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Basics of: LWR and macroscopic intersection
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The invariance principle

Discussion of internal state intersection model
GSOM model

GSOM intersection modeling

GSOM lagrangian HJ and variational
interpretation

Numerical solution schemes
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Scope
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= The GSOM model is close to the LWR model

= It is nearly as simple (non trivial explicit solutions
fi)

= But it accounts for driver variability (attributes)

= More scope for lagrangian modeling, driver
interaction, individual properties

= Admits a variational formulation

= Expected benefits: numerical schemes, data
assimilation
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The LWR model Erg
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The LWR model in a )

i nutshell

= Introduced by Lighthill, Whitham (1955), Richards
(1956)

% 6q =0 Conservation equation
ot ax

= The equations: q=pv definition of v
v=V.(p,x) Behavioural equation

= Or: 8p 0
=0
o o)

TRAM2, Sophia-Antipolis,
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Example of FD (vs field =7,

i data)

= (PQ model
assumed true
for the rest
of the
presentation)
= Field data:
traffic from a
highway
south of Paris

Flow (vh/h)

Occupancy rate(}.
il

=
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The LWR model: supply / ETﬁﬂ

i demand

= the equilibrium supply =, and demand A,
functions (Lebacque, 1993 1996)

Ly Demand
o (%}
““i E
ENES Proa [ %)
4 4
o o e’ £3) * Supply
P () P ()
o]

P [X) e
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The LWR model: the p
i min formula e

= The local supply and demand:

2(x,t) =2, (p(x+,1), x +)
A(X,t) = Ae (p(X—,t), X _)

s The min formula

Q(x,t)=Min [Z(x,t), A(x,1)]

= Usage: numerical schemes, boundary conditions
— intersection modeling

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013




Supply-demand boundary

conditions

= Link supply :
= Link demand :

Upstream Yia )
demand /Q\ﬁ
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Downstream
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Intersection modeling:

i basics sttt

= A node model must combine:

Upstream link Boundary Conditions (entry)
Downstream link Boundary Conditions (exit)
Possibly: internal node dynamics

Vehicle conservation relations

Flow constraints (can be imposed)

= Some references: Holden-Risebro 1995, Lebacque-Khoshyaran
1998-2002-2005, Coclite-Piccoli 2002, Garavello-Piccoli 2005,
Lebacque-Mammar-Haj-Salem 2006, Rascle-Herty 2006

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013

LWR Intersection

i modelling
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i Some intersection models ETE

= SSMT

= STRADA

= Jin-Zhang

= Daganzo (diverge)
= Rascle (merge)

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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STRADA merge model (Buisson ETC
& Lebacque, Lesort 1993-1996)

min (3, ,Ba)

s max|o, > min(5,,8,0)|”

q_mm[a, >, min(s,, 8,0 )]

* Link outflow = Minimum (link demand, partial downstream supply)

» Total flow less than supply

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013

IFSTTAR

GRETTIA

The STRADA intersection ETC
model: the split coefficients ™=

By =213

R e M o
> """"""""""""" (2 -
o N

Br=2s3

= The downstream link supply is split
according to fixed ratios among
upstream link demands

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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The Jin-Zhang fair merge %Tﬂ
i model (Jin and Zhang 2002-2004)""

= Link outflow proportional to demand
= Total flow less than downstream supply

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013

IFSTTAR

GRETTIA

The Daganzo diverge WEE
i model (Daganzo 1994-1995) o

O,
q =mini[5,ﬁ}
o

g, =min|a;5, 0]

= Partial outflow = min ( partial demand,
downstream supply )

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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ETC
i Rascle model B

= ARZ (Aw-Rascle-Zhang 2000-2002)
= Lagrangian discretization

= Fixed proportions of particles cross the
intersection.

= Close to GSOM -
GSOM compatible

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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Intersection model building: gz¢
i the invariance principle
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= Lebacque Khoshyaran 2005
= Not all models are consistent

TRAM?Z2, Sophia-Antipolis,
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LWR intersection modeling: point e
i\lee (Lebacque Khoshyaran 1998-2005% ﬂf

def
0<Q, <8, =A,(z-1) Vi
def
0< pjgcj:Zj(Z+,t) Vj (l)/
P-2r,Q =0 Vi (z)

* Flows are constrained by upstream demands and downstream supplles
(+ flow conservation)

* Flows must respect assignment coefficients (constant directional
fractions, information responsive user path choice etc...)

