A PDE-ODE model for a junction with ramp buffer

Maria Laura Delle Monache

Email: maria-laura.delle_monache@inria.fr.

Workshop Traffic Modeling and Management: trends and perspectives
March 21, 2013

Outline

(1) Introduction
(2) Mathematical Model
(3) Riemann Problem
(4) Numerical Results
(5) Conclusions

Outline

(1) Introduction

- Collaboration
- Motivation
(2) Mathematical Model
- Cauchy Problem
- Junction Model
(3) Riemann Problem
- Riemann Solver

4 Numerical Results

- Numerical Scheme
- Results
(5) Conclusions

Iñóa

This work is the result of the collaboration between Inria and UC Berkeley：

－Alexandre Bayen
－Walid Krichene
－Jack Reilly
－Samitha Samaranayake
－Paola Goatin
－Maria Laura Delle Monache

- Develop a general optimization framework for many highway problems: partial rerouting, variable speed limit and ramp metering
- Extend to the continuous setting problems addressed in the engineering community
- Address specific shortcomings for control needs
－Develop a general optimization framework for many highway problems： partial rerouting，variable speed limit and ramp metering
－Extend to the continuous setting problems addressed in the engineering community
－Address specific shortcomings for control needs
- Develop a general optimization framework for many highway problems: partial rerouting, variable speed limit and ramp metering
- Extend to the continuous setting problems addressed in the engineering community
- Address specific shortcomings for control needs

Outline

(1) Introduction

- Collaboration
- Motivation
(2) Mathematical Model
- Cauchy Problem
- Junction Model
(3) Riemann Problem
- Riemann Solver

4 Numerical Results

- Numerical Scheme
- Results
(5) Conclusions
liñan
- Two incoming links:
- Upstream mainline $\left.I_{1}=\right]-\infty, 0[$
- Onramp R_{1}
- Two outgoing links:
- Downstream mainline $\left.I_{2}=\right] 0,+\infty[$
- Offramp R_{2}

Figure: Junction modeled
－Two incoming links：
－Upstream mainline $\left.I_{1}=\right]-\infty, 0[$
－Onramp R_{1}
－Two outgoing links：
－Downstream mainline $\left.I_{2}=\right] 0,+\infty[$
－Offramp R_{2}

Figure：Junction modeled

- Classical LWR on each mainline I_{1}, I_{2}

$$
\partial_{t} \rho+\partial_{x} f(\rho)=0, \quad(t, x) \in \mathbb{R}^{+} \times \boldsymbol{I}_{i},
$$

- $\rho=\rho(t, x) \in\left[0, \rho_{\text {max }}\right]$ mean traffic density
- $\rho_{\text {max }}$ maximal density allowed on the road
- $f:\left[0, \rho_{\max }\right] \rightarrow \mathbb{R}^{+}$given by $f(\rho)=\rho v(\rho)$, flux function
- $v(\rho)$ mean traffic speed
- Dynamics of the onramp described by a buffer
- $I(t) \in[0,+\infty[$ length of the queue
- $F_{\text {in }}(t)$ flux that enters the onramp
- $\gamma_{r 1}(t)$ flux that exits the onramp
- Classical LWR on each mainline I_{1}, I_{2}

$$
\partial_{t} \rho+\partial_{x} f(\rho)=0, \quad(t, x) \in \mathbb{R}^{+} \times I_{i},
$$

- $\rho=\rho(t, x) \in\left[0, \rho_{\text {max }}\right]$ mean traffic density
- $\rho_{\text {max }}$ maximal density allowed on the road
- $f:\left[0, \rho_{\max }\right] \rightarrow \mathbb{R}^{+}$given by $f(\rho)=\rho v(\rho)$, flux function
- $v(\rho)$ mean traffic speed
- Dynamics of the onramp described by a buffer

$$
\frac{d l(t)}{d t}=F_{\mathrm{in}}(t)-\gamma_{\mathrm{r} 1}(t), \quad t \in \mathbb{R}^{+}
$$

- $I(t) \in[0,+\infty[$ length of the queue
- $F_{\text {in }}(t)$ flux that enters the onramp
- $\gamma_{\mathrm{r} 1}(t)$ flux that exits the onramp

Dynamics of the onramp

Dynamics of the onramp described by a buffer

$$
\frac{d l(t)}{d t}=F_{\mathrm{in}}(t)-\gamma_{\mathrm{r} 1}(t), \quad t \in \mathbb{R}^{+}
$$

Why this choice?

