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Congestion and reduced capacity

Congestion occurs when demand
exceeds available resources and can
significantly reduce capacity.

Reduced capacity results in additional
delays, increased pollution, ...

Congestion results in low but highly
volatile speeds and more uncertain
journey times: flow breakdown or
stop-and-go behaviour.
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Ramp metering

Ramp metering intends to control the entry of new flow so
as to maintain steady flow and avoid the flow breakdown
associated with congestion.

The rate of flow entry is set by the choice of ramp metering
strategy.

A key issue for the design of ramp metering strategies is
the trade-off between efficiency and fair use of resources.

This trade-off has been much studied in the context of
communication networks.

Source: DfT, UK
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Ramp metering: a form of distributed access control

Access control is a common problem in networks, including
communication networks as well as road networks.
View ramp metering systems as part of a larger network:

drivers generate demand and select their routes in ways
that are responsive to delays incurred or expected,
which depend on the controls applied in the road
network.

As mobile devices and Internet applications improve we might
expect drivers’ responses to be more immediate.
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Ramp metering: signals and incentives

We seek to understand the interactions between the ramp
metering system and the larger network and investigate the
signals such as delay provided to the larger network.
In the communication network context fairness of the control
scheme has emerged as an effective means by which the
appropriate information and incentives are provided to the larger
network by flow control and routing strategies.
Kelly & Williams (2010) introduced the proportionally fair ramp
metering strategy motivated by transfering some of these ideas
from communication networks to road networks and we explore
this further here.
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A linear network

C3C2C1

m3

m2

m1

Traffic entering at upstream on-ramps roads may all pass
through the same downstream bottleneck, and if more traffic is
admitted at one ramp it will reduce the amount of traffic that can
be admitted at later ramps.
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Queue sizes

We suppose that the queue sizes, mj(t), evolve according to the
following dynamics which take account of vehicle arrivals and
on-ramp metered rates at the entry points

mj(t +δ t) = mj(t)+ej(t)−Lj(t)δ t .

Here, ej(t) is the (random) number of arrivals in a short interval
of time [t , t +δ t) and Lj(t) is the realized metered rate of flow.
For example, ej(t) may be given by Poisson random variables
with mean parameters ρjδ t corresponding to independent
Poisson processes of arrivals with rates ρj .
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Greedy strategy

Realized metered rates, Lj(t), are updated as follows

L1(t)← ifelse(m1(t)> 0,C1,0)
L2(t)← ifelse(m2(t)> 0,C2−L1(t− τ1 + τ2),0)
L3(t)← ifelse(m3(t)> 0,C3−L1(t− τ1 + τ3)−L2(t− τ2 + τ3),0)

Optimality property: this strategy minimizes, for all times T , the
sum of the line sizes at time T , ∑

3
j=1 mj(T ).

This is a compelling property if arrival patterns of traffic are
exogenously determined.
However, the strategy will concentrate delay upon flows entering
at the more downstream entry points.
This seems intuitively unfair since such flows use fewer system
resources and may well have perverse and suboptimal
consequences if driver behaviour is influenced by delays.
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Fairness

Suppose that given queue sizes m = (mr , r ∈ R), a rate λr (m) is
allocated to route r , for each r ∈ R. The allocation
λ (m) = (λr (m), r ∈ R) is proportionally fair if, for each m ∈ RR

+,
λ (m) solves

maximize ∑
r∈R:mr>0

mr logλr (1)

subject to ∑
r∈R

Ajr λr ≤ Cj j ∈ J, (2)

over λr ≥ 0 r ∈ R. (3)

for all m ∈ RR
+.

