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Outline of the talk

© Easy-to-use numerical algorithm based on a multi-path model.

@ Characterization into the known framework (Garavello-Piccoli 2006)
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Known theory of traffic flow on networks

Roads network: a network where each edge and each vertex

represents respectively an unidirectional road and a junction
dl

Main references
@ H. Holden, N. H. Risebro, SIMA (1995)

@ G. M. Coclite, M. Garavello, B. Piccoli, Traffic flow on a road network, SIAM J. Math.
Anal. 36 (2005) 1862-1886

@ M. Garavello, B. Piccoli, Traffic flow on networks, AIMS, 2006
@ G. Bretti, R. Natalini, B. Piccoli, A fluid-dynamic traffic model on road networks, Arch.

Comput. Methods Eng. 14 (2007) 139-172 mc
@
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Known Theory

At any time ¢, the evolution of the car density on the network is computed

by a two-step procedure:
1) a classical conservation laws is solved at any internal point of the arcs;

2) the densities at endpoints, which correspond to a junction, are

computed.

dl

\*]/
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Known Theory

1) On each arc, the density p,(x,t) of all vehicles it is simply given by
the entropic solution of
0 0

. Pr a_ r) = Ir-
50 T fler) =0 we

with the flux f € CY([0, pmaz]) for some maximal density paz, and

f(0) = f(pmaz) =0, f is concave, flo)= max f(w)
We[oapmaz]

2) The computation of densities at endpoints has not in general a unique
admissible solution, so that additional constraints must be added.

» Conservation of cars at junctions;
» Drivers behave in order to maximize the flux at junctions;
» Incoming roads are regulated by priorities (right of way).

This second step is performed by a linear programming method. MCﬂ
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Multi-path model

Here we study from the numerical point of view a Multi-path model,
following the idea that
cars moving on the network are divided on the basis of their path

i.e. on their origin-destination pair
ai di

» a modified version of the model proposed in M. Hilliges, W. Weidlich

(1955); (@
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Multi-path model

e Np number of possible paths on the graph, P!,..., PP, ... PNr
(paths can share some arcs of the networks);

o 2P is a generic point along the path PP (a specific point on the network is
characterized by both the path it belongs to and the distance from the origin of that
path);

o pP(2'9,t) € [0,1] is the density of the cars following the p-th path at
point 2(9) along path P9 at time t > 0. (p?(2(®,¢) is, by definition, strictly
positive if p = g. Conversely, if p # ¢, we have pp(z(‘”,t) =0if (@ ¢ PP and
pP (D 1) > 0 if (2 ¢ PP)

e We define
Np

wp<x(p)’ t) = qu(x(p), t):

q=1

i.e. wP(zP) t) is the sum of all the densities living at () at timﬂ@
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LWR-based model

System of Np conservation laws with space-dependent and discontinuous
flux, forp=1,..., Np,

%pp( @), 4) + x(p> (pP(z®), 1) v(wP(z®P), 1)) =0, 2z e PP, t>0, J

or, equivalently, for f(w) = wv(w) (v is the velocity of cars)

2 op(al®), ) + 20 (M f(wp(x(f’),t))) —0, z®epPr t>0, J

wP (x(p> 7t)

» the rate % describes how the traffic distributes in percentage on

the p-th path.
P . . o
» If wP? = 0 we surely have pP = 0 too, then we set Z—p = 0 to avoid singularities.
» Equations are coupled by means of the velocity v, which depends on the total density w and it
is, in general, discontinuous at junctions.
» Paths do not have necessary arcs in common = not all the equations are coupled with each

other. m@
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Numerical approximation by the Godunov scheme

ngr f%f(P) =0, (z,t) € [a,b] x (0,7 @ initial condition of the problem
{ t v appro><|mated by
plx,0) = p(z), @ € [a,b]. o= O
At .
o = pf — M( (P} Pi1) — 9(Pf1 p?)>, \Z J

where the numerical flux g is defined as

min{f(p-), f(p+)} if p— < py

g( ) = f(p-) it p- >pyand p_ <o
o f(o) if p->pqand p_ >0 > py
fp+) if p- > py and py >0

under the CFL condition

Atsup|f/(p)| < Ax.
P
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Multi-path approach: Numerical approximation