« More complicated intersection situations: Flows can be constrained by
traffic lights, priority conflicts inside the intersection

TRAM2, Sophia-Antipolis,
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Invariance principle for B1c
i node models P

- Node models (Q,P)= f(8,6) must satisfy the
invariance principle (Lebacque-Khoshyaran 2005)

e They must be stable by the following

transformation:

(if the node is congested the Si — Qi,max if Qi < 8i
upstream links have maximum .

demand) c,>P.. iIf P<o,

(if the node is not congested the
downstream links have maximum

supply)

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Meaning of these )
i structural constraints ===

= Generalized Riemann problem for the intersection
= supply and demand constraints

= Self-similarity + feasibility of solution = invariance
principle

= The invariance principle guaranties
= consistent models and convergent numerical schemes

= that waves travel in the right directions in the vicinity of
the intersection

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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An example of a node model satisfying the iy
invariance principle: the optimization node model HETQ
‘ (Holden-Risebro 1995, Lebacque-Khoshyaran 2005) e sconte com
Max > @, (@Q)+Y ¥,(R,) /
i J

B
i
Q, <8, Vi w—"

RjSGj V] \

ZY|jQi_Rj:O VJ

= j;: turning movement coefficients (deduced from the
assignment coefficients)
n Constraints:
= Node inflows less than upstream demands
= Node outflows less than downstream supplies
= Conservation of node out-flows

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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Optimization node model =

= The Karush-Kuhn-Tucker Q =Min{6i,®i"l(—2vi.5.ﬂ
optimality conditions yield (s;) '
coefficient of the outflow (j) |[Ri= Min[#,"(5, o, ]
conservation equation) 37,Q-R, =0 Vj

= The in- and out-flows are given Q =Min[s.,¢,]
by a Min-formula = The model ‘ R — Min [W_ G_]
satisfies the invariance principle ! e

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013

IFSTTAR

GRETTIA

Optimization node model 4 4q

i (cont'd) o

= Interpretation of the criterion: e q)._l( )
= ®,: - partial supply of node (for link (}) ) Pi =i _zf Vie St
= W : - partial demand of node (for link (j) ) def 4
J
vi =¥ (s;)

m Coefficients S;: “node state”

= Other models satisfy the invariance principle (dynamic
pointwise, equilibrium)

= Daganzo merge model (1994-1995) is an optimisation
model with quadratic node supply generators ®,

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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Internal state node ST
i modelling ol
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Internal state node model ETC

==

‘ (Lebacque Khoshyaran 1998-2002-2005-2009)  “#enaceon

= The extension of the node
is neglected (point wise
intersection)

= The node is assumed to
exhibit a global behavior:
global supply and demand

= The dynamics inside of the
intersection are modeled
approximatively

s Node < “buffer” between

upstream and downstream
link Boundary Conditions

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Internal state model:  q¢
i basic variables oo

= Total number of vehicles, N, (1), N, t)
number of vehicles per

= Total demand, total
supply, which are a B

function of total number of R e —
vehicles inside the node [

= In all cases (merges, R
diverges, T intersections) =
demand and supply are ] Ba = 2/3 \
defined as usual Node (2)

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Node demand

i Node supply, demand ETE

- Main parameters

Q,, : through - flow capacity
N, , :storage capacity

N, : critical number of vhs QNOde supply
- Demand could be modified to

include traffic hysteresis (capacity

drop)

