On the Micro-Macro Limit in Traffic Flow

Elena Rossi

Department of Mathematics and Applications
University of Milano–Bicocca
Italy

March 2013

Joint work with Rinaldo M. Colombo
Traffic

Continuum Macroscopic Model

Discrete Microscopic Model
Traffic

Continuum Macroscopic Model

- Density of vehicles.
- Partial Differential Equation (PDE).

Discrete Microscopic Model

- Positions of \(n \) vehicles.
- System of Ordinary Differential Equations (ODE).

Analysis

Limit

Numerics

\[\tilde{\rho} \]

\[E_n \]

\[\tilde{p} \]

\[\text{ODE solution} \]

\[p_C \]

\[\rho_n \]

\[n \to \infty \]

\[\rho \]

\[\text{PDE solution} \]

Elena Rossi

On the Micro-Macro Limit in Traffic Flow
Traffic

Continuum Macroscopic Model
- Density of vehicles.
- Partial Differential Equation (PDE).

Discrete Microscopic Model
- Positions of n vehicles.
- System of Ordinary Differential Equations (ODE).
Traffic

Continuum Macroscopic Model
- Density of vehicles.
- Partial Differential Equation (PDE).

Discrete Microscopic Model
- Positions of n vehicles.
- System of Ordinary Differential Equations (ODE).

Limit
Traffic

Continuum Macroscopic Model

- Density of vehicles.
- Partial Differential Equation (PDE).

Discrete Microscopic Model

- Positions of n vehicles.
- System of Ordinary Differential Equations (ODE).

Analysis Limit Numerics
Traffic

Continuum Macroscopic Model
- Density of vehicles.
- Partial Differential Equation (PDE).

Discrete Microscopic Model
- Positions of n vehicles.
- System of Ordinary Differential Equations (ODE).

Analysis

Limit

Numerics

Elena Rossi

On the Micro-Macro Limit in Traffic Flow
Continuum Macroscopic Model

\[\rho = \rho(t, x) \]
Continuum Macroscopic Model

\[\rho = \rho(t, x) \]

Conservation Law
Continuum Macroscopic Model

\[\rho = \rho(t, x) \]

Conservation Law

Continuum Speed Law

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho v(\rho) \right) &= 0 \\
\rho(0, x) &= \tilde{\rho}(x)
\end{align*}
\]
Continuum Macroscopic Model

\[\rho = \rho(t, x) \]

Conservation Law

\[\Downarrow \]

Continuum Speed Law

\[\Downarrow \]

LWR model [Lighthill, Whitham, 1955, and Richards, 1956]

\[
\begin{aligned}
\partial_t \rho + \partial_x (\rho v(\rho)) &= 0 \\
\rho(0, x) &= \tilde{\rho}(x)
\end{aligned}
\]
Continuum Macroscopic Model

\[\rho = \rho(t, x) \]

Conservation Law \[\Downarrow \] Continuum Speed Law

LWR model [Lighthill, Whitham, 1955, and Richards, 1956]

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v(\rho)) &= 0 \\
\rho(0, x) &= \tilde{\rho}(x)
\end{align*}
\]

\[R_m = \left\{ \rho \in L^1(\mathbb{R}, [0, 1]) : \int_{\mathbb{R}} \rho(x) \, dx = m > 0 \text{ and } \text{spt } \rho \text{ is compact} \right\} \]
Discrete Microscopic Model

\[p_i = p_i(t) \text{ for all } i = 1, \ldots, n + 1 \]
Discrete Microscopic Model

\[p_i = p_i(t) \text{ for all } i = 1, \ldots, n + 1 \]

\[\dot{p}_i = w (p_{i+1} - p_i) \]
Discrete Microscopic Model

\[p_i = p_i(t) \text{ for all } i = 1, \ldots, n + 1 \]

\[\dot{p}_i = w (p_{i+1} - p_i) \quad \dot{p}_{n+1} = V(t) \]
Discrete Microscopic Model

\[p_i = p_i(t) \text{ for all } i = 1, \ldots, n + 1 \]

\[\dot{p}_i = w(p_{i+1} - p_i) \]

\[\dot{p}_{n+1} = V(t) \]

First order **Follow-the-Leader** model

\[
\begin{cases}
\dot{p}_i = w(p_{i+1} - p_i) & i = 1, \ldots, n \\
\dot{p}_{n+1} = V(t) \\
p_i(0) = \tilde{p}_i & i = 1, \ldots, n + 1
\end{cases}
\]
Discrete Microscopic Model

\[p_i = p_i(t) \] for all \(i = 1, \ldots, n + 1 \)

\[\dot{p}_i = w(p_{i+1} - p_i) \]

\[\dot{p}_n+1 = V(t) \]