Let us denote by p;ﬂ}p the approximate density pp(z§q),t"), where (@) is the j-th node along

the path P4. We define forn >0and p=1,...,Np
i

the sum of all the densities

living at z() at time ¢ 2 N
S H a2
J(p) 5 Z p (p) N/

computation of the discrete solutions at the internal nodes as

n,p
npy\ _ Pi-1 n,p n,p
»wik) o 9(wjy, w; ))
» Junctions are hidden in the definition of w; functions.

» Note the intrinsic asymmetry of the scheme. The coefficients in front of the fluxes invoE@

only the nodes j and j — 1, and not j + 1.
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Easy-to-use!

At each time step n
e Updates the values of w"? o) for each path p and for each ) node of
p-path;
e Compute the discrete solution, for each path p and for each j®) node
of p-path:

). 7p

+1, » At [P p o m Pj-1 :

Py pZP?p—M( Jn,p 9w Wit — j,p 9w, W)
Wi
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Easy-to-use!

At each time step n
@ Updates the values of w;”(f), for each path p and for each ) node of
p-path;
e Compute the discrete solution, for each path p and for each j® node
of p-path:

). 7p

+1, » At [P p o m Pj-1 :

Py P:p;?P_M< Jn,p 9w Wit — J,p 9w, W)
Wi

» The only challenging part: defining properly w"" at every node

1@
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Easy-to-use!

At each time step n
@ Updates the values of w;l(f), for each path p and for each ) node of
p-path;
e Compute the discrete solution, for each path p and for each j® node
of p-path:

). 7p

+1, » At [P p o m Pj-1 :

Py P:p;?P_M< ]p,p 9w Wit — J,p 9w, W)
Wi

» The only challenging part: defining properly w"" at every node

THATS ALL! J

1@
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Outline of the talk

@ Easy-to-use numerical algorithm based on a multi-path model.

@ Characterization into the known framework (Garavello-Piccoli 2006)
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Characterization into the classical framework

The case of two incoming roads and one outgoing road

Pl

Pl

P

Jmi
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Two incoming roads and one outgoing road

For simplicity,
@ we assume that each arc has the same length, equal to 2, then each
path has the same length, equal to 1.
@ We denote by J the node just after the junction.

We have
n,l . n.2 .
Sl = P J<J S ) P J<J,
. A B A PPt >

and the scheme becomes

7,1 7,1
n+l,1 _ nl At Pj n,l n,l Pj—1 n,1 n,l
Pj =P T Az (w;,l g(wj 7wj+1) o w?;llg(quij ) )

n,2 n,2
n+1,2  n2 At Pj n,2 n,2 Pi—1 n,2 n,2
P =P T As <W?,29(Wj aWj+1) - f?flg(wj_lawj ) ) -
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Two incoming roads and one outgoing road

By the definition of w}"', i = 1,2 we have
: 1 2
for] > ], wht = Wt = W = p@,B
. . . - ] - ] ] ]
With this notations near the junction we have
Pt =pt - AL (g(pﬁfl,w’j) - g(p’}fgm"}fl)) , i=1,2
with = = AL (g(wn,wyy) = (905w + 9032 wm))

n+l _  n At n n n,l n
Yit1 =941 T As (9(‘*’J+1:“’J+2) —9(p] 7“JJ+1)> :

» Vn, the value w’} € [0,1] under the CFL condition
2Atsup, | /()] < Az

1@
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Similarities and differences with the classical theory

Going back to classical notations, we have
: n3 _  n
. . foerJ.,pj.—wj
and the classical algorithm near the junction, reads as

v

n+l,d _ nga At 7 n,. n,t .
Pj—1 =Pj-1~ Az | 9P —9(Py 9:Py"1) | s i=1,2

n+l _  n At n o n 77, n Z
Wit = = AL | glwn ) — (90wt w) )

1@
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Classical approach: Two incoming roads and one outgoing

road

The Riemann problem at junction:
z <0 z >0

Orpt + 02 f(p*) =0, f ‘
9ep® + 00 (%) = 0,

Qup? + 0 f(p?) = 0

1
l& p3(z,0) = p?