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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‘ N Od e m Od eI I n g www.econtrac.com Www.econtrac.com
. Node flow |
= Node modeling can be 0 = The node supply is split (constant split e
simpler o coefficient) s (1)=B > (N(t tode @
» Example (Herty Lebacque Moutari Z'i( ) Bi Z( ( )) N, (t), Nz,j(t)
2009): only through-flow = The node demand is split AN () 2,(N.()
and storage capacities are N (proportionally to directional demands) AN, (), =,(N, (©)
retained Mo N, (t)
Azj(t): sz(t) AL(NL(t))
= Classical four-branch Merde :
intersection: 4 merges, — = Flows = Min(demand, supply)
four diverges, four conflict .
zones, can be represented U q;(t) = Min [ai(t)’zz,i (t)]
as 8 internal nodes models Diverge .
f p,(t)=Min[A, (t).0,(t)]
TRAM?Z2, Sophia-Antipolis, TRAM2, Sophia-Antipolis,
March 20-22, 2013 March 20-22, 2013
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Internal state node model: T
node state dynamics

www.econtrac.com

q,(t) = Min[3, (t).=,, (t)]= Min[3, ). B, =.(N, (1))]
p,(t)=Min[a, (t).0, )] Min{ N"‘(t)AI(NI(t)),cJ(t)}

Min formula for the flows: the
invariance principle is satisfied

N, (1)

Conservation equation for the numbers of dN,;
vehicles stored inside the node g ==+ 7,0a0)

N.()=2N,, )

The assignment coefficients (fraction of
users entering from (/), bound to () )
are one of the following:
= Constant turning movement coefficients to
be estimated (Kalman filter)
= Dynamic assignment coefficients (user ’Y (t) o
responsive or predictive) I
= Measured directly (GPS/cell phones) o\()

N\O=4

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Introduction of a simpler model: &T1¢
the equilibrium model

=3t
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= The internal state node model requires the resolution of an ODE
(ordinary differential equation).

= The time-scale of the node model is much shorter than the time
scale of the link model (due to smaller node dimension)

= Typically the discretization time-step of the node equations will be
one order of magnitude less than the time-step for the discretization
of the links (Godunov scheme)

= For better computational times: search for a simpler internal state node
model

= ldea: during a Godunov time-step for links the boundary conditions
(upstream demands, downstream supplies) of the node stay constant

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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ETC
i Comments b5 o

= The internal node model satisfies the invariance principle
= It requires the resolution of an ODE (ordinary differential

equation)
= It can be approximated by an equilibrium model more

easily solvable, which also satisfies the invariance principle
= It can be easily adapted to a variety of constraints and

models

= Traffic lights, conflict induced constraints

= Capacity drop

= GSOM (Generic second order modeling = LWR + dynamics of

individual driver attributes)
= Lagrangian setting
= Stochastic GSOM models

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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Two other recent approaches BTC
irelated to the invariance principle wswn

= Jin (2008-..): in order to overcome the
constraints induced by the invariance principle,
introduces a new solution concept: the filmy
states

= Tampeére, Floterréd, Rohde, Osorio:

= concentrate on maximizing through-flow +
realistic constraints

= target complex intersections

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013
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ETC
i GSOM models i secn

TRAM?Z2, Sophia-Antipolis,
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GSOM (Generic second %TQ
i order modelling) models ===

= (Lebacque, Mammar, Haj-Salem 2005-
2007)

= In a nutshell
= Kinematic waves = LWR
= Driver attribute dynamics

= Includes many current macroscopic models

TRAM?Z2, Sophia-Antipolis, March 20-22, 2013
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i GSOM Family: description

= Conservation of vehicles

(density) op+0,(pv)=0

= Variable fundamental diagram,
dependent on a driver attribute — C‘( )
(possibly a vecteur) / V=243 p’ I

= Equation of evolution for /
following vehicle trajectories
(example: relaxation)

| =01 +vo, |l =—f(1)

TRAM2, Sophia-Antipolis, March 20-22, 2012
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==

i GSOM: basic equations ==

a_p_|_aﬂ:0
ot oXx

Conservation des véhicules

Dynamics of / along %Jr@ =—p (1)
trajectories ot . X
o [=0,1+vo,l =—f(1)

Variable fundamental Diagram def

v=3(,1) = pv="%R(p,I)

TRAM2, Sophia-Antipolis, March 20-22, 2012
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Example O0: LWR (Lighthill, Whitham, ‘BT
Richards 1955, 1956) B