- Boundary conditions usually apply weakly and backward moving shock waves can happen at the boundary
- Lost information on the flux that actually enters the onramp, i.e. demand not always satisfied for control schemes
- The buffer accounts for all the flow that enters the onramp

Dynamics of the onramp

Dynamics of the onramp described by a buffer

$$
\frac{d l(t)}{d t}=F_{\mathrm{in}}(t)-\gamma_{\mathrm{r} 1}(t), \quad t \in \mathbb{R}^{+}
$$

Why this choice？

－Boundary conditions usually apply weakly and backward moving shock waves can happen at the boundary
－Lost information on the flux that actually enters the onramp，i．e． demand not always satisfied for control schemes
－The buffer accounts for all the flow that enters the onramp

Dynamics of the onramp described by a buffer

$$
\frac{d l(t)}{d t}=F_{\mathrm{in}}(t)-\gamma_{\mathrm{r} 1}(t), \quad t \in \mathbb{R}^{+}
$$

Why this choice？

－Boundary conditions usually apply weakly and backward moving shock waves can happen at the boundary
－Lost information on the flux that actually enters the onramp，i．e． demand not always satisfied for control schemes
－The buffer accounts for all the flow that enters the onramp

Dynamics of the onramp described by a buffer

$$
\frac{d l(t)}{d t}=F_{\mathrm{in}}(t)-\gamma_{\mathrm{r} 1}(t), \quad t \in \mathbb{R}^{+}
$$

Why this choice?

- Boundary conditions usually apply weakly and backward moving shock waves can happen at the boundary
- Lost information on the flux that actually enters the onramp, i.e. demand not always satisfied for control schemes
- The buffer accounts for all the flow that enters the onramp

Cauchy Problem

$$
\begin{cases}\partial_{t} \rho_{i}+\partial_{x} f\left(\rho_{i}\right)=0, & (t, x) \in \mathbb{R}^{+} \times I_{i}, i=1,2 \\ \frac{d I(t)}{d t}=F_{\mathrm{in}}(t)-\gamma_{\mathrm{r} 1}(t), & t \in \mathbb{R}^{+}, \\ \rho_{i}(0, x)=\rho_{i, 0}(x), & \text { on } I_{i} i=1,2 \\ I(0)=I_{0}, & \end{cases}
$$

Coupled with the following Junction Problem

$$
\begin{aligned}
d\left(F_{\mathrm{in}}, l\right) & = \begin{cases}\gamma_{\mathrm{r} 1}^{\max } & \text { if } I(t)>0, \\
\min \left(F_{\mathrm{in}}(t), \gamma_{\mathrm{r} 1}^{\max }\right) & \text { if } I(t)=0,\end{cases} \\
\delta\left(\rho_{1}\right) & = \begin{cases}f\left(\rho_{1}\right) & \text { if } 0 \leq \rho_{1}<\rho^{\mathrm{cr}}, \\
f^{\max } & \text { if } \rho^{\mathrm{cr}} \leq \rho_{1} \leq 1,\end{cases} \\
\sigma\left(\rho_{2}\right) & = \begin{cases}f^{\max } & \text { if } 0 \leq \rho_{2} \leq \rho^{\mathrm{cr}}, \\
f\left(\rho_{2}\right) & \text { if } \rho^{\mathrm{cr}}<\rho_{2} \leq 1,\end{cases} \\
\gamma_{\mathrm{r} 2}(t) & =\beta f\left(\rho_{1}\right),
\end{aligned}
$$

