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Who cares about traffic? 
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•  Cell phones are the world’s 
largest sensor network:  

–  > 3 billion devices 
–  Global coverage, human centric 
–  Increasingly connected, 

programmable 

 

Understanding human – infrastructure interaction  
 

•  Wikipedia for the physical 
world 

–  “First draft” of our interaction 
with the environment, in real-
time 

–  Crowd-sourced data 
–  Participatory sensing 
–  Information distribution 
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•  Parameter calibration with GPS smartphone data 
–  Velocity traffic dynamics 
–  MCMC for traffic parameter estimation 
–  Numerical examples 
 

•  Traffic sensing for extreme congestion events 
–  TrafficTurk smartphone app 
–  Experimental deployments 
 

Outline of this talk 
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Governing equation: Lighthill Whitham Richards PDE 

•  LWR PDE – first order hyperbolic 
conservation law 

–                   is the density 
–                         is the flux function 
 

–  initial condition: 

–  boundary conditions  
    (weak sense) 

   
[Lighthill and Whitham, 1955; Richards 1956] 
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ρa 
ρb 
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a b 

density evolution 

traffic  
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•  example fundamental diagram – Greenshields 
–  flux is given by: 

–  express velocity as a function of density: 

Governing equation: Lighthill Whitham Richards PDE 

[Greenshields, 1935; Lighthill and Whitham, 1955; Richards 1956] 

Fl
ux
 ‏

vehicle density 

 +  emperical data 
      Greenshields flux 

ρmax 

vmax 

LWR PDE (last slide)  

Greenshields velocity function 
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Time and space discretization 

discrete space       indexed by 

discrete time       indexed by 

     density in cell    at time    :          

at timestep    :  
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Discretized LWR equation 

•  Cell Transmission Model 
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Flow exiting cell i Flow entering cell i  - Cars in cell i at n+1 = cars in cell i at n + 

[Godunov 59; Daganzo 94; Lebacque 96] 
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Sending and receiving functions 

•  Cell Transmission Model 
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Smulders Fundamental Diagram 
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Smulders Sending Function 
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[Smulders ‘90] 
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Sending and receiving functions 

•  Cell Transmission Model 
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Smulders Fundamental Diagram 
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Smulders Receiving Function 
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[Smulders ‘90] 
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•  Recall the velocity function and its inverse: 

Discrete velocity evolution 
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Smulders Velocity Function 
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Smulders Fundamental Diagram 
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Discrete velocity evolution 

•  Cell Transmission Model for velocity 

⇢

n+1
i = ⇢

n
i +

�T

�x

�

q

�

⇢

n
i�1, ⇢

n
i

�

� q

�

⇢

n
i , ⇢

n
i+1

��

q (⇢1, ⇢2) = min {S (⇢1) , R (⇢2)}

⇢

q (⇢)

S (⇢)

R (⇢)

v

n+1
i = V

✓

V

�1 (vni ) +
�T

�x

�

q̃

�

v

n
i�1, v

n
i

�

� q̃

�

v

n
i , v

n
i+1

��

◆

q̃ (v1, v2) = min
n

S̃ (v1) , R̃ (v2)
o

1

⇢

n+1
i = ⇢

n
i +

�T

�x

�

q

�

⇢

n
i�1, ⇢

n
i

�

� q

�

⇢

n
i , ⇢

n
i+1

��

q (⇢1, ⇢2) = min {S (⇢1) , R (⇢2)}

⇢

q (⇢)

S (⇢)

R (⇢)

v

n+1
i = V

✓

V

�1 (vni ) +
�T

�x

�

q̃

�

v

n
i�1, v

n
i

�

� q̃

�

v

n
i , v

n
i+1

��

◆

q̃ (v1, v2) = min
n

S̃ (v1) , R̃ (v2)
o

1

Smulders Receiving Function Smulders Sending Function 
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[Work, Blandin, Tossavainen, Piccoli, and Bayen  ‘10] 
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•  Parameter calibration with GPS smartphone data 
–  Velocity traffic dynamics 
–  MCMC for traffic parameter estimation 
–  Numerical examples 
 

•  Traffic sensing for extreme congestion events 
–  TrafficTurk smartphone app 
–  Experimental deployments 

Outline of this talk 

14 14 

•  Mobile Millennium Network (Northern CA) 
–  4,000 links 
–  3,000 junctions 

Using historic data to calibrate a flow model: 
•  For each edge: 

–  3 fundamental diagram parameters 

•  For each junction 
–  1 allocation parameter / yielding parameter 
–  7 boundary condition hyper-parameters 
 
Direct approach: 12,000+ 24,000 = 36,000 parameters!!! 
 

Flow model calibration vs direct state estimation 
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•  Mobile Millennium Network (Northern CA) 
–  4,000 links 
–  3,000 junctions 

Using historic data to directly estimate the traffic state 
•  For each edge: 

–  One traffic speed every 15 minutes 
–  96  fifteen minute time intervals in one day 
–  (7 days a week) 
 
 
 

Flow model calibration vs direct state estimation 

16 16 

•  Mobile Millennium Network (Northern CA) 
–  4,000 links 
–  3,000 junctions 

Using historic data to directly estimate the traffic state 
•  For each edge: 

–  One traffic speed every 15 minutes 
–  96  fifteen minute time intervals in one day 
–  (7 days a week) 
 
Direct approach: 96 x 4,000 = 386,000 parameters (for one 
day)   (Order of magnitude larger than flow model) 
 
 

Flow model calibration vs direct state estimation 
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Problem setup 

Smulders Fundamental Diagram 
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10 O.-P. TOSSAVAINEN AND D.B. WORK.