First order **Follow-the-Leader** model

\[
\begin{cases}
\dot{p}_i = w(p_{i+1} - p_i) & i = 1, \ldots, n \\
\dot{p}_{n+1} = V(t) \\
p_i(0) = \tilde{p}_i & i = 1, \ldots, n + 1
\end{cases}
\]

\[P_n = \left\{ (p_1, \ldots, p_{n+1}) \in \mathbb{R}^{n+1} : p_{i+1} - p_i \geq \ell_n \ \forall i = 1, \ldots, n \right\} \]
Well-Posedness

Assume the following conditions on v:

- $v \in C^{0,1}([0, 1], \mathbb{R})$
- $v'(\rho) \leq 0$ for a.e. $\rho \in [0, 1]$
- $v(1) = 0$
- $v(0) = v_{\text{max}}$ for a suitable positive v_{max}
Well-Posedness

Assume the following conditions on \(\nu \):

- \(\nu \in C^{0,1}([0, 1], \mathbb{R}) \)
- \(\nu'(\rho) \leq 0 \) for a.e. \(\rho \in [0, 1] \)
- \(\nu(1) = 0 \)
- \(\nu(0) = \nu_{\text{max}} \) for a suitable positive \(\nu_{\text{max}} \)

Proposition (Continuum)

For any initial datum \(\tilde{\rho} \in R_m \cap BV(\mathbb{R}; [0, 1]) \), there exists a unique solution \(\rho \in C^{0,1}(\mathbb{R}^+, R_m) \) to

\[
\begin{aligned}
\partial_t \rho + \partial_x (\rho \nu(\rho)) &= 0 \\
\rho(0, x) &= \tilde{\rho}(x)
\end{aligned}
\]
Well-Posedness

Assume the following conditions on w:

- $w \in C^{0,1}([\ell_n, +\infty[, \mathbb{R})$
- $w'(\delta) \geq 0$ for a.e. $\delta \geq \ell_n$
- $w(\ell_n) = 0$
- $\lim_{\delta \to +\infty} w(\delta) = w_{\text{max}}$ for a suitable positive w_{max}
Well-Posedness

Assume the following conditions on w:

- $w \in C^{0,1}([\ell_n, +\infty[, \mathbb{R})$
- $w'(\delta) \geq 0$ for a.e. $\delta \geq \ell_n$
- $w(\ell_n) = 0$
- $\lim_{\delta \to +\infty} w(\delta) = w_{\max}$ for a suitable positive w_{\max}

Proposition (Discrete)

For any initial datum $\tilde{p} \in P_n$, there exists a unique solution $p \in C^{0,1}(\mathbb{R}^+, P_n)$ to

\[
\begin{cases}
\dot{p}_i = w(p_{i+1} - p_i) & i = 1, \ldots, n \\
\dot{p}_{n+1} = V \\
p_i(0) = \tilde{p}_i & i = 1, \ldots, n + 1
\end{cases}
\]
Continuum and discrete descriptions are related through particle paths:

\[
\begin{align*}
\dot{p} &= v(\rho(t, p(t))) \\
p(0) &= \tilde{p}
\end{align*}
\]
Micro–Macro Connection

Continuum and discrete descriptions are related through particle paths:

\[
\begin{align*}
\dot{p} &= \nu (\rho (t, p(t))) \\
p(0) &= \bar{p}
\end{align*}
\]

\[\implies \text{Connection:} \]

each equation in the discrete model is a particle path.
Micro–Macro Connection

$$\left\{ \begin{array}{l} \partial_t \rho + \partial_x (\rho v(\rho)) = 0 \\ \rho(0,x) = \tilde{\rho}(x) \end{array} \right.$$ $$\begin{aligned} \dot{p}_i &= w(p_{i+1} - p_i) & i &= 1, \ldots, n \\ \dot{p}_{n+1} &= V \\
 p_i(0) &= \tilde{p}_i & i &= 1, \ldots, n + 1 \end{aligned}$$
Micro–Macro Connection

\[
\begin{aligned}
\frac{\partial_t \rho}{\partial x}(\rho \nu(\rho)) &= 0 \\
\rho(0, x) &= \tilde{\rho}(x)
\end{aligned}
\]

\[
\begin{aligned}
\dot{p}_i &= w(p_{i+1} - p_i) & i &= 1, \ldots, n \\
\dot{p}_{n+1} &= V \\
p_i(0) &= \tilde{p}_i & i &= 1, \ldots, n + 1
\end{aligned}
\]

\[w(\delta) = v \left(\ell_n / \delta \right)\]
Micro–Macro Connection

\[
\begin{aligned}
\begin{cases}
\partial_t \rho + \partial_x (\rho v(\rho)) = 0 \\
\rho(0, x) = \tilde{\rho}(x)
\end{cases}
\end{aligned}
\begin{aligned}
\begin{cases}
\dot{\rho}_i = w(p_{i+1} - p_i) & i = 1, \ldots, n \\
\dot{\rho}_{n+1} = V \\
\rho_i(0) = \tilde{\rho}_i & i = 1, \ldots, n + 1
\end{cases}
\end{aligned}
\]

\[w(\delta) = v\left(\ell_n / \delta\right)\]

