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Why a macroscopic ramp model?

@ Develop a general optimization framework for many highway problems:
partial rerouting, variable speed limit and ramp metering
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Why a macroscopic ramp model?

@ Develop a general optimization framework for many highway problems:
partial rerouting, variable speed limit and ramp metering

@ Extend to the continuous setting problems addressed in the engineering
community
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Why a macroscopic ramp model?

@ Develop a general optimization framework for many highway problems:
partial rerouting, variable speed limit and ramp metering

@ Extend to the continuous setting problems addressed in the engineering
community

@ Address specific shortcomings for control needs
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© Mathematical Model
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@ Two incoming links:
e Upstream mainline I} =] — oo, 0]
e Onramp Ry

Figure : Junction modeled
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@ Two incoming links:
e Upstream mainline I} =] — oo, 0]
e Onramp Ry

@ Two outgoing links:

e Downstream mainline / =]0, +o0[
e Offramp R,

Figure : Junction modeled
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@ Classical LWR on each mainline I, b
Oep+ 0xf(p) =0, (t,x) eRT x I,

p = p(t,x) € [0, pmax] mean traffic density

Pmax Maximal density allowed on the road

f 1 [0, pmax] — RT given by f(p) = pv(p), flux function
v(p) mean traffic speed

Conta= o



@ Classical LWR on each mainline I, b
Oep+ 0xf(p) =0, (t,x) eRT x I,

p = p(t,x) € [0, pmax] mean traffic density

Pmax Maximal density allowed on the road

f 1 [0, pmax] — RT given by f(p) = pv(p), flux function
v(p) mean traffic speed

@ Dynamics of the onramp described by a buffer

di(t)

:Fint*rtatR+a
= Fu(t) (), te

e /(t) € [0, +oo[ length of the queue
e Fin(t) flux that enters the onramp
e 7r1(t) flux that exits the onramp



Dynamics of the onramp

Dynamics of the onramp described by a buffer

di(t
IO Fo(t)—ra(n), ter*,

Why this choice?
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Dynamics of the onramp described by a buffer

di(t
IO Fo(t)—ra(n), ter*,

Why this choice?

@ Boundary conditions usually apply weakly and backward moving
shock waves can happen at the boundary
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Dynamics of the onramp

Dynamics of the onramp described by a buffer

di(t
LY = Fu() = alt), teRY,

Why this choice?

@ Boundary conditions usually apply weakly and backward moving
shock waves can happen at the boundary

@ Lost information on the flux that actually enters the onramp, i.e.
demand not always satisfied for control schemes
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Dynamics of the onramp

Dynamics of the onramp described by a buffer

di(t
IO Fo(t)—ra(n), ter*,

Why this choice?

@ Boundary conditions usually apply weakly and backward moving
shock waves can happen at the boundary

@ Lost information on the flux that actually enters the onramp, i.e.
demand not always satisfied for control schemes

o The buffer accounts for all the flow that enters the onramp
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Junction Model

Cauchy Problem

Orpi + Oxf(pi) =0, (t,x) eRT x I, i=1,2
di(t
d(t) = in(t)_vrl(t)a tER+7
pi(0,x) = pjio(x), onlii=1,2
1(0) = b,
Coupled with the following Junction Problem
) X if I(t) >0,
m 1 min (Fin(t),yM) if I(t) =0,
_J f(p) if0<pr<p™,
5(p1) - { fmax if P < py < 1,
_ fmax If 0 S p2 S pCI"
e ={ gy it Lt

T2(t) = Bf(p1),

[
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Junction Assumptions

© f(p1(t,0-)) +m1(t) = f(p2(t, 0+)) + 2(t)

@ f(p2(t,0+)) is maximum subject to 1 and

F(pa(t,0+)) = min (1 = B)a(pa(t,0-)) + d(Fiu(t), 1(£)), r(pa(£,0+)))

© To ensure uniqueness of the solution a right of way parameter P €0, 1]
is introduced such that

p
fi(p(t,0-)) = ﬁ’}’rl

@ No flux from the onramp is allowed on the offramp
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© Riemann Problem
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Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
@ Define 'y = f(p1(t,0-)), T2 = f(p2(t,04)), Tr1 = Y1(t)
@ Consider the space (I';, 1) and the sets O; = [0,(p1)], Or1 = [0, d(Fin, )]

Iy

5(p1)

d(Finy /_) rrl
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Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
@ Define 'y = f(p1(t,0-)), T2 = f(p2(t,04)), Tr1 = Y1(t)
@ Consider the space (I';, 1) and the sets O; = [0,(p1)], Or1 = [0, d(Fin, )]
© Trace theline (1 —8)F1 + T =17

Iy

5(p1) \

—

1(1=-8)+Tu =",

d(me /) rrl
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Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
@ Define I'; = f(p1(t,0-)), T2 = f(p2(t,0+)), M1 = 71 (t)
@ Consider the space (I';, ;1) and the sets O; = [0,5(p1)], Or1 = [0, d(Fin, 1)]
© Trace theline (1 —8)F1 + T =17
@ Consider the region
Q= {(N1,T) € 01 x On s (1= B)11 + T € [0. 2] .

