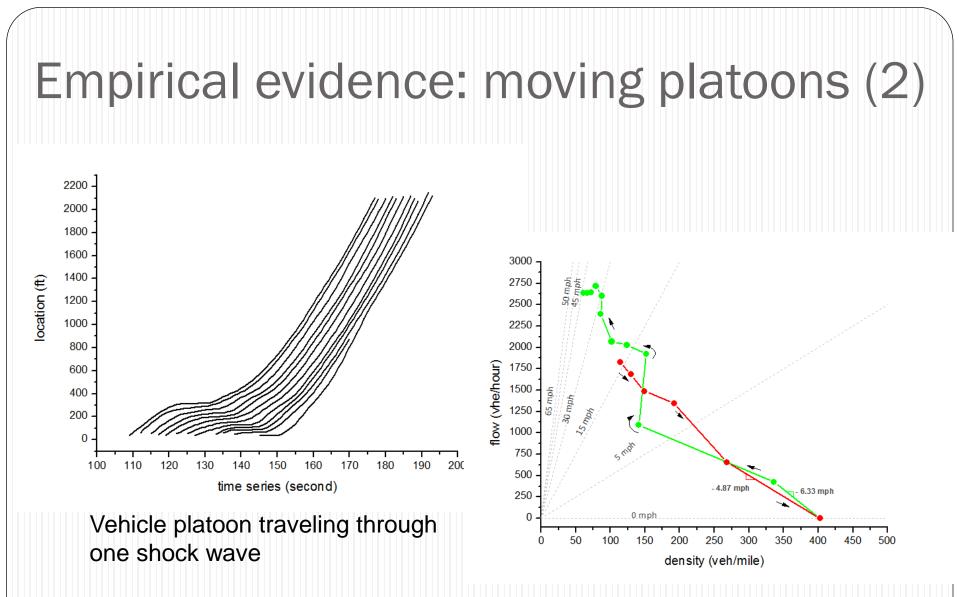


ا- 0 -|

Vehicle platoon traveling through two shock waves

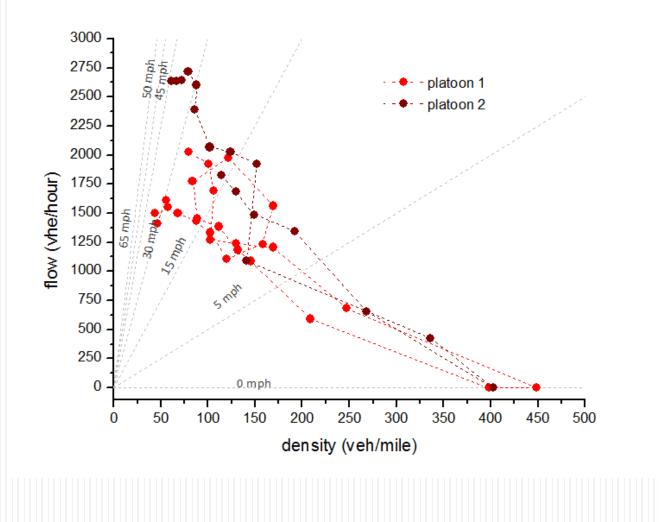
flow-density phase plot

density (veh/mile)

