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Digital Universe

Figure: EMC Digital Universe, 2014



Digital Universe

Memory unit Size Binary sizekilobyte (kB/KB) 103 210
megabyte (MB) 106 220
gigabyte (GB) 109 230
terabyte (TB) 1012 240
petabyte (PB) 1015 250
exabyte (EB) 1018 260
zettabyte (ZB) 1021 270
yottabyte (YB) 1024 280
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Big Data 6V’s

• Volume
• Variety
• Velocity
• Value
• Variability
• Veracity



Hadoop

Figure: Hadoop architecture deals with datasets, not data streams



Requirements

• We should have some ways of coupling programs like gardenhose–screw in another segment when it becomes when itbecomes necessary to massage data in another way. This is theway of IO also.
• Our loader should be able to do link-loading and controlledestablishment.
• Our library filing scheme should allow for rather general indexing,responsibility, generations, data path switching.
• It should be possible to get private system components (allroutines are system components) for buggering around with.



Requirements

• We should have some ways of coupling programs like gardenhose–screw in another segment when it becomes when itbecomes necessary to massage data in another way. This is theway of IO also.
• Our loader should be able to do link-loading and controlledestablishment.
• Our library filing scheme should allow for rather general indexing,responsibility, generations, data path switching.
• It should be possible to get private system components (allroutines are system components) for buggering around with.

M. D. McIlroy 1968



Unix Pipelines

Figure: M. D. McIlroy, 1968



Unix pipelines

cat f i l e . t x t | t r −s ’ [ [ : punct : ] [ : space : ] ] ’ | sor t | uniq −c | sor t −rn | head−n 5
cat f i l e . t x t
| t r −s ’ [ [ : punct : ] [ : space : ] ] ’
| sor t
| uniq −c
| sor t −rn
| head−n 5



Unix Pipelines

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent
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Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent



Real Time Processing

Jay Kreps, LinkedIn

The Log: What every software engineer
should know about real-time data’s

unifying abstraction

https://engineering.linkedin.com/distributed-systems/

log-what-every-software-engineer-should-know-about-real-time-datas-unifying

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying


The Log

Figure: Jay Kreps, LinkedIn
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Apache Kafka



Apache Kafka from LinkedIn

Apache Kafka is a fast, scalable, durable, and fault-tolerantpublish-subscribe messaging system.



Apache Kafka from LinkedIn

Components of Apache Kafka
• topics: categories that Kafka uses to maintains feeds ofmessages
• producers: processes that publish messages to a Kafka topic
• consumers: processes that subscribe to topics and process thefeed of published messages
• broker: server that is part of the cluster that runs Kafka



Apache Kafka from LinkedIn

• The Kafka cluster maintains a partitioned log.
• Each partition is an ordered, immutable sequence of messagesthat is continually appended to a commit log.
• The messages in the partitions are each assigned a sequential idnumber called the offset that uniquely identifies each messagewithin the partition.



Apache Kafka from LinkedIn

Figure: A two server Kafka cluster hosting four partitions (P0-P3) with twoconsumer groups.



Apache Kafka from LinkedIn

Guarantees:
• Messages sent by a producer to a particular topic partition willbe appended in the order they are sent.
• A consumer instance sees messages in the order they are storedin the log.
• For a topic with replication factor N, Kafka tolerates up to N-1server failures without losing any messages committed to thelog.



Kafka API

class kafka . j avaap i . consumer . SimpleConsumer {/ * ** Fetch a set of messages from a top ic .** @param request spec i f i es the top ic name , top ic pa r t i t i o n , s t a r t i n g byte of fset , maximum bytes to be fetched .* @return a set of fetched messages*/
publ ic FetchResponse fetch ( kafka . j avaap i . FetchRequest request ) ;
/ * ** Fetch metadata fo r a sequence of top ics .** @param request spec i f i es the vers ion Id , c l i e n t I d , sequence of top ics .* @return metadata fo r each top ic in the request .*/
publ ic kafka . j avaap i . TopicMetadataResponse send ( kafka . j avaap i . TopicMetadataRequest request ) ;
/ * ** Get a l i s t of v a l i d o f fse ts ( up to maxSize ) before the given time .** @param request a [ [ kafka . j avaap i . OffsetRequest ] ] ob ject .* @return a [ [ kafka . j avaap i . OffsetResponse ] ] ob ject .*/
publ ic kafak . j avaap i . OffsetResponse getOffsetsBefore ( OffsetRequest request ) ;
/ * ** Close the SimpleConsumer .*/
publ ic void close ( ) ;

}



Apache Samza



Samza

Samza is a stream processing framework with the following features:
• Simple API: it provides a very simple callback-based ”processmessage” API comparable to MapReduce.
• Managed state: Samza manages snapshotting and restorationof a stream processor’s state.
• Fault tolerance: Whenever a machine fails, Samza works withYARN to transparently migrate your tasks to another machine.
• Durability: Samza uses Kafka to guarantee that messages areprocessed in the order they were written to a partition, and thatno messages are ever lost.



