
A PDE-ODE model for a junction with ramp buffer

Maria Laura Delle Monache

Email: maria-laura.delle monache@inria.fr.

Workshop Traffic Modeling and Management: trends and perspectives

March 21, 2013



Outline

1 Introduction

2 Mathematical Model

3 Riemann Problem

4 Numerical Results

5 Conclusions

2/21



Outline

1 Introduction
Collaboration
Motivation

2 Mathematical Model
Cauchy Problem
Junction Model

3 Riemann Problem
Riemann Solver

4 Numerical Results
Numerical Scheme
Results

5 Conclusions

3/21



“ORESTE” Associated team

This work is the result of the collaboration between Inria and UC Berkeley:

Alexandre Bayen

Walid Krichene

Jack Reilly

Samitha Samaranayake

Paola Goatin

Maria Laura Delle Monache

4/21



Why a macroscopic ramp model?

Develop a general optimization framework for many highway problems:
partial rerouting, variable speed limit and ramp metering

Extend to the continuous setting problems addressed in the engineering
community

Address specific shortcomings for control needs
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Junction

Two incoming links:

Upstream mainline I1 =]−∞, 0[
Onramp R1

Two outgoing links:

Downstream mainline I2 =]0,+∞[
Offramp R2

J
I1 I2

R1 R2

Figure : Junction modeled
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Model

Classical LWR on each mainline I1, I2

∂tρ+ ∂x f (ρ) = 0, (t, x) ∈ R+ × Ii ,

ρ = ρ(t, x) ∈ [0, ρmax] mean traffic density
ρmax maximal density allowed on the road
f : [0, ρmax]→ R+ given by f (ρ) = ρv(ρ), flux function
v(ρ) mean traffic speed

Dynamics of the onramp described by a buffer

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R+,

l(t) ∈ [0,+∞[ length of the queue
Fin(t) flux that enters the onramp
γr1(t) flux that exits the onramp
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Dynamics of the onramp

Dynamics of the onramp described by a buffer

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R+,

Why this choice?
Boundary conditions usually apply weakly and backward moving
shock waves can happen at the boundary

Lost information on the flux that actually enters the onramp, i.e.
demand not always satisfied for control schemes

The buffer accounts for all the flow that enters the onramp
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Junction Model

Cauchy Problem
∂tρi + ∂x f (ρi ) = 0, (t, x) ∈ R+ × Ii , i = 1, 2
dl(t)

dt
= Fin(t)− γr1(t), t ∈ R+,

ρi (0, x) = ρi,0(x), on Ii i = 1, 2
l(0) = l0,

Coupled with the following Junction Problem

d(Fin, l) =

{
γmax
r1 if l(t) > 0,

min (Fin(t), γmax
r1 ) if l(t) = 0,

δ(ρ1) =

{
f (ρ1) if 0 ≤ ρ1 < ρcr,
f max if ρcr ≤ ρ1 ≤ 1,

σ(ρ2) =

{
f max if 0 ≤ ρ2 ≤ ρcr,
f (ρ2) if ρcr < ρ2 ≤ 1,

γr2(t) = βf (ρ1),
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Junction Assumptions

1 f (ρ1(t, 0−)) + γr1(t) = f (ρ2(t, 0+)) + γr2(t)

2 f (ρ2(t, 0+)) is maximum subject to 1 and

f (ρ2(t, 0+)) = min
(

(1− β)δ(ρ1(t, 0−)) + d(Fin(t), l(t)), σ(ρ2(t, 0+))
)

3 To ensure uniqueness of the solution a right of way parameter P ∈ ]0, 1[
is introduced such that

f1(ρ(t, 0−)) =
P

1− P
γr1

4 No flux from the onramp is allowed on the offramp
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Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.

1 Define Γ1 = f (ρ1(t, 0−)), Γ2 = f (ρ2(t, 0+)), Γr1 = γr1(t)

2 Consider the space (Γ1, Γr1) and the sets O1 = [0, δ(ρ1)], Or1 = [0, d(Fin, l̄)]

3 Trace the line (1− β)Γ1 + Γr1 = Γ2

4 Consider the region

Ω =
{

(Γ1, Γr1) ∈ O1 ×Or1 : (1− β)Γ1 + Γr1 ∈ [0, Γ2]
}
.

Γr1

Γ1

δ(ρ1)

d(Fin, l̄)

Γ1(1− β) + Γr1 = Γ2
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4 Consider the region

Ω =
{

(Γ1, Γr1) ∈ O1 ×Or1 : (1− β)Γ1 + Γr1 ∈ [0, Γ2]
}
.

