
Architectures for massive data
management

Apache Kafka, Samza, Storm

Albert Bifetalbert.bifet@telecom-paristech.fr

October 20, 2015

Stream Engine Motivation

Digital Universe

EMC Digital Universe with Research &
Analysis by IDC

The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the

Internet of Things
April 2014

Digital Universe

Figure: EMC Digital Universe, 2014

Digital Universe

Memory unit Size Binary sizekilobyte (kB/KB) 103 210
megabyte (MB) 106 220
gigabyte (GB) 109 230
terabyte (TB) 1012 240
petabyte (PB) 1015 250
exabyte (EB) 1018 260
zettabyte (ZB) 1021 270
yottabyte (YB) 1024 280

Digital Universe

Figure: EMC Digital Universe, 2014

Digital Universe

Figure: EMC Digital Universe, 2014

Big Data 6V’s

• Volume
• Variety
• Velocity
• Value
• Variability
• Veracity

Hadoop

Figure: Hadoop architecture deals with datasets, not data streams

Requirements

• We should have some ways of coupling programs like gardenhose–screw in another segment when it becomes when itbecomes necessary to massage data in another way. This is theway of IO also.
• Our loader should be able to do link-loading and controlledestablishment.
• Our library filing scheme should allow for rather general indexing,responsibility, generations, data path switching.
• It should be possible to get private system components (allroutines are system components) for buggering around with.

Requirements

• We should have some ways of coupling programs like gardenhose–screw in another segment when it becomes when itbecomes necessary to massage data in another way. This is theway of IO also.
• Our loader should be able to do link-loading and controlledestablishment.
• Our library filing scheme should allow for rather general indexing,responsibility, generations, data path switching.
• It should be possible to get private system components (allroutines are system components) for buggering around with.

M. D. McIlroy 1968

Unix Pipelines

Figure: M. D. McIlroy, 1968

Unix pipelines

cat f i l e . t x t | t r −s ’ [[: punct :] [: space :]] ’ | sor t | uniq −c | sor t −rn | head−n 5
cat f i l e . t x t
| t r −s ’ [[: punct :] [: space :]] ’
| sor t
| uniq −c
| sor t −rn
| head−n 5

Unix Pipelines

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Unix Pipelines

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Unix Pipelines

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Unix Pipelines

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Real Time Processing

Jay Kreps, LinkedIn

The Log: What every software engineer
should know about real-time data’s

unifying abstraction

https://engineering.linkedin.com/distributed-systems/

log-what-every-software-engineer-should-know-about-real-time-datas-unifying

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

The Log

Figure: Jay Kreps, LinkedIn

The Log

Figure: Jay Kreps, LinkedIn

The Log

Figure: Jay Kreps, LinkedIn

The Log

Figure: Jay Kreps, LinkedIn

Apache Kafka

Apache Kafka from LinkedIn

Apache Kafka is a fast, scalable, durable, and fault-tolerantpublish-subscribe messaging system.

Apache Kafka from LinkedIn

Components of Apache Kafka
• topics: categories that Kafka uses to maintains feeds ofmessages
• producers: processes that publish messages to a Kafka topic
• consumers: processes that subscribe to topics and process thefeed of published messages
• broker: server that is part of the cluster that runs Kafka

Apache Kafka from LinkedIn

• The Kafka cluster maintains a partitioned log.
• Each partition is an ordered, immutable sequence of messagesthat is continually appended to a commit log.
• The messages in the partitions are each assigned a sequential idnumber called the offset that uniquely identifies each messagewithin the partition.

Apache Kafka from LinkedIn

Figure: A two server Kafka cluster hosting four partitions (P0-P3) with twoconsumer groups.

Apache Kafka from LinkedIn

Guarantees:
• Messages sent by a producer to a particular topic partition willbe appended in the order they are sent.
• A consumer instance sees messages in the order they are storedin the log.
• For a topic with replication factor N, Kafka tolerates up to N-1server failures without losing any messages committed to thelog.