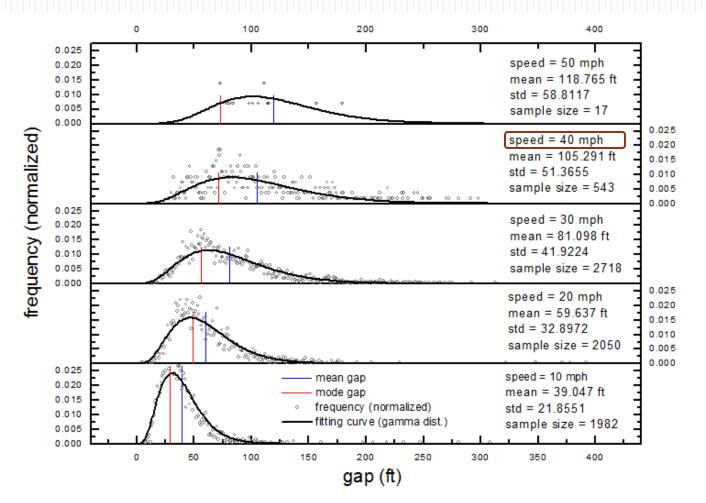


flow-density phase plot

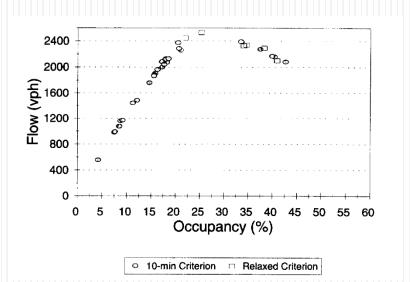
Phase plots of both platoons

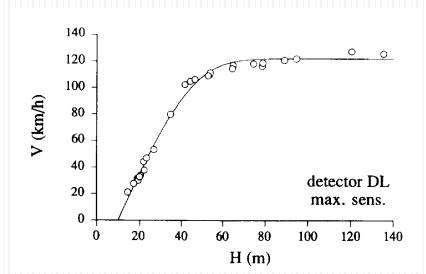


Empirical evidence: stochasticity in a large ensemble



Empirical evidence: stationary flow





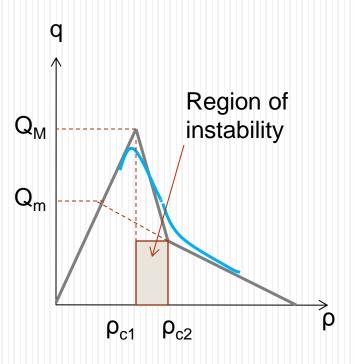
 $V = V_f \left\{ 1 - \exp \left[1 - \exp \left(\frac{|C_j|}{V_f} \left(\frac{H}{H_j} - 1 \right) \right) \right] \right\}$

Cassidy (1998) [QEW data]

Del Castillo (1995) [Freeway A2 Amsterdam data]

Which form after all?

- The form we choose must
 - Respect the boundary conditions at zero and jam densities
 - Have physically meaningful and calibratable parameters
 - Produce reasonable capacity
 - Capture the flow drop at free-flow to congestion transition
 - Be simple, yet produce the essential dynamic features of traffic flow, such as accel/decel asymmetry, when being incorporated in traffic models
- The answer: single-valued concaveconvex FD



Linear stability analysis

Newell

$$\dot{x}_{n}(t+\tau) = v_{f} \left[1 - \exp\left\{ -\lambda(s_{n}(t) - l) / v_{f} \right\} \right]$$
Bando

$$\ddot{x}_{n}(t) = a \left[\left(u_{*}(s_{n}) - \dot{x}_{n} \right)(t) \right], a = 1/\tau$$

Payne-Whitham $\rho_t + (\rho v)_x = 0$, $v_t + (vv)_x + \frac{c_0^2}{\rho}\rho_x = \frac{v_*(\rho) - v}{\tau}$

Obtained by perturbing a steady-state solution and study the growth/decay of the perturbation over vehicle numbers (micro) or time-space (macro) using Fourier transforms

