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Outline of Presentation

® Concepts of the fundamental diagram (FD) and

its role in mathematical tratfic flow theory

® Overview of various forms of the FD and their

empirical evidence

® The use of boundary conditions for screening FD

forms
® The FD’s influence on traffic dynamics

® Summary and outlook




/The fundamental diagram of traffic flow

® First coined by Haight (1963),it refers to the flow-density curve
either observed empirically or obtained from car-following
models at that time

® In this talk we use the term to refer any of the pair-wise relations

between flow (headway), density (spacing), and speed either at a

fixed location, or for a moving platoon of vehicles
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The Fundamental Diagram (FD)

e Embodies driver behavior that separates traffic flow from

other material fluids

® Forms the foundation of some transportation applications

(e.g., highway capacity and level of service analysis)
® Permeates in all levels of mathematical description of traffic
flow

® In microscopic, they are linked to steady-state behavior of car-

following or CA models, or enter these models a priori

® In macroscopic or mesoscopic, it enters into the relaxation

process of the acceleration or “momentum” equation




The role of the FD In traffic models

® Microscopic

® Modified Pipes’ model ol min{vf ’(S” (t)—l)/f}

MR X (t+7)=V, [1-exp{—,1(sn (t)-1)/v, }}

® Bando’ model X, () = a[(u*(Sn)—Xn)(t)], a=1/7

p=1/5,u.(5)=V.().q= oY, & (p) = - ()

® Macroscopic continuum
® LWR model
® Payne-Whitham model pi+(pv), =0, Ve+(w), +%p W
* Aw-Rascle, Zhang model

p+0(p), =0

Jo) +(,0V)X =0, Vv, +(V—C(,0))VX _ W




FD and traffic waves

L "'Q*(,O)X =0

q.(p)+




The FD comes in many forms

® Continuous/smooth and concave
® Continuous/smooth and concave-convex
* Discontinuous, piece-wise smooth (possibly multi-valued)

® Multi-phase, set-valued




Continuous/smooth, concave FD
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Continuous/smooth,
concave-convex

P
piece-wise linear, concave-convex FD

P
smooth, concave-convex FD

(e.g. Bando 1995)




Discontinuous, piece-wise smooth
(possibly multi-valued)

1750
FIG. 6
1500| =
A
12 Vi i
/ \.\\\ _____

000 - A=14.5k In(250/k)
(_';_:.'L) on - Congested low
pour? L Jl_ave0u” m@end

V)
0 25 50 75 100 125 150 175 200 225 250
k{cars/mile)

Eddie (1961)

2400

1800

1200 |t

600 ':E. {1 1 S — ;.-Z.

40 - 80 120 160 200

Koshi et al. (1983)




Multi-phase, set-valued

flow
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T I
Essential properties of FD

® No vehicle, no flow

® Physical limit on speed (vf)

® Physical storage limit (jam density)
® Jam packed, no velocity

® Physical bound on flow

vt /min safe spacing (=vt*reaction1+veh length)

® Jam dissipation

® Wave speed

Vehicle length / reaction time? ‘p
(-) 6 meter / 1 sec =21.6 km/hr =13.4 mph
(-) 6 meter / 1.8 sec =12 km/hr = 7.5 mph

* Flow discharge rate

K 2 seconds headway => 1800 Vph /
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Empirical evidence: fixed locations
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Empirical evidence:

bottleneck effects

0900 7 Hwy 24 Westbound. Caldecott tunnel entrance. Mar 16, 2010. Tuesday
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Empirical evidence: moving platoons (1)
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location (ft)
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Phase plots of both platoons

flow (vhe/hour)
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~ Empirical evidence: stochasticity in
a large ensemble
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Empirical evidence: stationary flow
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Which form after all?

® The form we choose must

® Respect the boundary conditions at

zero and jam densities q

® Have physically meaningful and
Region of

calibratable parameters ol HNHN | fuiiatthy

® Produce reasonable capacity

® Capture the flow drop at free-flow to O

congestion transition 7

® Be simple, yet produce the essential

dynamic features of traffic flow, such as ol |||l
accel/decel asymmetry, when being

incorporated in traffic models

® The answer: single—valued concave-

U

convex FD




Linear stability analysis

Newell X (t+7)=V, [1—exp{—ﬂ(sn (t)-11v, H
Bando Xn(t):a[(u*(sn)—xn)(t)], a=1/r

Payne-Whitham p.+(pv) =0, Vi +(w), +;,0x i

Obtained by perturbing a steady-state solution and study the
growth/decay of the perturbation over vehicle numbers (micro)
or time-space (macro) using Fourier transforms




Instability and its relation to the
shape of the fundamental diagram

sl b Lt __-2 :." _ :E..l'* o .
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lllustration: cluster solutions in the
Bando model with a non-concave FD

A

flow = 9000 * p * {tanh 1*(1—1) + tanh(2)}
= p 2 p

U

\

Flow (veh/hour)
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L=6,000 m, I=6m, T=600s, dt=0.1s, pj=167 veh/km,
N=300 veh, average gap=14 m, Avg. occis 0.3.
Vehicles randomly placed on circular road with O speed

T,




lllustration: cluster solutions in the
Bando model with a non-concave FD

Snap shot at t=600s
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A

lllustration: cluster solutions in PW
model with a non-concave FD

p(x,0) = p,+ Apycos(2rx/L), x€[0,L], L=22.4km, T=0.7 hr
v(x,0) = v.(pn) + Avgcos(2rz/L), x € [0,L]: =95,
1
osL  Pa = 0.173p;=31 veh/km and p.o = 0.396p,=71 veh/km. _
= o pn = 0.1833
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lllustration: cluster solutions in PW
model with a non-concave FD
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Concluding remarks

e The FD plays a pivotal role in traffic flow models and

applications

® Diverse forms have been suggested in response to observed

complexity in traffic flow

® Showed that the single-valued, continuous, non-concave FD,
exhibits complexity with simplicity, and can be adopted to
model quasi steady state flow (transitions between

equilibrium states)




Concluding remarks

e The FD plays a pivotal role in traffic flow models and

applications

® Diverse forms have been suggested in response to observed

complexity in traffic flow
® Provided a set of criteria for assessing FD forms

® Showed that the single-valued, continuous, non-concave FD,
exhibits complexity with simplicity, and can be adopted to
model quasi steady state flow (transitions between

equilibrium states)




Concluding remarks-continued

® One can extend the modeling capabilities of the simpler FDs by

° ascribing each lane a FD to reflect lane differences in macro

models

° ascribing each group of drivers/vehicles a unique FD to reflect

diversity in driver/vehicle units in micro models

® [t is possible to incorporate more complex FDs, such as FDs
with hysteresis, into mico or macro models, or in the extreme

ascribe to each vehicle a unique complex FD.

® Realism, tractability, numerics




Discovery of a New Hysteresis
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