Note that the constraint (2) captures the limited capacity of
resource j where Ajr is the resource-route incidence matrix.
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Fairness (2)

The problem (1–3) is a straightforward convex optimization
problem, and a vector λ ∈ RR is a solution if and only if there
exists a vector p ∈ RJ satisfying

p ≥ 0; λ ≥ 0, Aλ ≤ C (4)
p · (C−Aλ ) = 0 (5)

mr = λr ∑
j∈J

Ajr pj , r ∈ R. (6)

The variables p = (pj , j ∈ J) are Lagrange multipliers (or shadow
prices) for the capacity constraints (2).
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Fairness (3)

Given queue sizes, the ratio dj = mj/λj(m) is the time it would
take to empty the workload in queue j at the current metered rate
for queue j . Thus, for the linear network

dj =
|J|

∑
i=j

pi , j ∈ J

give estimates of queueing delay in each queue.
Hence here the estimates of delay are just the sum of the
shadow prices of the downstream resources actually used.
These estimates do not take into account any change in the
queue sizes over the time taken for traffic to move through the
queue, but are a reasonable prediction of queueing delay at the
time of arrival to the queue.
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Proportionally fair strategy

First, at each time epoch, solve the optimization problem to
construct metered rates λ1,λ2,λ3 given queue sizes m1,m2,m3.
(The appendix to the paper gives calculations for constructing
this solution.)
Realized metered rates, Lj(t), are updated as follows

L1(t)←min{C1,λ1}
L2(t)←min{C2−L1(t− τ1 + τ2),λ2}
L3(t)← C3−L1(t− τ1 + τ3)−L2(t− τ2 + τ3) .
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Simulation results

Capacities: C1 = 3000, C2 = 4500 and C3 = 6000 vehicles per
hour.
Travel times: τ1 = 9, τ2 = 6 and τ3 = 3 minutes.
Arrival rates: ρ1 = 0.45C3 = 2700, ρ2 = 0.25C3 = 1500,
ρ3 = 0.25C3 = 1500 vehicles per hour.

Greedy
Mean Standard error

m1 5.6 0.1
m2 5.3 0.1
m3 5.7 0.1

Proportionally fair
Mean Standard error

m1 18.0 0.4
m2 10.0 0.3
m3 4.0 0.1
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Simulation results (2)
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Responsive traffic

Suppose that the traffic arriving at entry point j is a time-varying
Poisson process, with rate

ρj(t) =
κj

(dj(t)+ τj)η
(7)

where dj(t) is again given by dj(t) = ∑
|J|
i=j pi(t). Thus the arrival

rate is related inversely to the estimated journey time, that is the
sum of the estimated delay in the queue plus the free-flow travel
time along the motorway.
The isoelastic demand function (7) is such that the elasticity of
demand with respect to estimated journey time is η .
For example, if η = 0.3 a 10% increase in journey time will
reduce the arrival rate of traffic by 3%.
Simulations used κ1 = 1550, κ2 = 770 and κ3 = 640.

15



Responsive traffic: simulation results
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Route choices

Consider a situation where vehicles have access to several
parallel roads with a common destination.
Assume that traffic arriving with access to more than one road
distributes itself in an attempt to minimize its queueing delay.
An alternative scenario is a priority access scheme, for example
high occupancy vehicles may have a larger set of routes to
choose from.
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Route choice example network

C3

C2

C1

r1

r2

r3

m1

m2

m3

Capacities: C1 = 3000, C2 = 1500, C3 = 6000 vehicles per hour.
Travel times: τ1 = τ2 = 6, τ3 = 3 minutes.
Arrival rates: ρ1 = 0.45C3 = 2700, ρ2 = 1500, ρ3 = 1500 vehicles
per hour.
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Route choices: simulation results
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Conclusions

We have explored some of the network aspects to ramp
metering, especially whether delay at the entry points to a
controlled motorway can provide incentives to drivers that are
aligned with efficient use of the scarce resource.
Specifically we looked at properties of the proportionally fair
ramp metering strategy for two simple network topologies.
The proportionally fair ramp metering strategy is inspired by rate
control algorithms developed for the Internet, and attempts to set
delays in proportion to shadow prices for the scarce resources.
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