

Generic second order traffic flow models (GSOM).

M.M. Khoshyaran E.T.C. Economics Traffic Clinic 34 Avenue des Champs-Elysées, 75008, Paris, France www.econtrac.com

TRAM2, Sophia-Antipolis, March 20-22, 2013

IFSTTAR

GRETTIA

ЕТС

www.econtrac.com

- Basics of: LWR and macroscopic intersection modeling
- 2. The invariance principle
- 3. Discussion of internal state intersection model

TRAM2, Sophia-Antipolis, March 20-22, 2013

- 4. GSOM model
- 5. GSOM intersection modeling
- 6. GSOM lagrangian HJ and variational interpretation
- 7. Numerical solution schemes

Scope

- The GSOM model is close to the LWR model
- It is nearly as simple (non trivial explicit solutions fi)
- But it accounts for driver variability (attributes)
- More scope for lagrangian modeling, driver interaction, individual properties
- Admits a variational formulation
- Expected benefits: numerical schemes, data assimilation

TRAM2, Sophia-Antipolis, March 20-22, 2013 TRAM2, Sophia-Antipolis, March 20-22, 2013

Meaning of these structural constraints

- Generalized Riemann problem for the intersection
 - ⇒ supply and demand constraints
- Self-similarity + feasibility of solution ⇒ invariance principle
- The invariance principle guaranties
 - consistent models and convergent numerical schemes
 - that waves travel in the right directions in the vicinity of the intersection

TRAM2, Sophia-Antipolis, March 20-22, 2013

STTAR GRETTIA Optimization node model $Q_i = \operatorname{Min} \left| \delta_i, \Phi_i \right|^{-1}$ The Karush-Kuhn-Tucker $-\sum \gamma_{il} s_l$ optimality conditions yield (s_i) $R_i = \operatorname{Min}\left[\Psi_i^{-1}(s_i), \sigma_i\right]$ coefficient of the outflow () conservation equation) $\sum \gamma_{ij} Q_i - R_j = 0 \quad \forall j$ The in- and out-flows are given $Q_i = \operatorname{Min}[\delta_i, \varphi_i]$ by a Min-formula \Rightarrow The model $R_i = \operatorname{Min}[\psi_i, \sigma_i]$ satisfies the invariance principle

 Daganzo merge model (1994-1995) is an optimisation model with quadratic node supply generators Φ_i

TRAM2, Sophia-Antipolis, March 20-22, 2013 TRAM2, Sophia-Antipolis, March 20-22, 2013

March 20-22, 2013

TRAM2, Sophia-Antipolis, March 20-22, 2013

Comments

- The internal node model satisfies the invariance principle
- It requires the resolution of an ODE (ordinary differential equation)
- It can be approximated by an equilibrium model more easily solvable, which also satisfies the invariance principle
- It can be easily adapted to a variety of constraints and models
 - Traffic lights, conflict induced constraints
 - Capacity drop
 - GSOM (Generic second order modeling = LWR + dynamics of individual driver attributes)
 - Lagrangian setting
 - Stochastic GSOM models

TRAM2, Sophia-Antipolis, March 20-22, 2013

- Jin (2008-..): in order to overcome the constraints induced by the invariance principle, introduces a new solution concept: the filmy states
- Tampère, Flöterröd, Rohde, Osorio:
 - concentrate on maximizing through-flow + realistic constraints
 - target complex intersections

TRAM2, Sophia-Antipolis, March 20-22, 2013

 (Lebacque, Mammar, Haj-Salem 2005-2007)

GSOM (Generic second

order modelling) models

- In a nutshell
 - Kinematic waves = LWR
 - Driver attribute dynamics
- Includes many current macroscopic models

Conclusion

- Directions for future work:
 - Problem of concavity of FD
 - Eulerian source terms
 - Data assimilation pbs
 - Efficient numerical schemes

TRAM2, Sophia-Antipolis, March 20-22, 2013