Interaction of pedestrians and road-traffic

Raul Borsche A.Klar, A.Meurer, S. Kühn

Sophia Antipolis, 20.03.2013

pedestrians and cars

Outline

- The Model
 - Road-Traffic
 - Pedestrians
 - Coupling
- 2 Examples
 - Crosswalk
 - Possible Choices
 - Density
 - Velocity
 - Flux
 - Small Network

Cars

Single road - Lighthill-Witham

$$\partial_t \rho + \partial_x \left(v_{max} \rho \left(1 - \frac{\rho}{\rho_{max}} \right) \right) = 0$$

 ρ density of cars, v_{max} maximal velocity

Network

For networks we use the coupling conditions of Coclite, Garavello and Piccoli.

Pedestrians

Hughes model

$$\partial_t \gamma + \nabla \left(\gamma \frac{\nabla \Phi}{\|\nabla \Phi\|} w(\gamma) \right) = 0 , \quad w(\gamma) = w_{max} \left(1 - \frac{\gamma}{\gamma_{max}} \right) ,$$

$$\|\nabla \Phi\| \ w(\gamma) = 1$$

 γ density of pedestrians, w_{max} maximal walking speed,

 $abla\Phi(t,\cdot):\mathbb{R}^2 o\mathbb{R}^2$ direction of fastest path .

Projections

Map the respective densities on the 'other' domains

recover the road as a 2D domain filled with cars

project the density of the pedestrians on the road

Coupling functions

$$v_{max} = v_{max}(\gamma) = v_{max} \left(1 - \frac{\gamma}{\gamma_{max}}\right)^{\alpha}$$
 $v_{max} = v_{max}(\rho) = w_{max} \left(1 - \frac{\rho}{\rho_{max}}\right)^{\beta}$
 $v_{max} = v_{max}(\rho) = v_{max} \left(1 - \frac{\rho}{\rho_{max}}\right)^{\beta}$
 $v_{max} = v_{max}(\rho) = v_{max} \left(1 - \frac{\rho}{\rho_{max}}\right)^{\beta}$

Idea as in Lighthill-Witham: the higher the density the slower the flow.

Crosswalk

Is this the only choice?

Cars see pedestrians

density: more pedestrians on the road \rightarrow cars drive slower

Pedestrians see cars

density (many cars → do not want to cross)

$$w_{max}(\rho) = w_{max} \cdot \left(1 - \frac{\rho}{\rho_{max}}\right)^{\beta}$$

ullet velocity (fast cars o do not want to cross)

$$w_{max}(\rho) = w_{max} \cdot \left(\frac{\rho}{\rho_{max}}\right)^{\beta}$$

 flux (attempt to cross, although there are either very few fast cars or there is a slow jam moving)

$$w_{max}(
ho) = w_{max} \cdot \left(1 - \left(1 - rac{
ho}{
ho_{max}}
ight) rac{
ho}{
ho_{max}}
ight)^{eta}$$

Test case

$$v_{max}^1 = 2$$
$$v_{max}^2 = 1$$

Coupling - density

$$w_{max}(
ho) = w_{max} \cdot \left(1 - rac{
ho}{
ho_{max}}
ight)^{eta}$$

Pedestrian density at time step: 0

Coupling - velocity

$$w_{max}(\rho) = w_{max} \cdot \left(\frac{\rho}{\rho_{max}}\right)^{\beta}$$

Pedestrian density at time step: 0

Coupling - flux

$$w_{max}(
ho) = w_{max} \cdot \left(1 - \left(1 - rac{
ho}{
ho_{max}}
ight) rac{
ho}{
ho_{max}}
ight)^{eta}$$

Traffic density at time step: 0

Pedestrian density at time step: $\boldsymbol{0}$

Which one is the best?

Pedestrians see cars

- density (many cars → do not want to cross)
- velocity (fast cars → do not want to cross)
- flux (attempt to cross, although there are either very few fast cars or there is a slow jam moving)

Can we improve the situation?

 A second order traffic model, would allow to consider velocity and density simultaniuously.

Small Network