= No driver attribute %O+aaﬂ=0 Equation de conservation
X

v=V,(p,x)  Diagramme fondamental

= One conservation
equation op O
+_

=" Q.(p,x)=0

TRAM2, Sophia-Antipolis, March 20-22, 2012
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Example 1: ARZ (Aw,Rascle ETC
i 2000, Zhang’zooz) Wi, econtrac.com
Speed lunclion, ARZ mode
speed: Fow 12

Yy =
421 "‘01!;&\ g';“" 015 u'lz

= Lagrangien attribute / = difference between
actual and mean equilibrium speed

l=v-V.(p)) & v=3(p,1)=1+V.(p)

07 " Ngws 01 iy 015 o2

TRAM2, Sophia-Antipolis, March 20-22, 2012
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Example 2: 1-phase Colombo model " cema
(Colombo 2002, Lebacque Mammar Haj-Salem LE jf

i 2007) :

= Variable FD (in the congested
domain + critical density)

s<p,|)=(|+—j o)

equilibrium speed distribution VO(p)= 1-
1007 Increasing
801 values of /
speed 607 = The attribute / is the
10 parameter of the family
20 of FDs

0720 40 60 80 100120140160180200
density

TRAM?Z2, Sophia-Antipolis, March 20-22, 2012

V-V
ma\x_LCrlt if pSpcrit(I)
- e pcrit(l)
v="3(p,1)=
[I_l_q*J 1_L if pzpcrit(l)
p Prmax

= Fundamental -]
Diagram (speed
density)

IFSTTAR
GRETTIA

ETC
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Example 2 continued )
i (1-phase Colombo model) =

» 1-phase vs 2-phase: Flow-density FD

equiibrium flow distribulion equiibrium flow distibution
3000 3000
- -
2000 2000
flow 15007 15001
1000 1000
5001 5001

0 "'50 40 60 80 100120140160180200 © 20 40 60 80 100120140160 180200
density density

TRAM_Z2, Sophia-Antipolis, March 20-22, 2012

Example 3: Cremer-
Papageorgiou

= Based on the Cremer-
Papageorgiou FD (Haj-Salem

2007)

Speed funclion, Cremer-Papageorgiou model

)\

speed 20

e 067 47
10 04
024

pmax

167

14

127

11

flow g1

0

01 02 03 04 03 01 02 03
densily {wimeter) densily (vhimeler)

(o, 1)=V, 1 1—[L

IFSTTAR

GRETTIA

ETC
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]l(am) m

How funclion, Cremer-Papageorgiou model

04

TRAM2, Sophia-Antipolis, March 20-22, 2012
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Example 4: BTC

E

« multi-commodity » models™ "

= GSOM Model A + v I = o))

= + advection (destinations, vehicle
type) 9 + v, = 0

= = multi-commodity GSOM

0T + 0,7 = e\ )

TRAM2, Sophia-Antipolis, March 20-22, 2012
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Example 5: multi-lane modelerg

www.econtrac.com
P
Pmax .

= Impact of multi-lane traffic Congested traffic

= Two states: congestion (strongly A\ kW
lated | t fluid (weakl PN,
correlated lanes) et fluid (weakly Vi)
correlated IaneS) _— \\‘ Fluid traffic
= - 2 FDs separated by the phase A
boundary R(\)
. . dp 0
= Relaxation towards each regime TRy (kv =0
. C Ox
= - eulerian source terms
da . def Do Oa —aje if p<R(y

AT T e T | M- -a) e i pzR()

TRAM2, Sophia-Antipolis, March 20-22, 2012
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Example 6: Stochastic GSOM ETC
(Khoshyaran Lebacque 2007—2008) econecem

s ldea:

op OpVv

= Conservation of véhicles ot + “ox =0
= Fundamental Diagram

depends on driver def

attribute / v=3(p,1) = pv=R(p,I)
= / is submitted to

stochastic perturbations

(other vehicles, traffic [ = @] | dBt

conditions, environment) " dt

= 1=2Z(N,t;0)

TRAM2, Sophia-Antipolis, March 20-22, 2012

Two fundamental properties of the IFSTTAR

GRETTIA

GSOM family ETC
ﬁhomogeneous piecewise constant case )=

= 1. discontinuities of / propagate with the speed v of
traffic flow

= 2. If the invariant / is initially piecewise constant, it
stays so for all times >0