Instability and its relation to the shape of the fundamental diagram

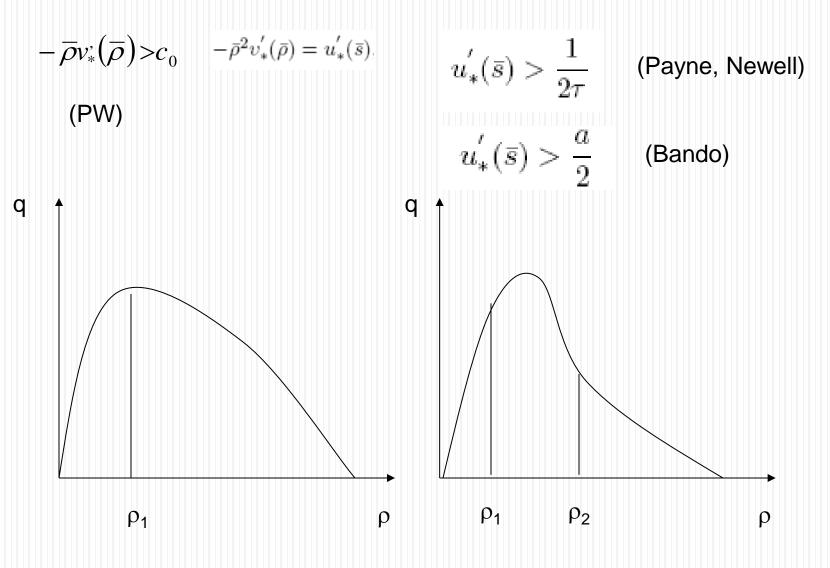
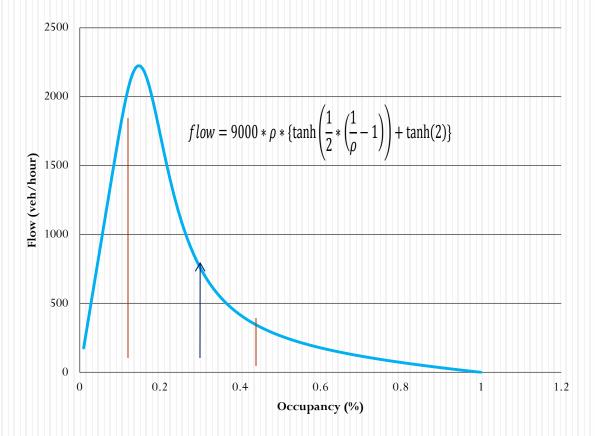
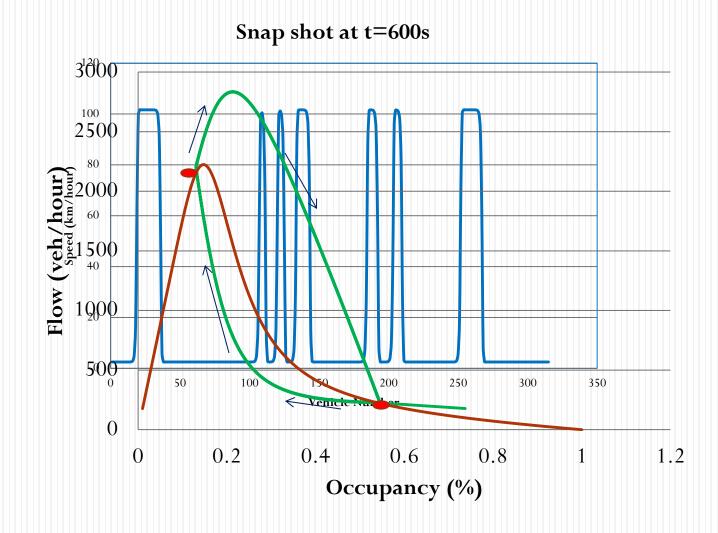


Illustration: cluster solutions in the Bando model with a non-concave FD



L=6,000 m, l=6m, T=600s, dt=0.1s, ρ j=167 veh/km, N=300 veh, average gap=14 m, Avg. occ is 0.3. Vehicles randomly placed on circular road with 0 speed