（1）$f\left(\rho_{1}(t, 0-)\right)+\gamma_{\mathrm{r} 1}(t)=f\left(\rho_{2}(t, 0+)\right)+\gamma_{\mathrm{r} 2}(t)$
（2）$f\left(\rho_{2}(t, 0+)\right)$ is maximum subject to 1 and

$$
f\left(\rho_{2}(t, 0+)\right)=\min \left((1-\beta) \delta\left(\rho_{1}(t, 0-)\right)+d\left(F_{\mathrm{in}}(t), l(t)\right), \sigma\left(\rho_{2}(t, 0+)\right)\right)
$$

（3）To ensure uniqueness of the solution a right of way parameter $P \in] 0,1[$ is introduced such that

$$
f_{1}(\rho(t, 0-))=\frac{P}{1-P} \gamma_{r 1}
$$

（9）No flux from the onramp is allowed on the offramp

Outline

(1) Introduction

- Collaboration
- Motivation
(2) Mathematical Model
- Cauchy Problem
- Junction Model
(3) Riemann Problem
- Riemann Solver

4 Numerical Results

- Numerical Scheme
- Results
(5) Conclusions
liñan

Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
(1) Define $\Gamma_{1}=f\left(\rho_{1}(t, 0-)\right), \Gamma_{2}=f\left(\rho_{2}(t, 0+)\right), \Gamma_{\mathrm{r} 1}=\gamma_{\mathrm{r} 1}(t)$
(2) Consider the space $\left(\Gamma_{1}, \Gamma_{\mathrm{r} 1}\right)$ and the sets $\mathcal{O}_{1}=\left[0, \delta\left(\rho_{1}\right)\right], \mathcal{O}_{\mathrm{r} 1}=\left[0, d\left(F_{\mathrm{in}}, \bar{l}\right)\right]$
(3) Trace the line $(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1}=\Gamma_{2}$
(c) Consider the region

Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
(1) Define $\Gamma_{1}=f\left(\rho_{1}(t, 0-)\right), \Gamma_{2}=f\left(\rho_{2}(t, 0+)\right), \Gamma_{\mathrm{r} 1}=\gamma_{\mathrm{r} 1}(t)$
(2) Consider the space $\left(\Gamma_{1}, \Gamma_{\mathrm{r} 1}\right)$ and the sets $\mathcal{O}_{1}=\left[0, \delta\left(\rho_{1}\right)\right], \mathcal{O}_{\mathrm{r} 1}=\left[0, d\left(F_{\mathrm{in}}, \bar{l}\right)\right]$
(3) Trace the line $(1-\beta) \Gamma_{1}+\Gamma_{r 1}=\Gamma_{2}$

- Consider the region

Solution of the Riemann problem: steps

To find a solution of the problem we will take the following steps.
(1) Define $\Gamma_{1}=f\left(\rho_{1}(t, 0-)\right), \Gamma_{2}=f\left(\rho_{2}(t, 0+)\right), \Gamma_{\mathrm{r} 1}=\gamma_{\mathrm{r} 1}(t)$
(2) Consider the space $\left(\Gamma_{1}, \Gamma_{\mathrm{r} 1}\right)$ and the sets $\mathcal{O}_{1}=\left[0, \delta\left(\rho_{1}\right)\right], \mathcal{O}_{\mathrm{r} 1}=\left[0, d\left(F_{\mathrm{in}}, \bar{l}\right)\right]$
(3) Trace the line $(1-\beta) \Gamma_{1}+\Gamma_{r 1}=\Gamma_{2}$
(9) Consider the region

$$
\Omega=\left\{\left(\Gamma_{1}, \Gamma_{\mathrm{r} 1}\right) \in \mathcal{O}_{1} \times \mathcal{O}_{\mathrm{r} 1}:(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1} \in\left[0, \Gamma_{2}\right]\right\} .
$$