5. Results. We present results for three di↵erent numerical experiments. In the
first scenario, the parameters to be estimated include the jam densities on each link,
and the resulting simulation su↵ers from the problem of poor mixing. In the second
example, we show that improved mixing can be achieved by estimating ratios of jam
densities instead of the jam densities directly. The third example shows that we can
recover correct values for the model parameters although we do not use the same
(three-link) configuration in the parameter estimation as in the previous estimation
cases and data simulation. In other words, we will split link l3 into two links and
estimate the ratios of jam densities with four links in our domain.

The common parameter values in both cases are: the measurement error covari-
ance matrix �" = (�")2 ⇥ I, where �" = 3 mph, I is the identity matrix, step length
for maximum density �⇢

max

= 10, step length for ratios �↵ = 0.000075, step length
for shock wave speed �wf = 0.05 and step length for maximum velocity �v

max

= 0.1.
We set the prior density for ⇢max,2 to be the uniform density U [110⇥ 4, 250⇥ 5],

which is constructed assuming a prior of ⇢max 2 [110, 250] veh/mi per lane using
jam density values observed in [6].

In order to ensure that we do not exceed the maximum velocity permitted by
the CFL condition, 80 mph, we could set a prior for vmax, for example U [70, 80].
However, in our numerical experiments, we do not encounter problems with the
sampling of vmax and, thus, omit the specification of the prior for vmax in this work.
Also, for the shock wave speed, the construction of prior distribution is not needed
in this study.

5.1. Three jam densities. The initial values for the Markov chain are: vmax = 75
mph, wf = 17 mph, ⇢max,i = 150⇥5 veh/mi, i 2 {1, 2, 3}. The boundary conditions
and the initial velocity are assumed to be known, and thus we use the same values
as used in the measurement generation process. Furthermore, we assume the same
configuration of the link lengths l1, l2, and l3 as in the data simulation.

Figure 3 shows the results of the parameter estimation when all jam densities are
drawn using random walk procedure. In other words the state vector ✓ is of form

✓ =

0

BBBB@

⇢max,1

⇢max,2

⇢max,3

vmax

wf

1

CCCCA

From the figure, two interesting conclusions can be made. First, we observe that
the mixing is very poor. In this simulation, the acceptance ratio was close to zero
after just 20,000 samples. In other words, the chain spends a lot of time stuck on a
parameter realization, and new proposals are not accepted. Note, that although our
parameter vector contained ⇢max,1 and ⇢max,3 explicitly, in Figure 3 we deliberately
show the ratios of the jam densities.

The second observation is that the chain to correct values of ratios and parame-
ters vmax and wf very quickly. However, the component of the chain corresponding
to ⇢max,2 shows very little movement, and the area near true value (gray line) is not
sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ⇢max,2 but rather
cover the posterior density more thoroughly.
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after just 20,000 samples. In other words, the chain spends a lot of time stuck on a
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ters vmax and wf very quickly. However, the component of the chain corresponding
to ⇢max,2 shows very little movement, and the area near true value (gray line) is not
sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ⇢max,2 but rather
cover the posterior density more thoroughly.

MCMC BASED INVERSE MODELING OF TRAFFIC 7

Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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ratio of the jam densities. Thus, the shock speed can be expressed as

s =
↵Z(v1)v1 � Z(v2)v2
↵Z(v1)� Z(v2)

From the above, we can draw the following conclusions. First, within a link (on
which we assume ⇢max is a constant and thus ↵ = 1), the shock wave speed does
not depend on ⇢max. Second, if the shock occurs at a link boundary, the shock wave
speed will be a function of the jam density ratio ↵, but not directly the jam density.
From the perspective of estimating the value of the jam density on each link, this
will significantly increase the degree of di�culty in generating good samples from
the posterior parameter distribution. As will be explained in this work, parameter
estimates which generate incorrect shock speeds are easily rejected in our proposed
MCMC algorithm.

2.1. Simulation of vehicle trajectories. After we have obtained the velocity
evolution using the CTM-v model, we can simulate the vehicle trajectories. We
model the evolution of GPS equipped vehicles as passive Lagrangian tracers, which
evolve according to the macroscopic (discrete) velocity field {vn : n 2 {0, . . . , T}}.
Hence, the j

th vehicle moves with the local tra�c speed and updates its position
�

n
j according to:

�

n+1
j = �

n
j +�T ⇥ v

n+1(�j)

where �T is the time stepping used in the trajectory simulation. The model is
completed with initial condition

�

0
j = 0

The measurements are then obtained by recording the local speeds vn+1(�j) of the
GPS equipped vehicles.

3. Bayesian estimation of model parameters. In the Bayesian setting, the
solution to our flow model parameter estimation problem is a posterior density of
the parameters, conditioned on the observed GPS measurements. In this section,
we construct the parameter observation model and the posterior density for the un-
known model parameters. Because of the nonlinearity of the observation operator,
which itself contains a nonlinear flow model, we are unable to write an analytical
expressions for quantities such as mean value of the posterior and its covariance.
To circumvent this di�culty encountered in the estimation process, we propose a
Markov Chain Monte Carlo (MCMC) method to explore the posterior density and
generate random samples from it. This approach allows us to compute properties
of the posterior distribution of the flow model parameters (e.g. moments of the dis-
tribution) using sample approximations, which can then be used as the calibrated
flow model parameters and their uncertainty estimates.

3.1. Construction of the posterior density. The observations used in our flow
model parameter estimation problem are GPS speeds corrupted by measurement
noise, which are obtained from vehicles traveling through the computational domain.

