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Junction model

branch J,

Proposition (Junction model [IMZ '11])

uf' + Ho(ug) =0, x>0, a=1,.

N
u®(0,t) := u(0, 1), z =0, (1.1)
ug+ max H_(uy)=0, z=0.

a=1,....N

with the initial condition u®(0,x) = uf(z).
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Junction model
Assumptions

Foralla=1,...,N,
(AO) The initial condition u§ is Lipschitz continuous.
(A1) The Hamiltonians H, are C*(R) and convex such that:
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Numerical scheme

Proposition (Numerical Scheme)
Let us consider the discrete space and time derivatives:

an Ua,n Ua,n—i—l - Uq,n

" = 7j+1A$ . and (DU = 41 A7 L

Then we have the following numerical scheme:

(D)™ + max{HJI (p;""]), Hy (p;"")} =0, i>1, a=1,..,N
UO = UO , 1= )
(DU) + max  H, (pp™) =0, i=0

With the initial condition U™ := ug (iAx).

Ax and At = space and time steps satisfying a CFL condition
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Numerical scheme

CFL condition

The natural CFL condition is given by:

Ax
—— > sup  |Hi(p"")| (2.3)
At a=1,..,N

>0, 0<n<nr
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Numerical scheme Mathematical results

First result

Theorem (Time and Space Gradient estimates)

Assume (A0)-(Al). If the CFL condition (2.3) is satisfied and
(i) [Time] If M™ := sup (DU);"" and m" := inf (DU);"", then

a,i

a

(i) [Space] If p_ = (Hy )~ '(=m") and p, := (HI)~"(-=m"), then

Qagpf""gﬁa, forall i>0, n>0 and a=1,...,N.
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Numerical scheme Mathematical results

Stronger CFL condition

Halp),

As for any a =1,..., N, we have that:

*7710

p, < ;" < Py forall i,mn >0

Then the CFL condition becomes:

Az

—_— > H' 2.4

AL S |H{, (pa)| (2.4)
Pa€lp, Dol
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Numerical scheme Mathematical results

Recall

(A2) Technical assumption (Legendre-Fenchel transform)

Hu(p) =sup (pq — La(q)) with LI >8>0, forall index a
q€eR

Theorem (Existence and uniqueness [IMZ, '11])

Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (1.1)
on the junction, satisfying for some constant Cp > 0

lu(t,y) —uo(y)| < Cp forall (t,y) € Jr.

Moreover the function u is Lipschitz continuous with respect to (t,y).
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Numerical scheme Mathematical results

Second result

Theorem (Convergence from discrete to continuous [CLM, '13])
Assume that (A0)-(A1)-(A2) and the CFL condition (2.4) are satisfied.
Then the numerical solution converges uniformly to u the unique viscosity
solution of (1.1) when ¢ — 0, locally uniformly on any compact set K:

lim sup sup |u®(nAt,iAzx) — Uia’n| =0
e—=0  (nAtiAz)ek
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Traffic interpretation Traffic notations

Setting

xr <0 r =0 x>0

W)\

INN,
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Traffic interpretation Traffic notations

DEIES

LWR model [Lighthill, Whitham '55; Richards '56] on branch a:

P+ (Q () = 0

Flow Q(p) a
Quar fommmmmmmmeaa

Density p

QY (p*) = p*Vp*) with V% velocity function
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Traffic interpretation Traffic notations

Getting the HJ equation

LWR model on branch «:
pE+ Q™) =0

By definition
P& =~%0,U" on branch a

And

u*(x,t) = =U¥(—=z,t), x>0, for incoming roads
u®(x,t) = =U%x,t), x>0, for outgoing roads

where the continuous car label u® solves the HJ equation on branch a:

uf + H*(uy) =0, foraxz >0

12 / 24

2QUE (Université ParisEst) Numerical scheme for traffic junction Sophia, March 2013



Traffic interpretation Links with “classical” approach

Discrete car densities

Definition (Discrete car density)

The discrete car density p;"" withn >0 and i € Z is given by:

'yapﬁﬁl for a=1,...,N;, i<-1
G o= (3.5)
—p;" for a=Nr+1,..,Nr+No, i>0

z <0 x>0
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Traffic interpretation Links with “classical” approach

Traffic interpretation

Proposition (Scheme for vehicles densities)

The scheme deduced from (2.2) for the discrete densities is given by:

Fo (i, p3™) — F(p", p3)  fori #0,—1

Az
p%nﬂ —pi "y = F§(p21,08") — F(p an7p?+q) fori =0

At i i
Fe(pi2%,00") = 5 (P21, pg")  fori=—1
With
Fe(piy, pi") »= min { Q3 (p” 1 , Q3(p™)}
1
F2 5" oo™ := ~% mi e T Bn s L AN AN
0 p") = min { min —QB(AD), min Q3"
z=0
b B } S5.n ' Ano b An }VI
R I S T N N W

incoming outgoing
Sophia, March 2013

14 / 24

Numerical scheme for traffic junction

QUE (Université ParisEst)



Traffic interpretation Links with “classical” approach

Supply and demand functions

It recovers the classical Godunov scheme with passing flow = minimum
between upstream demand QQp and downstream supply QQs.

Demand Qp

maz

Flow Q Density p

Qe 1+ J/ Per
Density /)\

Perit Prmaz Supply Qs

Density p
Perit Pmaz

From [Lebacque '93, '96]
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Numerical simulation

Example of a Diverge

An off-ramp:

Jl ’ > > J2

with
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Numerical simulation

Flow functions Q)“
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Numerical simulation

Initial conditions (t=0s)
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Results for Az =5 m, A

Numerical simulation

Labels on road n° 1
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Numerical simulation

Trajectories

Trajectories on road n° 1 Trajectories on road n° 2
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Numerical simulation

Gradient estimates

Density time evolution on road n° 1 Density time evolution on road n° 2
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Conclusion

Complementary results [CLM '13]:
@ Generalization for weaker assumptions on the Hamiltonians

@ Numerical simulation for other junction configurations (merge)

Open questions:
@ Error estimate
@ Non-fixed coefficients v
@ Other link models (GSOM)

@ Other junction condition
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Conclusion

The End

THANKS FOR YOUR ATTENTION

guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
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