\(v\) satisfies the conditions for the continuum model \iff \(w\) satisfies the conditions for the discrete model
Two Useful Operators: C_n and E_n

Discretization E_n \[R_m \rightarrow P_n \]
Continuum \rightarrow Discrete

Anti-discretization C_n \[P_n \rightarrow R_m \]
Discrete \rightarrow Continuum

$E_n \circ C_n = \text{Id}$

$\lim_{n \rightarrow +\infty} C_n \circ E_n = \text{Id}$
Two Useful Operators: C_n and E_n

Discretization E_n \[R_m \to P_n \]
Continuum \to Discrete

Anti-discretization C_n \[P_n \to R_m \]
Discrete \to Continuum
Two Useful Operators: C_n and E_n

Discretization E_n \[R_m \rightarrow P_n \]
Continuum \rightarrow Discrete

Anti-discretization C_n \[P_n \rightarrow R_m \]
Discrete \rightarrow Continuum

$E_n \circ C_n = \text{Id}$

\[\lim_{n \rightarrow +\infty} C_n \circ E_n = \text{Id} \]
Micro-Macro Limit

As the number of vehicles grows to infinity:

\[
\text{Discrete-model } n \to +\infty \to \text{Continuum-model}
\]
Micro-Macro Limit

As the number of vehicles grows to infinity:

\[
\text{Discrete-model} \xrightarrow{n \to +\infty} \text{Continuum-model}
\]

Theorem

Fix \(T > 0 \). *Choose* \(\tilde{\rho} \in R_m \cap BV(\mathbb{R}, [0, 1]) \).

Set \(\tilde{p} = E_n(\tilde{\rho}) \) *and let* \(p(t) \) *be the corresponding discrete–solution.*

Define \(\rho_n(t) = C_n p(t) \).

If there exists \(\rho \in L^\infty ([0, T], R_m) \) *such that* \(\lim_{n \to +\infty} \rho_n = \rho \) *a.e., then* \(\rho \) *is a continuum–solution with initial datum* \(\tilde{\rho} \).
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[\tilde{\rho} \quad E_n \quad \tilde{p} \]

\[\rho \quad n \to \infty \quad \rho_n \quad C_n \quad p \]

PDE solution \quad ODE solution
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[\tilde{\rho} \]
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[\tilde{\rho} \quad \xrightarrow{E_n} \quad \tilde{p} \]
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[\tilde{\rho} \quad E_n \quad \tilde{p} \]

\[\tilde{\rho} \quad \tilde{p} \quad p \]

ODE solution
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[
\begin{array}{c}
\tilde{\rho} \quad \xrightarrow{E_n} \quad \tilde{p} \\
\rho_n \quad \xleftarrow{C_n} \quad p
\end{array}
\]
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[\tilde{\rho} \quad E_n \quad \tilde{p} \]

\[\rho \quad n \to \infty \quad \rho_n \quad C_n \quad p \]

ODE solution
Micro-Macro Limit

The Theorem above states that the following diagram commutes:

\[\tilde{\rho} \quad \xrightarrow{E_n} \quad \tilde{p} \]

PDE solution

\[n \to \infty \]

ODE solution

\[\rho \quad \rho_n \quad p \quad C_n \]
Example
Numerical Integrations

Numerical algorithm to integrate the continuum and discrete models:

- Hyperbolic Conservation Law
- System of ODEs
Numerical Integrations

Numerical algorithm to integrate the continuum and discrete models:

- Hyperbolic Conservation Law
- System of ODEs

ODEs method to integrate PDEs.
Numerical Integrations

Numerical algorithm to integrate the continuum and discrete models:

- Hyperbolic Conservation Law
- System of ODEs

ODEs method to integrate PDEs.