Let y 2 Rm denote the vector of these observations. The observation model is
assumed to be an additive noise model, which is written as

y = h(✓) + " (4)

where ✓ 2 Rd is the vector of unknown model parameters. The additive noise " 2 Rm

is assumed to be Gaussian, " ⇠ N (0,�") and independent of the parameters ✓. For
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simplicity, we assume that the locations at which the measurements are obtained is
known.

Unlike the sequential state estimation methods based on variants of Kalman or
particle filtering [3, 9, 15, 23, 25], (4) is an o↵-line, stationary estimation problem.
Embedded within the parameter observation operator h is the forward evolution of
the velocity field governed by the CTM-v (3), which is mapped onto the location
where measurements GPS measurements are obtained.

Using the above observation model we can write the likelihood function as:

p(y|✓) / exp

✓
�1

2
(y � h(✓))T ��1

" (y � h(✓))

◆

The posterior density of the model parameters is written using Bayes rule as

p(✓|y) / ppr(✓)p(y|✓)

where ppr(✓) is the prior probability density for the unknown parameters.
The prior probability density on the model parameters represent our initial beliefs

about the unknown model parameters. Because the flow model parameters have
physical interpretations, the prior distribution can be defined as a distribution of
physically allowable values. For example, a prior distribution on the jam density
⇢max can be obtained by considering the minimum and maximum number of vehicles
which can be stored on a lane, given a minimum and maximum vehicle length.
Engineering references such as the Highway Capacity Manual [20] can also be used
to help construct the priors. The prior distributions on the parameters chosen for
our flow model are described in Section 5.

3.2. Exploring the posterior using a Markov Chain Monte Carlo method.
We use a Markov Chain Monte Carlo method to generate an ensemble of samples
from the posterior density. Using these samples we can compute estimates for the
unknown model parameters such as conditional mean values. More specifically, we
use a method called Metropolis–Hastings (MH) to generate the samples. Another
popular MCMC technique is called Gibbs sampler, see for example [7].

The Metropolis–Hastings algorithm is a well known method for generating sam-
ples from the posterior, which can be summarized using following four steps [10]:

1. Select an initial parameter value ✓1 2 Rd and set k = 1.
2. Draw z 2 Rd from the (not necessarily symmetric) proposal density q(✓k, z)

and calculate the acceptance ratio

�(✓k, z) = min

✓
1,

p(z|y)q(z, ✓k)
p(✓k|y)q(✓k, z)

◆
.

3. Draw u ⇠ U [0, 1], where U is the uniform distribution.
4. If �(✓k, z) � u, set ✓k+1 = z, else ✓k+1 = ✓k. If k equals the desired sample

size K, stop, else k  k + 1 and go to step 2.

For practical implementation of the algorithm, we choose the proposal density
to be Gaussian:

q(✓, z) / exp

✓
�1

2
(✓ � z)T��1

w (✓ � z)

◆
.

where �w is assumed to be of form: diag(�), � 2 Rd. In other words, the random
step from ✓ to z is distributed as white noise,

w = z � ✓ ⇠ N (0,�w).
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
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Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
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3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density
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5. Results. We present results for three di↵erent numerical experiments. In the
first scenario, the parameters to be estimated include the jam densities on each link,
and the resulting simulation su↵ers from the problem of poor mixing. In the second
example, we show that improved mixing can be achieved by estimating ratios of jam
densities instead of the jam densities directly. The third example shows that we can
recover correct values for the model parameters although we do not use the same
(three-link) configuration in the parameter estimation as in the previous estimation
cases and data simulation. In other words, we will split link l3 into two links and
estimate the ratios of jam densities with four links in our domain.

The common parameter values in both cases are: the measurement error covari-
ance matrix �" = (�")2 ⇥ I, where �" = 3 mph, I is the identity matrix, step length
for maximum density �⇢

max

= 10, step length for ratios �↵ = 0.000075, step length
for shock wave speed �wf = 0.05 and step length for maximum velocity �v

max

= 0.1.
We set the prior density for ⇢max,2 to be the uniform density U [110⇥ 4, 250⇥ 5],

which is constructed assuming a prior of ⇢max 2 [110, 250] veh/mi per lane using
jam density values observed in [6].

In order to ensure that we do not exceed the maximum velocity permitted by
the CFL condition, 80 mph, we could set a prior for vmax, for example U [70, 80].
However, in our numerical experiments, we do not encounter problems with the
sampling of vmax and, thus, omit the specification of the prior for vmax in this work.
Also, for the shock wave speed, the construction of prior distribution is not needed
in this study.

5.1. Three jam densities. The initial values for the Markov chain are: vmax = 75
mph, wf = 17 mph, ⇢max,i = 150⇥5 veh/mi, i 2 {1, 2, 3}. The boundary conditions
and the initial velocity are assumed to be known, and thus we use the same values
as used in the measurement generation process. Furthermore, we assume the same
configuration of the link lengths l1, l2, and l3 as in the data simulation.

Figure 3 shows the results of the parameter estimation when all jam densities are
drawn using random walk procedure. In other words the state vector ✓ is of form

✓ =

0

BBBB@

⇢max,1

⇢max,2

⇢max,3

vmax

wf

1

CCCCA

From the figure, two interesting conclusions can be made. First, we observe that
the mixing is very poor. In this simulation, the acceptance ratio was close to zero
after just 20,000 samples. In other words, the chain spends a lot of time stuck on a
parameter realization, and new proposals are not accepted. Note, that although our
parameter vector contained ⇢max,1 and ⇢max,3 explicitly, in Figure 3 we deliberately
show the ratios of the jam densities.