Illustration: cluster solutions in the Bando model with a non-concave FD



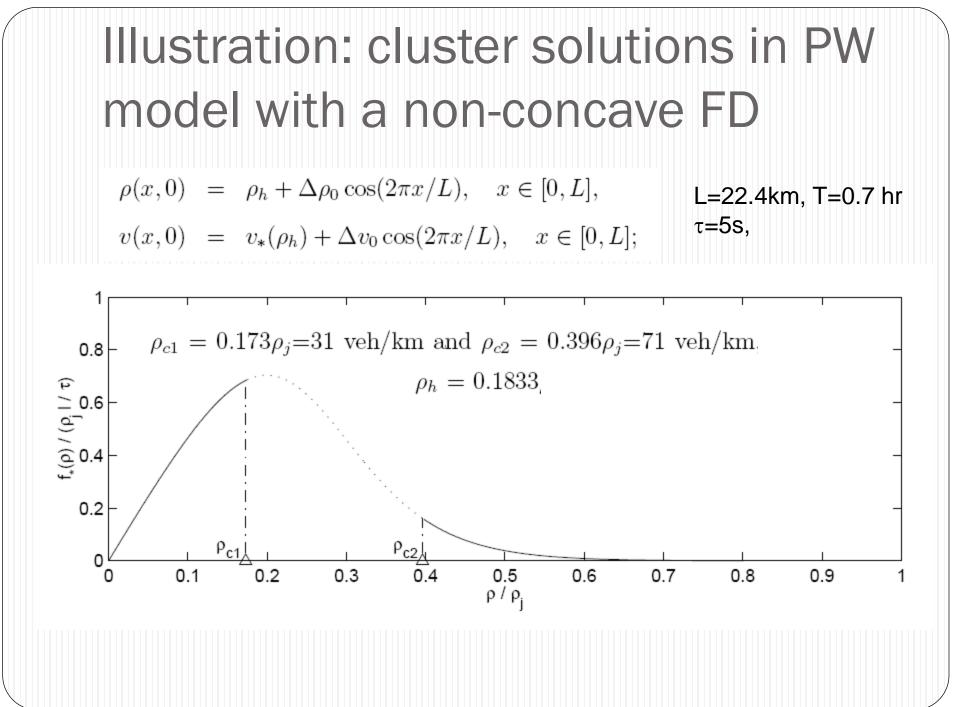
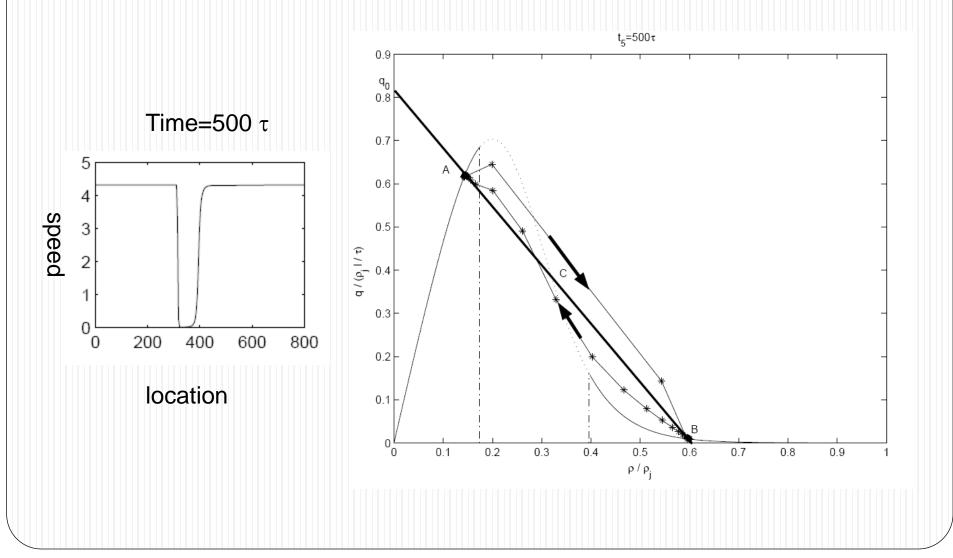


Illustration: cluster solutions in PW model with a non-concave FD



Concluding remarks

- The FD plays a pivotal role in traffic flow models and applications
- Diverse forms have been suggested in response to observed complexity in traffic flow
- Showed that the single-valued, continuous, non-concave FD, exhibits complexity with simplicity, and can be adopted to model quasi steady state flow (transitions between equilibrium states)

Concluding remarks

- The FD plays a pivotal role in traffic flow models and applications
- Diverse forms have been suggested in response to observed complexity in traffic flow
- Provided a set of criteria for assessing FD forms
- Showed that the single-valued, continuous, non-concave FD, exhibits complexity with simplicity, and can be adopted to model quasi steady state flow (transitions between equilibrium states)

Concluding remarks-continued

- One can extend the modeling capabilities of the simpler FDs by
 - ascribing each lane a FD to reflect lane differences in macro models
 - ascribing each group of drivers/vehicles a unique FD to reflect diversity in driver/vehicle units in micro models
- It is possible to incorporate more complex FDs, such as FDs with hysteresis, into mico or macro models, or in the extreme ascribe to each vehicle a unique complex FD.
- Realism, tractability, numerics

Discovery of a New Hysteresis