Kafka API

class kafka . j avaap i . consumer . SimpleConsumer {/ * ** Fetch a set of messages from a top ic .** @param request spec i f i es the top ic name , top ic pa r t i t i o n , s t a r t i n g byte of fset , maximum bytes to be fetched .* @return a set of fetched messages*/
publ ic FetchResponse fetch (kafka . j avaap i . FetchRequest request) ;
/ * ** Fetch metadata fo r a sequence of top ics .** @param request spec i f i es the vers ion Id , c l i e n t I d , sequence of top ics .* @return metadata fo r each top ic in the request .*/
publ ic kafka . j avaap i . TopicMetadataResponse send (kafka . j avaap i . TopicMetadataRequest request) ;
/ * ** Get a l i s t of v a l i d o f fse ts (up to maxSize) before the given time .** @param request a [[kafka . j avaap i . OffsetRequest]] ob ject .* @return a [[kafka . j avaap i . OffsetResponse]] ob ject .*/
publ ic kafak . j avaap i . OffsetResponse getOffsetsBefore (OffsetRequest request) ;
/ * ** Close the SimpleConsumer .*/
publ ic void close () ;

}

Apache Samza

Samza

Samza is a stream processing framework with the following features:
• Simple API: it provides a very simple callback-based ”processmessage” API comparable to MapReduce.
• Managed state: Samza manages snapshotting and restorationof a stream processor’s state.
• Fault tolerance: Whenever a machine fails, Samza works withYARN to transparently migrate your tasks to another machine.
• Durability: Samza uses Kafka to guarantee that messages areprocessed in the order they were written to a partition, and thatno messages are ever lost.

Samza

Samza is a stream processing framework with the following features:
• Scalability: Samza is partitioned and distributed at every level.Kafka provides ordered, partitioned, replayable, fault-tolerantstreams. YARN provides a distributed environment for Samzacontainers to run in.
• Pluggable: Samza provides a pluggable API that lets you runSamza with other messaging systems and executionenvironments.
• Processor isolation: Samza works with Apache YARN

Apache Samza from LinkedIn

Storm and Samza are fairly similar. Both systems provide:
1 a partitioned stream model,
2 a distributed execution environment,
3 an API for stream processing,
4 fault tolerance,
5 Kafka integration

Samza

Samza components:
• Streams: A stream is composed of immutable messages of asimilar type or category
• Jobs: code that performs a logical transformation on a set ofinput streams to append output messages to set of outputstreams

Samza parallel Components:
• Partitions: Each stream is broken into one or more partitions.Each partition in the stream is a totally ordered sequence ofmessages.
• Tasks: A job is scaled by breaking it into multiple tasks. The taskis the unit of parallelism of the job, just as the partition is to thestream.

Samza

Figure: Dataflow Graphs

Samza and Yarn

Samza

Figure: Samza, Yarn and Kafka integration

Samza API

package com. example . samza ;
publ ic class MyTaskClass implements StreamTask {

publ ic void process (IncomingMessageEnvelope envelope ,MessageCollector co l l ec to r ,TaskCoordinator coord inator) {/ / process message
}
}

Samza API

Jobjob . fac to r y . class=org . apache . samza . job . l o ca l . ThreadJobFactoryjob . name=he l lo−world
Tasktask . class=samza . task . example . StreamTasktask . inputs=example−system . example−stream
Se r i a l i z e r ss e r i a l i z e r s . r e g i s t r y . json . class=org . apache . samza . s e r i a l i z e r s . JsonSerdeFactorys e r i a l i z e r s . r e g i s t r y . s t r i n g . class=org . apache . samza . s e r i a l i z e r s . S t r ingSerdeFactory
Systemssystems . example−system . samza . fac to r y =samza . stream . example . ExampleConsumerFactorysystems . example−system . samza . key . serde= s t r i n gsystems . example−system . samza .msg . serde= json

Apache Storm

Apache S4 from Yahoo

Not longer an active project.