The second observation is that the chain to correct values of ratios and parame-
ters vmax and wf very quickly. However, the component of the chain corresponding
to ⇢max,2 shows very little movement, and the area near true value (gray line) is not
sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ⇢max,2 but rather
cover the posterior density more thoroughly.
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show the ratios of the jam densities.

The second observation is that the chain to correct values of ratios and parame-
ters vmax and wf very quickly. However, the component of the chain corresponding
to ⇢max,2 shows very little movement, and the area near true value (gray line) is not
sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ⇢max,2 but rather
cover the posterior density more thoroughly.
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Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) �(✓, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[10].

Algorithm 1 Random walk Metropolis–Hastings

Pick initial value ✓1

Set ✓ = ✓1

for k = 2 : K do
Calculate p(✓|y)
Draw w ⇠ N (0,�w) and set z = ✓ + w (proposal step)
Calculate p(z|y)
Calculate �(✓, z) = min(1, p(z|y)/p(✓|y))
Draw u ⇠ U [0, 1]
if u  �(✓, z) then

Accept: Set ✓ = z, ✓k = ✓

else
Reject: Set ✓k = ✓

end if
end for

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix �w

control the step length of the random walk on the parameter vector. The choice
of these values a↵ects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(✓|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [7].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ⇢max, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ⇢max,1 is 5 ⇥ 180 veh/mi. Link 2 has four lanes and the jam density
⇢max,2 is 4⇥ 170 veh/mi. The number of lanes in link 3 is five and the jam density

parameter link 1 link 2 link 3
lanes 5 4 5

v
max

(mph) 77 77 77
⇢
max

(veh/mi) 5⇥ 180 4⇥ 170 5⇥ 160
wf (mph) 16 16 16

1

True Parameters 

traffic 

28 28 

True velocity boundary conditions 
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⇢max,3 is 5⇥ 160 veh/mi. The initial velocity is assumed to be 77 mph on all links,
and the velocity boundary conditions are time varying, as shown in Figure 1.

The time step �T used in the Godunov scheme is set to 2 seconds. Each link
is discretized in space such that link 1 contains 14 cells, link 2 contains 11 cells,
and link 3 contains 20 cells. This choice of discretization guarantees the numerical
stability of the model up to a maximum velocity of 80 mph, which is important since
the CFL condition for numerical stability is a function of an unknown parameter
(vmax) to be estimated.
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 t

Figure 1. Upstream (solid) and downstream (dashed) velocity
boundary conditions (mph) versus time (minutes) used in the
model.

The velocity field obtained using the above parameters is shown in Figure 2,
over a period of 17 minutes. The noise free vehicle trajectories simulated using this
velocity field. A vehicle enters the domain at postmile 0 every 30 seconds, and the
position of the vehicle is updated using the model described in Section 2.1. We
assume that we obtain a GPS velocity and postmile reading every 2 seconds as long
as vehicle is in the domain. The trajectories obtained using this method are shown
in Figure 2. We add Gaussian noise to the GPS velocities with a standard deviation
of 2 mph. We assume that there is no error in the postmile of the vehicle so that we
know exactly in which cell of the computational domain the vehicle is at any given
time. In the sequel, we call these noisy GPS velocities measurements.

After data simulation we can proceed to the parameter estimation. We assume
that the initial velocity and boundary conditions of the model are known during
the inverse modeling step. Clearly, estimation of the boundary conditions is also
an important part of calibrating a flow model, but in this work we focus on the
problem of estimating the flow model parameters, which is challenging even when
the initial and boundary conditions are assumed to be known.

It is also important to notice that we use the same CTM-v model (including
discretization) and choice of flux function in the parameter estimation (inversion)
as in the data simulation. This setting is referred to as an inverse crime [10], which
represents a best case performance of the method. Despite the overly optimistic
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Figure 2. Left: True velocity field (mph) used to simulate vehicle
trajectories. Right: Noise-free trajectories simulated using the true
velocity field. Time is in minutes.

results which can be generated when inverse crimes are introduced into computa-
tional experiments, we purposefully use this setting to highlight the findings related
to the e�cient sampling of jam densities and the general solvability of the inverse
problem.

4.1. Sample generation. In order for the MCMC methods to be e↵ective, they
should have a fast mixing time. The parameters that are typically a↵ect the mixing
of the chain are the step length � and the covariance of the measurement noise
�". Appropriate values for � can be obtained, for example, using a trial and error
method.

In [7], it is noted that posterior correlations also a↵ect the mixing of the chain.
Namely, strongly correlated model parameters in the posterior distribution can
cause a lot of bad proposals thus preventing mixing of the chain.

Keeping our specific flow model application in mind, as we will demonstrate be-
low, adjustments are needed in the selection of the model parameters which we
estimate. Namely, one factor that a↵ects the mixing in our application is the pro-
posal related to the shock wave speed. This is because even small deviation from
the true shock wave speed causes large discrepancy between the GPS measurements
and the predicted measurements. This will further cause the value of the likelihood
to be very small and thus the sample will most likely be rejected. In practice, the
dependence of the solution on the ratio ↵ makes the sampling di�cult. Namely,
unless the samples are drawn from the isoline ⇢max,1 = ↵⇢max,2, the shock wave
speed will be wrong and the samples get easily rejected.