® = On any domain on which / is uniform the GSOM
model simplifies to a translated LWR model (piecewise

LWR)
op O
P L% %o, 1)=0
ot ox b.1)

TRAM2, Sophia-Antipolis, March 20-22, 2012
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i Riemann problem ETC
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Generalized (translated) supply- Demand o}
(iebacque Mammar Haj-Salem 2005-2007) eaptoon

t
I=1,in (S) g o S 1) = Translated Supply / Demand = supply resp demand
. O o Y =S P )= Ve for the « translated » FD (with resp to /)
I = I r In (T) _,'/ " ) Modified supply and demand
Ugi| Upy = pn=3, (V. 1)
- o7 B
(s} - vr " o ( )def ( )
- Alp, | )= Max Rig, |
Uj. / - \ f:r, . P » 0<¢<p G
— T 3o, 1)= M, 91 )
U, —U,: ondeLWR h o
| r
U, > U, : discontinuite |
FD, X D,
TRAM2, Sophia-Antipolis, March 20-22, 2012 TRAM?Z2, Sophia-Antipolis, March 20-22, 2012
Pk, ARz ekl IFSTTAR . R
Examp|e of translated W ] crerma Solution of the go_-__ Un
7 ,/ . ___. : . — ./'/ J_I'
supply / demand: the == _—— ETC Riemann problem o, | v .
. nn‘; A ‘ww.econtrac.com : 0. ¥ /_/ m
i ARZ family | —— (summary) A .
oL T ety ‘Sl‘__,;v = ¥
Demand func Supply funcion, ARZ model e S LTA@ x
hncion, ARZ model o Define the upstream demand, def def
18] the downstream supply offre 9, = Ae|(p,, l,), o, =2, r(pm, ||)
164 (which depend on /)): ’ ’
141 15]
1.2 The intermediate state U, is I, =1
flow 1 flow 1 glven by Vm:Vr Ie Sr(pmill):vr:Sr(pr’lr)
0.81
061 T The upstream demand and the
: 0.5 downstream supply (as oef (ou1,)
04 functions of initial conditions) : | & d‘efA' Pl
02-/ _ — _ — _""\ , , Gr:Zr(pmlll)zzr(s:i)(vr’II)'II)zzr(:s:i)(Sr(pr’Ir)lll)'ll)
0 o5 01 o015 02 0]" "aos\ 01 015 oP , _ .
densily {vhimeler) densily {vhimeter) Min Formula: Q= Min [6I O, ]

TRAM?Z2, Sophia-Antipolis, March 20-22, 2012

TRAM2, Sophia-Antipolis, March 20-22, 2012




IFSTTAR

Boundary Conditions BT
(revisited for GSOM) S

Xia Ab.t)
p a &b
u //’" \
A /QCP';EIJ:' Q I:]:}Qx £y

= Note the complex

dependancy with respect
to driver attributes

= Note: downstream
boundary conditions can
possibly be expressed in
terms of velocity

3(a,t)=2,(p(at) 1(a,t)1,(t)a)
Q(a,t)= Min [A,(t).2(a,t)]

Ab,t)=A,(p(b,t) (b, t)b)
Z,(t)=2.(p(b,t) 1) 1(b,t)b)
Q(b,t)= Min [A(b,t),=(a,t)]

TRAM2, Sophia-Antipolis, March 20-22, 2012
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GSOM intersection BTC

i modelling

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Intersection modeling for BT
GSOM models oo

Supply and demand are well-defined, the min
formula appies

The invariance principle applies
Optimization models satisfy the invariance principle

But they are hardly tractable

= The downstream supply depend on the upstream
attribute values

= Exception: pure assignment problems (FD does not
depend on the attributes = destination fi)

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Internal node models for ¢

i GSOM

= Conservation equations
in the node:

NZ =ziqi|i _ZJ pJLZ
Nsz =ziqi(|i _LZ)

N, ; ZZiqi%,- —Pj

Nz,jLz,j =ZiQi7ij(|i _Lz,j)

N, (1), N, ;(t)

L, (®), L, ;®

Ay (N, L)
£,(N, (), L, ; . 1(t))