Solution of the Riemann problem：steps

To find a solution of the problem we will take the following steps．
（1）Define $\Gamma_{1}=f\left(\rho_{1}(t, 0-)\right), \Gamma_{2}=f\left(\rho_{2}(t, 0+)\right), \Gamma_{\mathrm{r} 1}=\gamma_{\mathrm{r} 1}(t)$
（2）Consider the space $\left(\Gamma_{1}, \Gamma_{\mathrm{r} 1}\right)$ and the sets $\mathcal{O}_{1}=\left[0, \delta\left(\rho_{1}\right)\right], \mathcal{O}_{\mathrm{r} 1}=\left[0, d\left(F_{\mathrm{in}}, \bar{l}\right)\right]$
（3）Trace the line $(1-\beta) \Gamma_{1}+\Gamma_{r 1}=\Gamma_{2}$
（9）Consider the region

$$
\Omega=\left\{\left(\Gamma_{1}, \Gamma_{\mathrm{r} 1}\right) \in \mathcal{O}_{1} \times \mathcal{O}_{\mathrm{r} 1}:(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1} \in\left[0, \Gamma_{2}\right]\right\} .
$$

（9）Different situations can occur depending on the value of Γ_{2}
－Demand limited case：$\Gamma_{2}=(1-\beta) \delta\left(\rho_{1}(t, 0-)\right)+d\left(F_{\text {in }}, \bar{l}\right)$
－Supply limited case：$\Gamma_{2}=\sigma\left(\rho_{2}(t, 0+)\right)$

We set the optimal point Q to be the point $\left(\hat{\Gamma}_{1}, \hat{\Gamma}_{r 1}\right)$ such that $\hat{\Gamma}_{1}=\delta\left(\rho_{1}(t, 0-)\right), \hat{\Gamma}_{\mathrm{r} 1}=d\left(F_{\mathrm{in}}, \bar{l}\right)$ and $\hat{\Gamma}_{2}=(1-\beta) \delta\left(\rho_{1}(t, 0-)\right)+d\left(F_{\mathrm{in}}, \bar{l}\right)$

- We introduce the right of way parameter, i.e., we trace the line $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$
- We set optimal point Q to be the point of intersection of $(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1}=\Gamma_{2}$ and $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$.
- Different situations can occur depending on the value of the intersection point

- We introduce the right of way parameter, i.e., we trace the line $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$
- We set optimal point Q to be the point of intersection of $(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1}=\Gamma_{2}$ and $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$.
- Different situations can occur depending on the value of the intersection point
- $Q \in \Omega$

- We introduce the right of way parameter, i.e., we trace the line $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$
- We set optimal point Q to be the point of intersection of $(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1}=\Gamma_{2}$ and $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$.
- Different situations can occur depending on the value of the intersection point
- $Q \in \Omega$
- $Q \notin \Omega$

- We introduce the right of way parameter, i.e., we trace the line $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$
- We set optimal point Q to be the point of intersection of $(1-\beta) \Gamma_{1}+\Gamma_{\mathrm{r} 1}=\Gamma_{2}$ and $\Gamma_{1}=\frac{P}{1-P} \Gamma_{\mathrm{r} 1}$.
- Different situations can occur depending on the value of the intersection point
- $Q \in \Omega$
- $Q \notin \Omega \Longrightarrow$ Optimal point: S

Theorem

Consider a junction J and fix a priority parameter $P \in] 0,1[$. For every $\rho_{1,0}, \rho_{2,0} \in[0,1]$ and $I_{0} \in[0,+\infty[$, there exists a unique admissible solution ($\left.\rho_{1}(t, x), \rho_{2}(t, x), I(t)\right)$ satisfying the priority (possibly in an approximate way). Moreover, for a.e. $t>0$, it holds

$$
\left(\rho_{1}(t, 0-), \rho_{2}(t, 0+)\right)=\mathcal{R}_{/(t)}\left(\rho_{1}(t, 0-), \rho_{2}(t, 0+)\right) .
$$