In order to improve the mixing in Algorithm 1, we draw one value ⇢max and
the ratios ↵ for the remaining links instead of using random walk for all ⇢max,i i 2
{1, 2, 3}. In our tests, this leads to significant improvement in the mixing of the
chain.
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Figure 2. Left: True velocity field (mph) used to simulate vehicle
trajectories. Right: Noise-free trajectories simulated using the true
velocity field. Time is in minutes.

results which can be generated when inverse crimes are introduced into computa-
tional experiments, we purposefully use this setting to highlight the findings related
to the e�cient sampling of jam densities and the general solvability of the inverse
problem.

4.1. Sample generation. In order for the MCMC methods to be e↵ective, they
should have a fast mixing time. The parameters that are typically a↵ect the mixing
of the chain are the step length � and the covariance of the measurement noise
�". Appropriate values for � can be obtained, for example, using a trial and error
method.

In [7], it is noted that posterior correlations also a↵ect the mixing of the chain.
Namely, strongly correlated model parameters in the posterior distribution can
cause a lot of bad proposals thus preventing mixing of the chain.

Keeping our specific flow model application in mind, as we will demonstrate be-
low, adjustments are needed in the selection of the model parameters which we
estimate. Namely, one factor that a↵ects the mixing in our application is the pro-
posal related to the shock wave speed. This is because even small deviation from
the true shock wave speed causes large discrepancy between the GPS measurements
and the predicted measurements. This will further cause the value of the likelihood
to be very small and thus the sample will most likely be rejected. In practice, the
dependence of the solution on the ratio ↵ makes the sampling di�cult. Namely,
unless the samples are drawn from the isoline ⇢max,1 = ↵⇢max,2, the shock wave
speed will be wrong and the samples get easily rejected.

In order to improve the mixing in Algorithm 1, we draw one value ⇢max and
the ratios ↵ for the remaining links instead of using random walk for all ⇢max,i i 2
{1, 2, 3}. In our tests, this leads to significant improvement in the mixing of the
chain.
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parameter link 1 link 2 link 3

lanes 5 4 5
v
max

(mph) 77
wf (mph) 16

⇢
max

(veh/mi) 900 680 800

⇢
max,i

⇢
max,2

1.32 1 1.18

1

Numerical performance 
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Figure 3. Example of poor mixing with Metropolis–Hastings al-
gorithm. Upper left: Markov chain of estimated maximum density
⇢max,2 (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ⇢max,1/⇢max,2. Estimated ratio (dashed black), true value
(dashed gray) for ⇢max,3/⇢max,2. Lower left: Markov chain for es-
timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as

✓ =

0

BBBB@

↵1,2

⇢max,2

↵3,2

vmax

wf

1

CCCCA

The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples
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Figure 3. Example of poor mixing with Metropolis–Hastings al-
gorithm. Upper left: Markov chain of estimated maximum density
⇢max,2 (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ⇢max,1/⇢max,2. Estimated ratio (dashed black), true value
(dashed gray) for ⇢max,3/⇢max,2. Lower left: Markov chain for es-
timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as

✓ =

0
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wf
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The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples

•  True parameters (grey): 

MCMC BASED INVERSE MODELING OF TRAFFIC 11

0 1 2

x 10
4

650

700

750

800

850

900
ρ

m
a

x

0 1 2

x 10
4

0.8

1

1.2

1.4

ρ
m

a
x
 r

a
ti
o

0 1 2

x 10
4

15

16

17

18

19

 w
f

0 1 2

x 10
4

74

75

76

77

78

 v
m

a
x

Figure 3. Example of poor mixing with Metropolis–Hastings al-
gorithm. Upper left: Markov chain of estimated maximum density
⇢max,2 (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ⇢max,1/⇢max,2. Estimated ratio (dashed black), true value
(dashed gray) for ⇢max,3/⇢max,2. Lower left: Markov chain for es-
timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as
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The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples
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5. Results. We present results for three di↵erent numerical experiments. In the
first scenario, the parameters to be estimated include the jam densities on each link,
and the resulting simulation su↵ers from the problem of poor mixing. In the second
example, we show that improved mixing can be achieved by estimating ratios of jam
densities instead of the jam densities directly. The third example shows that we can
recover correct values for the model parameters although we do not use the same
(three-link) configuration in the parameter estimation as in the previous estimation
cases and data simulation. In other words, we will split link l3 into two links and
estimate the ratios of jam densities with four links in our domain.

The common parameter values in both cases are: the measurement error covari-
ance matrix �" = (�")2 ⇥ I, where �" = 3 mph, I is the identity matrix, step length
for maximum density �⇢

max

= 10, step length for ratios �↵ = 0.000075, step length
for shock wave speed �wf = 0.05 and step length for maximum velocity �v

max

= 0.1.
We set the prior density for ⇢max,2 to be the uniform density U [110⇥ 4, 250⇥ 5],

which is constructed assuming a prior of ⇢max 2 [110, 250] veh/mi per lane using
jam density values observed in [6].

In order to ensure that we do not exceed the maximum velocity permitted by
the CFL condition, 80 mph, we could set a prior for vmax, for example U [70, 80].
However, in our numerical experiments, we do not encounter problems with the
sampling of vmax and, thus, omit the specification of the prior for vmax in this work.
Also, for the shock wave speed, the construction of prior distribution is not needed
in this study.

5.1. Three jam densities. The initial values for the Markov chain are: vmax = 75
mph, wf = 17 mph, ⇢max,i = 150⇥5 veh/mi, i 2 {1, 2, 3}. The boundary conditions
and the initial velocity are assumed to be known, and thus we use the same values
as used in the measurement generation process. Furthermore, we assume the same
configuration of the link lengths l1, l2, and l3 as in the data simulation.