1@
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Classical approach: Two incoming roads and one outgoing
road

for i = 1,2, the maximum flux for the incoming and outgoing roads

) wh €10,q],
flwy) wje (o]

0
TYmazx

Y B[RV UL :{f(o
floy  pYiE(e] T

The admissible solutions are given by the set
Q= {(v"7%) € [0, Ymaz] X [0, Vimaa) | (0 +7%) € [0, Vhaal}

Red line: Drivers behave in order to maximize the flux at junctions

V' = e VS Vot =1,2}

Tmax

We do not have the uniqueness of the maximization problem ...

1@
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Classical approach: Two incoming roads and one outgoing
road

PRIORITIES (right of way) N
g = (1— g

Timax

» NO QUEUES: ~* = 1 + 79, then

M= Y= V=7

» QUEUES: ~* = ~3, then we need the priorities parameter ¢ such that
71 = (1—¢q)/qy2 and

Nn=q, vB=0-97, vn=7" (@
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Multi-path approach: Two incoming roads and one
outgoing road

n+1 n,l

n+l _  n At n n n,l n
| Wi+l T Wi T A (Q(WJ+1»WJ+2) —9(p; va+1)) .

flL) f(R)
Pl

1 dw

M. Briani (IAC-CNR) Traffic flow on networks INRIA, 21 March 2013

+17' 7' A ~. 7‘ 7' S
oy = ot = AL (9 ) = 9o 0,0t )) s =12

s n,2
Wit = it — AL (g, whin) = (90 ws) + (o2 )
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Multi-path approach: Two incoming roads and one
outgoing road

f(L) f(R)

5 | P1

o F(L)=fi + /%, 1
fi = g(P,T]L7721aW3>
, 3
JE =902, w7)
° F(R) = Q(WTIL’W?H)

1@
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Godunov's function features

For f such that

f(0) = f(pmaz) =0, f is concave, flo)=  max f(w)
w€[0,pmaz]

the Godunov's function verifies: for p_, p+ € [0, pmaz),

9(p-. p+) = min (g(p-, ). 97 p-). )
_ f(p—)v if p— € [070]7 _ AN
o) ={ 3 Gy =
_ f(O‘), if P+ € [Oa U]? __ out
g(O’, p+) - { f(/)-&-)g if P4 E]O’, 1], = Ymaz

1@
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Multi-path approach: Two incoming roads and one
outgoing road

Pl
f(L) f(R)

P1

LI .

o F(L)=f + [,
,1 n : 1 n : e
f1 =9(p-y,w}) = min (g(p?},p o). 9(o, wJ)) = min (Yyae: Ymaz)

p 72 1 72 3 y :
fi - Q(Pg_p w?) = mn (g(pg_p 0-)? g(O’, W?)) = min (77%1,(1,:1:7 ’Y'rgn/a:l:)

] F(R) = g(wg,uﬂjH) = min (9(009:0)79(07 w?—&-l)) m@
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Left Flux

Pl

1 _ i 1 3 2 _ s 2 3
fL = min (’Ymaaw fyma:c)7 fL = min (meaz? ’Ymaa:)
Drivers behave in order to maximize the flux of its own path

We have that,

(f2, £2) € {(15,7°) € [0, Vel X [0,¥7aa] | (0" +77) € [0,297000]} |

so (f, f?) is always an admissible flux for the problem with 2 incoming
roads with flux f(p) and 1 outgoing road with flux 2f(p).