Apache Storm

Stream, Spout, Bolt, Topology

Storm

Storm cluster nodes:
• Nimbus node (master node, similar to the Hadoop JobTracker):

• Uploads computations for execution
• Distributes code across the cluster
• Launches workers across the cluster
• Monitors computation and reallocates workers as needed

• ZooKeeper nodes: coordinates the Storm cluster
• Supervisor nodes: communicates with Nimbus throughZookeeper, starts and stops workers according to signals fromNimbus

Storm

Storm Abstractions:
• Tuples: an ordered list of elements.
• Streams: an unbounded sequence of tuples.
• Spouts: sources of streams in a computation
• Bolts: process input streams and produce output streams. Theycan: run functions; filter, aggregate, or join data; or talk todatabases.
• Topologies: the overall calculation, represented visually as anetwork of spouts and bolts

Storm

Main Storm Groupings:
• Shuffle grouping: Tuples are randomly distributed but each boltis guaranteed to get an equal number of tuples.
• Fields grouping: The stream is partitioned by the fields specifiedin the grouping.
• Partial Key grouping: The stream is partitioned by the fieldsspecified in the grouping, but are load balanced between twodownstream bolts.
• All grouping: The stream is replicated across all the bolt’s tasks.
• Global grouping: The entire stream goes to the task with thelowest id.

Storm API

TopologyBui lder bu i l d e r = new TopologyBui lder () ;
bu i l d e r . setSpout (” spout ” , new RandomSentenceSpout () , 5) ;
bu i l d e r . se tBo l t (” s p l i t ” , new Spl i tSentence () , 8) . shuff leGrouping (” spout ”) ;bu i l d e r . se tBo l t (” count ” , new WordCount () , 1 2) . f i e ldsGroup ing (” s p l i t ” , new F ie lds (”word ”)) ;
Config conf = new Config () ;StormSubmitter . submitTopologyWithProgressBar (args [0] , conf , bu i l d e r . createTopology ()) ;

Storm API

publ ic s t a t i c class Spl i tSentence extends She l l Bo l t implements I R i chBo l t {
publ ic Spl i tSentence () {

super (” python ” , ” sp l i t sen tence . py ”) ;
}

@Override
publ ic void dec la reOutputF ie lds (OutputF ie ldsDec la re r dec la re r) {dec la re r . dec lare (new F ie lds (”word ”)) ;
}

@Override
publ ic Map<St r ing , Object> getComponentConfiguration () {

re turn nu l l ;
}
}

Storm API

publ ic s t a t i c class WordCount extends BaseBasicBolt {Map<St r ing , In teger> counts = new HashMap<St r ing , In teger >();
@Override
publ ic void execute (Tuple tuple , Bas icOutputCo l lec tor co l l e c t o r) {S t r i ng word = tup le . ge tS t r i ng (0) ;I n t ege r count = counts . get (word) ;

i f (count == nu l l)count = 0 ;count ++ ;counts . put (word , count) ;c o l l e c t o r . emit (new Values (word , count)) ;
}

@Override
publ ic void dec la reOutputF ie lds (OutputF ie ldsDec la re r dec la re r) {dec la re r . dec lare (new F ie lds (”word ” , ” count ”)) ;
}
}

Apache Storm

Storm characteristics for real-time data processing workloads:
1 Fast
2 Scalable
3 Fault-tolerant
4 Reliable
5 Easy to operate

Twitter Heron

Twitter Heron

Heron includes these features:
1 Off the shelf scheduler
2 Handling spikes and congestion
3 Easy debugging
4 Compatibility with Storm
5 Scalability and latency

Twitter Heron

Figure: Heron Architecture

Twitter Heron

Figure: Topology Architecture

Twitter Heron

Figure: Throughput with acks enabled

Twitter Heron

Figure: Latency with acks enabled

Twitter Heron

Twitter Heron Highlights:
1 Able to re-use the code written using Storm
2 Efficient in terms of resource usage
3 3x reduction in hardware
4 Not open-source

	Stream Engine Motivation
	Apache Kafka
	Apache Samza
	Apache Storm
	Twitter Heron