Figure 3 shows the results of the parameter estimation when all jam densities are
drawn using random walk procedure. In other words the state vector ✓ is of form

✓ =

0

BBBB@

⇢max,1

⇢max,2

⇢max,3

vmax

wf

1

CCCCA

From the figure, two interesting conclusions can be made. First, we observe that
the mixing is very poor. In this simulation, the acceptance ratio was close to zero
after just 20,000 samples. In other words, the chain spends a lot of time stuck on a
parameter realization, and new proposals are not accepted. Note, that although our
parameter vector contained ⇢max,1 and ⇢max,3 explicitly, in Figure 3 we deliberately
show the ratios of the jam densities.

The second observation is that the chain to correct values of ratios and parame-
ters vmax and wf very quickly. However, the component of the chain corresponding
to ⇢max,2 shows very little movement, and the area near true value (gray line) is not
sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ⇢max,2 but rather
cover the posterior density more thoroughly.

[Tossavainen & Work (submitted) 2013] 
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Figure 3. Example of poor mixing with Metropolis–Hastings al-
gorithm. Upper left: Markov chain of estimated maximum density
⇢max,2 (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ⇢max,1/⇢max,2. Estimated ratio (dashed black), true value
(dashed gray) for ⇢max,3/⇢max,2. Lower left: Markov chain for es-
timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as

✓ =
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↵1,2

⇢max,2
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wf
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The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples
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gorithm. Upper left: Markov chain of estimated maximum density
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5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as

✓ =
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The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples

•  True parameters (grey): 
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gorithm. Upper left: Markov chain of estimated maximum density
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timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as

✓ =
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The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples
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5. Results. We present results for three di↵erent numerical experiments. In the
first scenario, the parameters to be estimated include the jam densities on each link,
and the resulting simulation su↵ers from the problem of poor mixing. In the second
example, we show that improved mixing can be achieved by estimating ratios of jam
densities instead of the jam densities directly. The third example shows that we can
recover correct values for the model parameters although we do not use the same
(three-link) configuration in the parameter estimation as in the previous estimation
cases and data simulation. In other words, we will split link l3 into two links and
estimate the ratios of jam densities with four links in our domain.

The common parameter values in both cases are: the measurement error covari-
ance matrix �" = (�")2 ⇥ I, where �" = 3 mph, I is the identity matrix, step length
for maximum density �⇢

max

= 10, step length for ratios �↵ = 0.000075, step length
for shock wave speed �wf = 0.05 and step length for maximum velocity �v

max

= 0.1.
We set the prior density for ⇢max,2 to be the uniform density U [110⇥ 4, 250⇥ 5],

which is constructed assuming a prior of ⇢max 2 [110, 250] veh/mi per lane using
jam density values observed in [6].

In order to ensure that we do not exceed the maximum velocity permitted by
the CFL condition, 80 mph, we could set a prior for vmax, for example U [70, 80].
However, in our numerical experiments, we do not encounter problems with the
sampling of vmax and, thus, omit the specification of the prior for vmax in this work.
Also, for the shock wave speed, the construction of prior distribution is not needed
in this study.

5.1. Three jam densities. The initial values for the Markov chain are: vmax = 75
mph, wf = 17 mph, ⇢max,i = 150⇥5 veh/mi, i 2 {1, 2, 3}. The boundary conditions
and the initial velocity are assumed to be known, and thus we use the same values
as used in the measurement generation process. Furthermore, we assume the same
configuration of the link lengths l1, l2, and l3 as in the data simulation.

Figure 3 shows the results of the parameter estimation when all jam densities are
drawn using random walk procedure. In other words the state vector ✓ is of form

✓ =

0

BBBB@

⇢max,1
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From the figure, two interesting conclusions can be made. First, we observe that
the mixing is very poor. In this simulation, the acceptance ratio was close to zero
after just 20,000 samples. In other words, the chain spends a lot of time stuck on a
parameter realization, and new proposals are not accepted. Note, that although our
parameter vector contained ⇢max,1 and ⇢max,3 explicitly, in Figure 3 we deliberately
show the ratios of the jam densities.

The second observation is that the chain to correct values of ratios and parame-
ters vmax and wf very quickly. However, the component of the chain corresponding
to ⇢max,2 shows very little movement, and the area near true value (gray line) is not
sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ⇢max,2 but rather
cover the posterior density more thoroughly.

[Tossavainen & Work (submitted) 2013] 
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Note that the Smulders velocity function is invertible, and the mapping from
velocity v to density ⇢ can be written as
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where vc = V✓(⇢c) is the critical velocity.
As shown in [24], we can obtain a discrete velocity evolution equation, called

velocity Cell Transmission Model (CTM-v), by applying a Godunov [8, 11] scheme
directly to (1) and then applying a velocity inversion. The discretized evolution can
be written as follows:
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where �T is the discrete time step indexed by n 2 {0, . . . , nmax}, �x is the discrete
space step indexed by i 2 {0, . . . , imax}, vni is the tra�c velocity in the i

th cell at
time step n.