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Internal node models for 46 BTC
. et e A
i GSOM (continued) e i Comments e
i - Nz(t)l Nz,j(t)
= Supplies, demands: L, (), L, ;(t) = The internal state node acts as a buffer
g =Ai(/(?i"i) | Ay (N, 0L, ) > invariance principle is satisfied
= p.,J.,L . . .
Z‘ ipl (N‘ i ) 2N 0. L, ©. 1 0) = Behavioral complexity € assignment
Ez'j__z Z'EN Z’L T’) 0 (interacts with driver attributes)
o _ = Possibility to construct simpler models
= In / Out flows: g =min(5,5, ) / based on A, instead N, (as LWR)
i~ [REmVAN| . .
oy =min Ay o) = Equilibrium models
TRAM2, Sophia-Antipolis, TRAM2, Sophia-Antipolis,
March 20-22, 2013 March 20-22, 2013
IFSTTAR IFSTTAR

Lagrangian GSOM; HJ and TTE
i variational interpretation ==~

TRAM2, Sophia-Antipolis,
March 20-22, 2013

GRETTIA

Variational formulation of BTC
i GSOM models —

= Motivation

= Numerical schemes (grid-free cf Mazaré et al
2011)

= Data assimilation (floating vehicle / mobile
data cf Claudel Bayen 2010)

= Advantages of variational principles

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Lagrangian conservation law

= Spacing r

= The rate of variation of
spacing r depends on the
gradient of speed with
respect to vehicle index N

o,r+0,v=0
def X

v=V,([/r)=V(r)

The spacing is the inverse of density

Colloquium LMB, Besancon, le 29 novembre 2012

IFSTTAR

GRETTIA

Lagrangian version of
the GSOM model

= Conservation law in lagrangian coordinates
= Driver attribute equation (natural lagrangian expression)

o +dyv=10 Conservation of vehicles

ad = (N 1 1) Dynamics of the driver attribute [
| v=8(n1 = T FF) Fundamental diagram (FLJ)
= We introduce position of vehicle N: *

XNAE [ W e

F= aX

= Note that: r=—ayX

TRAM?Z2, Sophia-Antipolis,
March 20-22, 2013

IFSTTAR

Lagrangian Hamilton-Jacobi i
formulation of GSOM (Lebacque ~ETE
i Khoshyaran 2013)

; _ ; AN = (N L)
= Integrate the driver-attribute NO = a0 YN
equation

= Solution: J(N t i)

= FD Speed becomes a function of
driver, time and spacing 4w (v, =& (r. J(N.¢; &)

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Lagrangian Hamilton-Jacobi ‘g5¢
i formulation of GSOM e

= Expressing the
velocity v as a
function of the v=aX
M .|':—.|'.|I-.'|X
position X

WNL) S R TN L)

X = WIN —and. 1

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Associated optimization

i p ro b I em wwiw.econtrac.com
M{Nw o = rn::u-: (WI(N. O — i

= Define: WIN. = min MV, w8+

= Note implication: W concave with respect to r (ie
flow density FD concave with respect to density

= Associated optimization problem

XiN:. D = MMy (0 ) _r:- MIN w6 dr+ N &)
."i‘l =u .

N(&) = Mo, N(T) = Nr

(Mo, fo)e C

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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| ETE
i Functions M and W .

! Speed M
I Speed W Vinax
=T
¢ max
4
L i ST
Vo
N
? D
f N\ Y -
Vi V. B
i iy e u
Fonvin Tone r AN
5.8
- —-—

i

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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lllustration of the i

i optimization problem: e

= Initial/boundary
conditions:

= Blue: IC + trajectory
of first vh

= Green: trajectories of
vhs with GPS |

= Red: cumulative flow p—
on fixed detector

.(\NT 2l )

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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. ETC
i Elements of resolution ==

TRAM2, Sophia-Antipolis,
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- ETC Initial conditions for ETE
i Characteristics e i characteristics o

2N T)

= Optimal curves - W= 8 WIN. & § D

N=a Wil . ata N,t
characteristics (Pontryagin) [ F=—dnWN. g 5( 0)

= Note: speed of Data &(N,,t) ; NI
charcteristics: > 0 N C

= IC —

= Boundary conditions (dw£ = m. 8 — W) & N iC ro(N) = & (N, o).