» when F(L) = 2g(0,w’), automatically the algorithm select for thm/b
incoming road the priority value ¢ = 1/2. L
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Right Flux

f(L) f(R)

It is possible to prove that, for

F(R) = min (g(w}.0), g(o, W)
we have

F(R) < MIN(29(w}, 0), 9(02 1) ).

so F'(R) is always an admissible flux for the Bottleneck problem
between left-flux 2f(p) and right-flux f(p).

1@
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The "modified” Riemann problem at the junction

0<z<Azx

atz + 8:):2f(z) =

2(z,0) = z

x> Ax

0w + a:rf(w) =

w(z,0) = w,

M. Briani (IAC-CNR)

Traffic flow on networks
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Multi-path approach: Two incoming roads and one
outgoing road

NO QUEUE QUEUE

NSRS -
>/’ >4

1@
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Similarities and differences with the classical theory

@ The difference between the two algorithms is more negligible than we
can expect from this example.

e Fixing the same Dirichlet boundary conditions, (assuming for the
priority parameter ¢ = %) after a small transient during which the
two solutions are different, the two algorithms give the same
solution, i.e. we get

i@
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The Riemann solver at the junction

For example in the case of two queues formed in the two incoming roads:

Flug) + f(ur) > f(wr):

i

w,

@ inx =0, @and ¥ are the two attainable states in N(us) and N(vs) respectively and 2 is
the attainable state in P(zc).
@ in x = Ax, where 7 is an attainable state in N(z.) and  is an attainable state in P(w,)

» N(-) = right state attainable by a wave of negative speed; m@

» P(-) = left state attainable by a wave of positive speed.
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Features of the multi-pop alghoritm

@ Similar arguments extend to the case of 1 incoming road and 2
outgoing roads, N incoming roads and 1 outgoing road, 1 incoming
road and M outgoing roads, etc. ...

@ All topics described apply to the case of roads with different flux
functions.

1@
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Features of the multi-pop alghoritm

@ Similar arguments extend to the case of 1 incoming road and 2
outgoing roads, N incoming roads and 1 outgoing road, 1 incoming
road and M outgoing roads, etc. ...

@ All topics described apply to the case of roads with different flux
functions.

Easy-to-use

0,0
J

n,p
ntlp _ np At [ P n,p , n,p Pi—1 n,p  n,p
pi =P~ ag | g 9w widh) — e 9(winy, w0

© The scheme selected automatically one solution at the junction,
without the need of an additional separate procedure.

@ The solution chosen is admissible in the sense of the classical theory,
assuming % sufficiently small. M©
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Features of the multi-pop alghoritm

o Drawback: The number of equations grows rapidly when the number
of nodes of the graph increases

@ To keep the computational load within reasonable limits, we propose
a second version of the algorithm which splits the vehicles on
the basis on their path only at junctions.
Drawback: The global behavior of drivers is lost

1@
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Conclusions: A real application

Rome: 6 two-lane roads and 7 junctions: 328.2km.

@ Local version of the model. @ The code is written in C++

@ Four traffic lights coordinated in (serial) and run on an Intel i3
pairs. 2.27GHz processor.

@ Az = 0.1km, At = 2.5s. Final @ The CPU time for the entire
time T = 1h; simulation was 0.5s.

» This result suggests that the proposed technique can be actually used
to forecast traffic flow in large networks, keeping to a minimum the
implementing effort.

1@
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Conclusions: A real application

Rome: 6 two-lane roads and 7 junctions: 328.2km.

@ Local version of the model. @ The code is written in C++

@ Four traffic lights coordinated in (serial) and run on an Intel i3
pairs. 2.27GHz processor.

@ Az = 0.1km, At = 2.5s. Final @ The CPU time for the entire
time T = 1h; simulation was 0.5s.

» This result suggests that the proposed technique can be actually used
to forecast traffic flow in large networks, keeping to a minimum the
implementing effort.

Thank you for your attention m@
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