In (3), G̃✓(·, ·) is the Godunov velocity flux, which is given by
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where v

n
l and v

n
r are given by the prescribed left and right boundary conditions

defined in terms of velocity.
An important feature of the velocity dynamics assumed in this work (i.e. the

Smulders velocity function) is that the shock speed s is not a function of the jam
density on either side of the shock. The speed of a shock connecting the two states
v1 and v2 is given by the Rankine–Hugoniot relation:

s =
V
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We write the velocity inversion function (2) as V �1
✓ (v) = ⇢maxZ(v) where

Z(v) =

(
1� v

v
max

if v � vc
1

1+ v
wf

otherwise

When the shock occurs at the boundary of a link, the relationship between the jam
density on each side of the shock can be written as ⇢max,1 = ↵⇢max,2, where ↵ is a
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When the shock occurs at the boundary of a link, the relationship between the jam
density on each side of the shock can be written as ⇢max,1 = ↵⇢max,2, where ↵ is a
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ratio of the jam densities. Thus, the shock speed can be expressed as

s =
↵Z(v1)v1 � Z(v2)v2
↵Z(v1)� Z(v2)

From the above, we can draw the following conclusions. First, within a link (on
which we assume ⇢max is a constant and thus ↵ = 1), the shock wave speed does
not depend on ⇢max. Second, if the shock occurs at a link boundary, the shock wave
speed will be a function of the jam density ratio ↵, but not directly the jam density.
From the perspective of estimating the value of the jam density on each link, this
will significantly increase the degree of di�culty in generating good samples from
the posterior parameter distribution. As will be explained in this work, parameter
estimates which generate incorrect shock speeds are easily rejected in our proposed
MCMC algorithm.

2.1. Simulation of vehicle trajectories. After we have obtained the velocity
evolution using the CTM-v model, we can simulate the vehicle trajectories. We
model the evolution of GPS equipped vehicles as passive Lagrangian tracers, which
evolve according to the macroscopic (discrete) velocity field {vn : n 2 {0, . . . , T}}.
Hence, the j

th vehicle moves with the local tra�c speed and updates its position
�

n
j according to:

�

n+1
j = �

n
j +�T ⇥ v

n+1(�j)

where �T is the time stepping used in the trajectory simulation. The model is
completed with initial condition

�

0
j = 0

The measurements are then obtained by recording the local speeds vn+1(�j) of the
GPS equipped vehicles.

3. Bayesian estimation of model parameters. In the Bayesian setting, the
solution to our flow model parameter estimation problem is a posterior density of
the parameters, conditioned on the observed GPS measurements. In this section,
we construct the parameter observation model and the posterior density for the un-
known model parameters. Because of the nonlinearity of the observation operator,
which itself contains a nonlinear flow model, we are unable to write an analytical
expressions for quantities such as mean value of the posterior and its covariance.
To circumvent this di�culty encountered in the estimation process, we propose a
Markov Chain Monte Carlo (MCMC) method to explore the posterior density and
generate random samples from it. This approach allows us to compute properties
of the posterior distribution of the flow model parameters (e.g. moments of the dis-
tribution) using sample approximations, which can then be used as the calibrated
flow model parameters and their uncertainty estimates.

3.1. Construction of the posterior density. The observations used in our flow
model parameter estimation problem are GPS speeds corrupted by measurement
noise, which are obtained from vehicles traveling through the computational domain.

Let y 2 Rm denote the vector of these observations. The observation model is
assumed to be an additive noise model, which is written as

y = h(✓) + " (4)

where ✓ 2 Rd is the vector of unknown model parameters. The additive noise " 2 Rm

is assumed to be Gaussian, " ⇠ N (0,�") and independent of the parameters ✓. For

parameter link 1 link 2 link 3

lanes 5 4 5
v
max

(mph) 77
wf (mph) 16

⇢
max

(veh/mi) 900 680 800

⇢
max,i

⇢
max,2

1.32 1 1.18

Table 1:

parameter link 1 link 2 link 3

lanes 5 4 5
v
max

(mph) 77 77 77
⇢
max

(veh/mi) 5⇥ 180 4⇥ 170 5⇥ 160
wf (mph) 16 16 16

measurement errors

⇠ N (0, 4)

↵ =
⇢
max,1

⇢
max,2

1

[Tossavainen & Work (submitted) 2013] 
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and we discard 40,000 first samples as the burn-in period. Furthermore, we assume
the same configuration of the link lengths l1, l2, and l3 as in the data simulation.

The results are shown in Figure 4. As can be seen, the parameter values are re-
covered with good accuracy, except for the ⇢max,2. The high uncertainty regarding
⇢max,2 reflected in our prior density is also visible in the diagnostics of the Markov
chain. This suggests that when using GPS velocities as measurements, stronger
priors may be needed in order to reduce the uncertainty in the estimates of the
maximum densities. The computed mean values and standard deviations are sum-
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Figure 4. Upper left: Markov chain of estimated maximum den-
sity ⇢max,2 (veh/mi) of the second link (black) and true value
(gray). Upper right: estimated ratio (solid black) and true value
(solid gray) for ⇢max,1/⇢max,2. Estimated ratio (dashed black), true
value (dashed gray) for ⇢max,3/⇢max,2. Lower left: Markov chain for
estimated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

marized in Table 1 with the true values. Also, the absolute value of the error in the
velocity field obtained using the mean values from Table 1 as flow model parameters
is shown in Figure 5. Due to the accurate recovery of the ratios ↵1,2, ↵3,2, vmax

and wf , the discrepancy between the predicted velocity field and the true state is
small, in spite of the poor estimate of the jam densities.
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marized in Table 1 with the true values. Also, the absolute value of the error in the
velocity field obtained using the mean values from Table 1 as flow model parameters
is shown in Figure 5. Due to the accurate recovery of the ratios ↵1,2, ↵3,2, vmax

and wf , the discrepancy between the predicted velocity field and the true state is
small, in spite of the poor estimate of the jam densities.
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Figure 3. Example of poor mixing with Metropolis–Hastings al-
gorithm. Upper left: Markov chain of estimated maximum density
⇢max,2 (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ⇢max,1/⇢max,2. Estimated ratio (dashed black), true value
(dashed gray) for ⇢max,3/⇢max,2. Lower left: Markov chain for es-
timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ⇢max,2, the ratios ↵1,2 = ⇢max,1/⇢max,2 and ↵3,2 =
⇢max,3/⇢max,2, the maximum velocity vmax and the shock wave speed wf . Thus the
parameter vector ✓ can be written as