Iy

5(p1)

M(l-pg)+ru="rn;

d(Finy /) rrl
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Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
O Define I'y = f(p1(t,0-)), T2 = f(p2(t,04)), M1 = 7a(2)
@ Consider the space (I';, 1) and the sets O; = [0,(p1)], Or1 = [0, d(Fin, )]
@ Trace theline (1 —B)F1+ T =T>
@ Consider the region
Q= {(rl, M) € 01X Oyt (1= B)1+ Ty €0, rz]}.
@ Different situations can occur depending on the value of ',

e Demand limited case: ,=(1 — 8)d(p1(t,0-)) + d(Fin, /)
e Supply limited case: I'; = o(p2(t,0+))
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Solution of the Riemann problem: Demand limited case

We set the optimal point Q to be the point (I'1,I1) such that
f1=6(p1(t,0-)), Fra = d(Fiu,T) and 5 = (1 = B)5(pa(t,0-)) + d(Fin, )

PN - 4=

d(Fina /) rrl
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Solution of the Riemann problem: Supply limited case

@ We introduce the right of way parameter , i.e., we trace the line
M= %rrl

o We set optimal point Q to be the point of intersection of
(1 — ﬂ)rl +Tg=lyand [ = %Frl.

o Different situations can occur depending on the value of the intersection
point

Iy

s v

Ua—

15/21



Solution of the Riemann problem: Supply limited case

@ We introduce the right of way parameter , i.e., we trace the line
r1 = %rrl

o We set optimal point Q to be the point of intersection of
(1 — ﬂ)rl + Frl = F2 and Fl = %Frl.

o Different situations can occur depending on the value of the intersection
point

e Qe
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Solution of the Riemann problem: Supply limited case

@ We introduce the right of way parameter , i.e., we trace the line

P
M= ﬁrrl

o We set optimal point Q to be the point of intersection of
(1 — ﬂ)rl +Tg=lyand [ = %Frl.

o Different situations can occur depending on the value of the intersection
point
e Qe
e Q¢Q
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Solution of the Riemann problem: Supply limited case

@ We introduce the right of way parameter , i.e., we trace the line

P
M= ﬁrrl

o We set optimal point Q to be the point of intersection of
(1 — ﬂ)rl +Tg=lyand [ = %Frl.

o Different situations can occur depending on the value of the intersection
point
e Qe
o Q ¢ 2 = Optimal point: S
[

3(p1) R
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Theorem of consistency

Theorem

Consider a junction J and fix a priority parameter P € |0, 1[. For every

P10, p2,0 € [0,1] and Iy € [0, +o0|, there exists a unique admissible solution
(p1(t, x), p2(t, x), I(t)) satisfying the priority (possibly in an approximate way).
Moreover, for a.e. t > 0, it holds

(pl(t7 O_)a p2(t7 0+)) = Rl(t)(pl(t7 0_)a Pz(t, O+))

P10 £2,0
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Theorem of consistency

Theorem

Consider a junction J and fix a priority parameter P € |0, 1[. For every

P10, p2,0 € [0,1] and Iy € [0, +o0|, there exists a unique admissible solution
(p1(t, x), p2(t, x), I(t)) satisfying the priority (possibly in an approximate way).
Moreover, for a.e. t > 0, it holds

(pl(t7 O_)a p2(t7 0+)) = Rl(t)(pl(t7 0_)a Pz(t, O+))

Sketch of the proof: using the following lemma

Lemma

If (p1, p2) is a solution of the Riemann problem with initial data (p1,0, p2,0), then
the following holds:

d(p10) < 6(pr),
a(p20) < a(p2),
d(Fin7/0) S d(Flnal)
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@ Numerical Results
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Modified Godunov Scheme

@ At some time step At", we might have multiple shocks exiting the junction

e We divide the time step At"” = (t", t"*1) into two sub-intervals At, = (t", t)
and Aty = (&, t"*1)

@ We solve in one time step two different Riemann Problems at the junction

e For At,: Classical Godunov flux update

n+1 n Ata

vy =V - (rl g(vi—1,v)))
n n A a ~
Vo+1 =W — Ax —(g(wg, () —T2)

e For At,: Madified flux update
n i Aty /aF n F
it =vi= 22 (F - e(viav))

G = - 20 (a0 v) - 1)
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Numerical Simulations

0 L I I L L L L
-400 -300 -200 -100 0 100 200 300 400
Time=0.125

K] <J ][> =] +]
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Current work & Perspectives

o Corresponding discrete optimization problem solved using the adjoint method

Production-scale implementation in the framework of the Berkeley
Connected-Corridors traffic system

@ Extension to optimal rerouting with multi-commodity flow and partial control

@ Extension to traffic flow modeling on roundabouts
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