= Vh trajectory mif = W (M, £(M. 0, 0.

TRAM2, Sophia-Antipolis, TRAM2, Sophia-Antipolis,
March 20-22, 2013 March 20-22, 2013
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Iti e Example: Interaction of a shockwave GRerTIA
Imtla.l / boundary ?Tﬂf with a contact discontinuity lETﬂ
i condition r— ,—:‘ Eulerian view s com

= Usually two solutions 7, (¢)  Data &(N(t)t) —
¢ | e my
(V0. 0 = ~Nom() + WN©,n(0, 0 i Y
- Ns0E=0 . - [ \‘:‘ . b) T )
! Speed 2 N>0E>0 Vehicle trajectories -~ - __-‘: / (m; ) ::" :;4\ e _ > -t ) !',’
V. w Characteristics [ / s "-'\‘- e e
Shock-waves — ===== [ 2 ST ; ‘. (b)
[ / Y, (a) '\\'; ] l:‘i'
-t / .t
: r n, n, x
N<0§ \
TRAM2, Sophia-Antﬁﬁs,_ TRAMZ2, Sophia-Antipolis,

March 20-22, 2013 March 20-22, 2013
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= Initial
conditions: ‘ P
. Speed W
= Top: eulerian
= Down:
lagrangian

Example: Interaction of a shockwave with 'FSTTAR

a contact discontinuity
Lagrangian view

Characteristics

A

Characteristics determining the position of n, ——

GRETTIA

—— s
www.econtrac.com

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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i (inf-morphism)

www.econtrac.com

Decomposition property

= The set of initial/boundary conditions -~ _ ) ¢
is union of several sets en !

= Calculate a partial solution xw.n = min,guy [ MO 0d+ 0 0)
(corresponding to a partial

.'\l'lr[.r;l = J‘Ig{!]
Nelta) = No, Ne(T) = Nr
LN, .
set of IBC) i) <
= The solution is the min of partial X= mi{t.-l':,,
. =
solutions

TRAM2, Sophia-Antipolis,
March 20-22, 2013

Characteristics

A

Characteristics determining the position of 7, ——
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The optimality pb can be cremi

solved on characteristics only .: Eﬂf
L X(Ne,T) = ming,ne _I;:' MN.3WIN.£.0. 8 dt + £(Mb, o)
Nty = 8, WIN.r.o)

) = —ayWIN, &0
Ni) = Mo, riin) = m, N{TY = Ny
(M. ro, tp) € K

= This is a Lax-Hopf like formula

= Application: numerical schemes based on
= Piecewise constant data (including the system
yielding /)
= Decomposition of solutions based on decomposition
of IBC
= Use characteristics to calculate partial solutions

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Numerical scheme based on ETC

==

icharacteristics (continued) o

= If the initial condition on | is piecewise
constant -

= the spacing along characteristics is
piecewise constant

= Principle illustrated by the example:
interaction between shockwave and contact
discontinuity

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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Alternate scheme: particle BTC
i discretization i

= Particle discretization of HJ
s Use charateristics

= Yields a Godunov-like scheme (in
lagrangian coordinates)

= BC: Upstream demand and downstream
supply conditions

TRAM2, Sophia-Antipolis,
March 20-22, 2013
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: “ETQ
Numerical example e

= Model: Colombo 1-phase, stochastic

= Process for /: Ornstein-Uhlenbeck, two levels (high at the
beginning and end, low otherwise) - refraction of charateristics and
waves

= Demand: Poisson, constant level

= Supply: high at the beginning and end, low otherwise = induces
backwards propagation of congestion

= Particles: 5 vehicles
= Duration: 20 mn
= Length: 3500 m

TRAM2, Sophia-Antipolis,
March 20-22, 2013




Downstream supply
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/ dynamics
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wehicls group
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Particle trajectories

vehicle trajectories
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Position of particles
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i Conclusion ETC

= Directions for future work:
= Problem of concavity of FD
= Eulerian source terms
= Data assimilation pbs
= Efficient numerical schemes

TRAM2, Sophia-Antipolis,
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