✓ =

0

BBBB@

↵1,2

⇢max,2

↵3,2

vmax

wf

1

CCCCA

The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ⇢max,2 =
150⇥5 veh/mi and ratios ↵1,2 = ↵3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 295,000 samples

[Tossavainen & Work (submitted) 2013] 
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Prediction error with estimated parameters 
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Table 1. Mean values, standard deviations and true values for the
estimated parameters in the case of three links when ratios are
sampled.

Parameter True value Mean value Standard deviation
↵1,2 1.32 1.32 0.01
⇢max,2 680 944 200
↵3,2 1.18 1.18 0.002
vmax 77.0 77.0 0.06
wf 16.0 15.9 0.1
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Figure 5. The absolute value of the error in the velocity field
obtained using the posterior mean values as parameters. Time is
in minutes. The unit of velocity error is mph.

5.3. One jam density and three ratios. In order to further test our method,
we split the link l3 into two separate links l3 and l4 without changing the length of
the computational domain. In other words we assume a di↵erent link discretization
than what is used in the generation of the true state. The lengths of the links are
as follows: l1 = 0.62 mi, l2 = 0.49 mi, l3 = 0.445, and l4 = 0.445 mi. Since the true
value of the ⇢max,3 = ⇢max,4 = 5 ⇥ 160 veh/mi, we should recover that the ratio
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Figure 2. Left: True velocity field (mph) used to simulate vehicle
trajectories. Right: Noise-free trajectories simulated using the true
velocity field. Time is in minutes.

results which can be generated when inverse crimes are introduced into computa-
tional experiments, we purposefully use this setting to highlight the findings related
to the e�cient sampling of jam densities and the general solvability of the inverse
problem.

4.1. Sample generation. In order for the MCMC methods to be e↵ective, they
should have a fast mixing time. The parameters that are typically a↵ect the mixing
of the chain are the step length � and the covariance of the measurement noise
�". Appropriate values for � can be obtained, for example, using a trial and error
method.

In [7], it is noted that posterior correlations also a↵ect the mixing of the chain.
Namely, strongly correlated model parameters in the posterior distribution can
cause a lot of bad proposals thus preventing mixing of the chain.

Keeping our specific flow model application in mind, as we will demonstrate be-
low, adjustments are needed in the selection of the model parameters which we
estimate. Namely, one factor that a↵ects the mixing in our application is the pro-
posal related to the shock wave speed. This is because even small deviation from
the true shock wave speed causes large discrepancy between the GPS measurements
and the predicted measurements. This will further cause the value of the likelihood
to be very small and thus the sample will most likely be rejected. In practice, the
dependence of the solution on the ratio ↵ makes the sampling di�cult. Namely,
unless the samples are drawn from the isoline ⇢max,1 = ↵⇢max,2, the shock wave
speed will be wrong and the samples get easily rejected.

In order to improve the mixing in Algorithm 1, we draw one value ⇢max and
the ratios ↵ for the remaining links instead of using random walk for all ⇢max,i i 2
{1, 2, 3}. In our tests, this leads to significant improvement in the mixing of the
chain.
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•  Parameter calibration with GPS smartphone data 
–  Velocity traffic dynamics 
–  MCMC for traffic parameter estimation 
–  Numerical examples 
 

•  Traffic sensing for extreme congestion events 
–  TrafficTurk smartphone app 
–  Experimental deployments 

Outline of this talk 
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Another app for traffic monitoring? 

[trafficturk.com] 
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Extreme congestion events 

•  Event driven congestion 
–  Sporting events 
–  Political rallies 
–  Natural disasters 

•  Impact on transportation 
infrastructure 
–  Network topology changes 
–  Damage to physical 

components 
–  Loss of cyber components 
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Limitations of current systems 

•  Surface streets 
–  Sparsity of sensing 
–  Limited gps data 

•  machine learning based 
algorithms: 
–  Heavily influenced by historical 

priors 

•  Flow models: 
–  Unknown boundary controllers 

(traffic signals) 

Need for cheap, instantly deployable (temporary) sensing 

40 

Traffic sensing smartphone app 
 
 
 

TrafficTurk 

! Large-scale 

! Low-cost 

! High-resolution  

! Real-time 

! Instant-deployment 
[ trafficTurk.com ] 
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When a vehicle passes the 
intersection,  

swipe its movement on the screen. 
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Inspiration 

Amazon’s Mechanical Turk 

Turning movement counters 
 (Transportation’s Mechanical Turk) 

The mechanical Turk 
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100+ sensors deployed to monitor football traffic 
220,000+ vehicles swiped 

44 44 
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11 training sessions 

46 46 

135 student volunteers 
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•  sdf 

Streaming data to Mission Control 
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•  sdf 

[research team] 
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TrafficTurk Experiment - NYC 

•  Hurricane Sandy –  
November 3 and 4, 2012 

•  Garment District, Manhattan 
•  Overnight map deployment 
•  Recruitment at Columbia 

University 

•  Real disaster response 
experience  

10+ hours 
monitoring 

[NSF RAPID # 1308842] 

[Scientific American Citizen Science featured project ‘12] 
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