5 Different situations can occur depending on the value of Γ2

Demand limited case: Γ2=(1− β)δ(ρ1(t, 0−)) + d(Fin, l̄)

Supply limited case: Γ2 = σ(ρ2(t, 0+))
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Solution of the Riemann problem: Demand limited case

We set the optimal point Q to be the point (Γ̂1,Γ̂r1) such that

Γ̂1 = δ(ρ1(t, 0−)), Γ̂r1 = d(Fin, l̄) and Γ̂2 = (1− β)δ(ρ1(t, 0−)) + d(Fin, l̄)

Γr1

Γ1

δ(ρ1)

d(Fin, l̄)

Γ1(1− β) + Γr1 = Γ2

Ω

Q
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Solution of the Riemann problem: Supply limited case

We introduce the right of way parameter , i.e., we trace the line
Γ1 = P

1−P Γr1

We set optimal point Q to be the point of intersection of
(1− β)Γ1 + Γr1 = Γ2 and Γ1 = P

1−P Γr1.

Different situations can occur depending on the value of the intersection
point

Q ∈ Ω
Q /∈ Ω

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2

Γ2

Γ1 = P
1−P Γr1
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1−P Γr1

We set optimal point Q to be the point of intersection of
(1− β)Γ1 + Γr1 = Γ2 and Γ1 = P

1−P Γr1.

Different situations can occur depending on the value of the intersection
point

Q ∈ Ω
Q /∈ Ω =⇒ Optimal point: S

Q

S

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2

Γ2

Γ1 = P
1−P Γr1
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Theorem of consistency

Theorem

Consider a junction J and fix a priority parameter P ∈ ]0, 1[. For every
ρ1,0, ρ2,0 ∈ [0, 1] and l0 ∈ [0,+∞[, there exists a unique admissible solution
(ρ1(t, x), ρ2(t, x), l(t)) satisfying the priority (possibly in an approximate way).
Moreover, for a.e. t > 0, it holds

(ρ1(t, 0−), ρ2(t, 0+)) = Rl(t)(ρ1(t, 0−), ρ2(t, 0+)).

t̄

t

x0

ρ1,0 ρ2,0

ρ̂1 ρ̂2

ρ̄2ρ̄1
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Theorem of consistency

Theorem

Consider a junction J and fix a priority parameter P ∈ ]0, 1[. For every
ρ1,0, ρ2,0 ∈ [0, 1] and l0 ∈ [0,+∞[, there exists a unique admissible solution
(ρ1(t, x), ρ2(t, x), l(t)) satisfying the priority (possibly in an approximate way).
Moreover, for a.e. t > 0, it holds

(ρ1(t, 0−), ρ2(t, 0+)) = Rl(t)(ρ1(t, 0−), ρ2(t, 0+)).

Sketch of the proof: using the following lemma

Lemma

If (ρ̂1, ρ̂2) is a solution of the Riemann problem with initial data (ρ1,0, ρ2,0), then
the following holds:

δ(ρ1,0) ≤ δ(ρ̂1),

σ(ρ2,0) ≤ σ(ρ̂2),

d(Fin, l0) ≤ d(Fin, l).
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Modified Godunov Scheme

At some time step ∆tn, we might have multiple shocks exiting the junction

We divide the time step ∆tn = (tn, tn+1) into two sub-intervals ∆ta = (tn, t̄)
and ∆tb = (t̄, tn+1)

We solve in one time step two different Riemann Problems at the junction

For ∆ta: Classical Godunov flux update

vn+1
J = vn

J −
∆ta
∆x

(Γ̂1 − g(vn
J−1, v

n
J ))

vn+1
0 = vn

0 −
∆ta
∆x

(g(vn
0 , v

n
1 )− Γ̂2)

For ∆tb: Modified flux update

vn+1
J = v t̄

J −
∆tb
∆x

(
Γ̂t̄

1 − g(vn
J−1, v

t̄
J )
)

vn+1
0 = v t̄

0 −
∆tb
∆x

(
g(v t̄

0 , v
n
1 )− Γ̂t̄

2

)
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Numerical Simulations
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Current work & Perspectives

Corresponding discrete optimization problem solved using the adjoint method

Production-scale implementation in the framework of the Berkeley
Connected-Corridors traffic system

Extension to optimal rerouting with multi-commodity flow and partial control

Extension to traffic flow modeling on roundabouts
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