In the numerical integrations we closely follow the diagram seen before.
ODEs to integrate PDEs

Shock Wave

Relative error in the L^1-norm vs. n

Integration time vs. n
ODEs to integrate PDEs

Rarefaction Wave

Relative error in the L^1-norm vs. n

Integration time vs. n
<table>
<thead>
<tr>
<th>Space mesh size Δx</th>
<th>PDE</th>
<th>ODE</th>
<th>Number of vehicles n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error</td>
<td>Execution Time</td>
<td>Error</td>
</tr>
<tr>
<td>0.02</td>
<td>1.32E-2</td>
<td>0.06864</td>
<td>0.06262</td>
</tr>
<tr>
<td>0.01</td>
<td>6.73E-3</td>
<td>0.1585</td>
<td>0.1910</td>
</tr>
<tr>
<td>0.0064</td>
<td>4.22E-3</td>
<td>0.2737</td>
<td>0.2930</td>
</tr>
<tr>
<td>0.005</td>
<td>3.23E-3</td>
<td>0.3963</td>
<td>0.4242</td>
</tr>
<tr>
<td>0.0045</td>
<td>2.76E-3</td>
<td>0.4558</td>
<td>0.4877</td>
</tr>
<tr>
<td>0.004</td>
<td>2.51E-3</td>
<td>0.5365</td>
<td>0.5423</td>
</tr>
<tr>
<td>0.0025</td>
<td>1.57E-3</td>
<td>1.080</td>
<td>1.216</td>
</tr>
<tr>
<td>0.002</td>
<td>1.20E-3</td>
<td>1.527</td>
<td>1.545</td>
</tr>
<tr>
<td>0.0016</td>
<td>9.93E-4</td>
<td>2.190</td>
<td>2.085</td>
</tr>
<tr>
<td>0.001</td>
<td>5.56E-4</td>
<td>4.867</td>
<td>4.551</td>
</tr>
</tbody>
</table>
Same Error

<table>
<thead>
<tr>
<th>Space mesh size Δx</th>
<th>PDE</th>
<th>ODE</th>
<th>Number of vehicles n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Error</td>
<td>Time</td>
</tr>
<tr>
<td>0,05</td>
<td>0,02611</td>
<td>3,08E-2</td>
<td>2,87E-2</td>
</tr>
<tr>
<td>0,032</td>
<td>0,04097</td>
<td>2,04E-2</td>
<td>2,17E-2</td>
</tr>
<tr>
<td>0,025</td>
<td>0,05409</td>
<td>1,60E-2</td>
<td>1,61E-2</td>
</tr>
<tr>
<td>0,002</td>
<td>0,06864</td>
<td>1,32E-2</td>
<td>1,27E-2</td>
</tr>
<tr>
<td>0,016</td>
<td>0,08786</td>
<td>1,07E-2</td>
<td>1,06E-2</td>
</tr>
<tr>
<td>0,001</td>
<td>0,1585</td>
<td>6,73E-3</td>
<td>6,23E-3</td>
</tr>
<tr>
<td>0,008</td>
<td>0,2097</td>
<td>5,25E-3</td>
<td>4,99E-3</td>
</tr>
<tr>
<td>0,005</td>
<td>0,3963</td>
<td>3,23E-3</td>
<td>3,41E-3</td>
</tr>
<tr>
<td>0,0045</td>
<td>0,4558</td>
<td>2,76E-3</td>
<td>2,77E-3</td>
</tr>
<tr>
<td>0,0025</td>
<td>1,080</td>
<td>1,57E-3</td>
<td>1,39E-3</td>
</tr>
<tr>
<td>0,00125</td>
<td>3,303</td>
<td>7,56E-4</td>
<td>6,94E-4</td>
</tr>
</tbody>
</table>
Two Populations

Continuum model

\[
\begin{cases}
\partial_t \rho_\alpha + \partial_x \left(V_\alpha \rho_\alpha \psi (\rho_1 + \rho_2) \right) = 0 \\
\rho_\alpha (0, x) = \tilde{\rho}_\alpha (x) \\
\end{cases}
\]

\[\alpha = 1, 2\]

\(V_1, V_2 > 0\)

\(\psi \in C^{0,1}([0, 1], [0, 1]), \psi'(r) < 0\) a.e., \(\psi(0) = 1\) and \(\psi(1) = 0\)
Two Populations

Discrete model

\[
\begin{cases}
\dot{p}_{\alpha,i} = V_\alpha \psi \left((C_{n_1} p_1)(p_{\alpha,i}) + (C_{n_2} p_2)(p_{\alpha,i}) \right) & \alpha = 1, 2 \\
p_{\alpha,i}(0) = \tilde{p}_{\alpha,i} & i = 1, \ldots, n_\alpha + 1
\end{cases}
\]

\(V_1, V_2 > 0\)

\(\psi \in C^{0,1}([0,1], [0,1]), \psi'(r) < 0 \text{ a.e.}, \psi(0) = 1 \text{ and } \psi(1) = 0\)

\[\Psi(r) = \begin{cases}
\psi(r) & \text{if } r \in [0,1] \\
0 & \text{if } r > 1
\end{cases}\]
Two Populations
Two Populations