Theorem

Consider a junction J and fix a priority parameter $P \in] 0,1[$. For every $\rho_{1,0}, \rho_{2,0} \in[0,1]$ and $I_{0} \in[0,+\infty[$, there exists a unique admissible solution ($\left.\rho_{1}(t, x), \rho_{2}(t, x), I(t)\right)$ satisfying the priority (possibly in an approximate way). Moreover, for a.e. $t>0$, it holds

$$
\left(\rho_{1}(t, 0-), \rho_{2}(t, 0+)\right)=\mathcal{R}_{/(t)}\left(\rho_{1}(t, 0-), \rho_{2}(t, 0+)\right)
$$

Sketch of the proof: using the following lemma

Lemma

If $\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)$ is a solution of the Riemann problem with initial data $\left(\rho_{1,0}, \rho_{2,0}\right)$, then the following holds:

$$
\begin{aligned}
\delta\left(\rho_{1,0}\right) & \leq \delta\left(\hat{\rho}_{1}\right), \\
\sigma\left(\rho_{2,0}\right) & \leq \sigma\left(\hat{\rho}_{2}\right), \\
d\left(F_{\mathrm{in}}, l_{0}\right) & \leq d\left(F_{\mathrm{in}}, l\right) .
\end{aligned}
$$

Outline

(1) Introduction

- Collaboration
- Motivation
(2) Mathematical Model
- Cauchy Problem
- Junction Model
(3) Riemann Problem
- Riemann Solver

4 Numerical Results

- Numerical Scheme
- Results
(5) Conclusions

Cñian

Modified Godunov Scheme

－At some time step Δt^{n} ，we might have multiple shocks exiting the junction
－We divide the time step $\Delta t^{n}=\left(t^{n}, t^{n+1}\right)$ into two sub－intervals $\Delta t_{a}=\left(t^{n}, \bar{t}\right)$ and $\Delta t_{b}=\left(\bar{t}, t^{n+1}\right)$
－We solve in one time step two different Riemann Problems at the junction
－For Δt_{a} ：Classical Godunov flux update

$$
\begin{aligned}
& v_{J}^{n+1}=v_{J}^{n}-\frac{\Delta t_{a}}{\Delta x}\left(\hat{\Gamma}_{1}-g\left(v_{J-1}^{n}, v_{J}^{n}\right)\right) \\
& v_{0}^{n+1}=v_{0}^{n}-\frac{\Delta t_{a}}{\Delta x}\left(g\left(v_{0}^{n}, v_{1}^{n}\right)-\hat{\Gamma}_{2}\right)
\end{aligned}
$$

－For Δt_{b} ：Modified flux update

$$
\begin{aligned}
& v_{J}^{n+1}=v_{J}^{\bar{t}}-\frac{\Delta t_{b}}{\Delta x}\left(\hat{\Gamma}_{1}^{\bar{t}}-g\left(v_{J-1}^{n}, v_{J}^{\bar{t}}\right)\right) \\
& v_{0}^{n+1}=v_{0}^{\bar{t}}-\frac{\Delta t_{b}}{\Delta x}\left(g\left(v_{0}^{\bar{t}}, v_{1}^{n}\right)-\hat{\Gamma}_{2}^{\bar{t}}\right)
\end{aligned}
$$

Numerical Simulations

Current work \& Perspectives

- Corresponding discrete optimization problem solved using the adjoint method
- Production-scale implementation in the framework of the Berkeley Connected-Corridors traffic system
- Extension to optimal rerouting with multi-commodity flow and partial control
- Extension to traffic flow modeling on roundabouts

Thank you for your attention

Maria Laura Delle Monache
PhD student in "Traffic flow by conservation laws"
Inria Sophia Antipolis-Méditerranée
Email: maria-laura.delle_monache@inria.fr