Samza

Samza is a stream processing framework with the following features:
• Scalability: Samza is partitioned and distributed at every level.Kafka provides ordered, partitioned, replayable, fault-tolerantstreams. YARN provides a distributed environment for Samzacontainers to run in.
• Pluggable: Samza provides a pluggable API that lets you runSamza with other messaging systems and executionenvironments.
• Processor isolation: Samza works with Apache YARN



Apache Samza from LinkedIn

Storm and Samza are fairly similar. Both systems provide:
1 a partitioned stream model,
2 a distributed execution environment,
3 an API for stream processing,
4 fault tolerance,
5 Kafka integration



Samza

Samza components:
• Streams: A stream is composed of immutable messages of asimilar type or category
• Jobs: code that performs a logical transformation on a set ofinput streams to append output messages to set of outputstreams

Samza parallel Components:
• Partitions: Each stream is broken into one or more partitions.Each partition in the stream is a totally ordered sequence ofmessages.
• Tasks: A job is scaled by breaking it into multiple tasks. The taskis the unit of parallelism of the job, just as the partition is to thestream.



Samza

Figure: Dataflow Graphs



Samza and Yarn



Samza

Figure: Samza, Yarn and Kafka integration



Samza API

package com. example . samza ;
publ ic class MyTaskClass implements StreamTask {

publ ic void process ( IncomingMessageEnvelope envelope ,MessageCollector co l l ec to r ,TaskCoordinator coord inator ) {/ / process message
}
}



Samza API

# Jobjob . fac to r y . class=org . apache . samza . job . l o ca l . ThreadJobFactoryjob . name=he l lo−world
# Tasktask . class=samza . task . example . StreamTasktask . inputs=example−system . example−stream
# Se r i a l i z e r ss e r i a l i z e r s . r e g i s t r y . json . class=org . apache . samza . s e r i a l i z e r s . JsonSerdeFactorys e r i a l i z e r s . r e g i s t r y . s t r i n g . class=org . apache . samza . s e r i a l i z e r s . S t r ingSerdeFactory
# Systemssystems . example−system . samza . fac to r y =samza . stream . example . ExampleConsumerFactorysystems . example−system . samza . key . serde= s t r i n gsystems . example−system . samza .msg . serde= json



Apache Storm



Apache S4 from Yahoo

Not longer an active project.



Apache Storm

Stream, Spout, Bolt, Topology



Storm

Storm cluster nodes:
• Nimbus node (master node, similar to the Hadoop JobTracker):

• Uploads computations for execution
• Distributes code across the cluster
• Launches workers across the cluster
• Monitors computation and reallocates workers as needed

• ZooKeeper nodes: coordinates the Storm cluster
• Supervisor nodes: communicates with Nimbus throughZookeeper, starts and stops workers according to signals fromNimbus



Storm

Storm Abstractions:
• Tuples: an ordered list of elements.
• Streams: an unbounded sequence of tuples.
• Spouts: sources of streams in a computation
• Bolts: process input streams and produce output streams. Theycan: run functions; filter, aggregate, or join data; or talk todatabases.
• Topologies: the overall calculation, represented visually as anetwork of spouts and bolts



Storm

Main Storm Groupings:
• Shuffle grouping: Tuples are randomly distributed but each boltis guaranteed to get an equal number of tuples.
• Fields grouping: The stream is partitioned by the fields specifiedin the grouping.
• Partial Key grouping: The stream is partitioned by the fieldsspecified in the grouping, but are load balanced between twodownstream bolts.
• All grouping: The stream is replicated across all the bolt’s tasks.
• Global grouping: The entire stream goes to the task with thelowest id.



Storm API

TopologyBui lder bu i l d e r = new TopologyBui lder ( ) ;
bu i l d e r . setSpout ( ” spout ” , new RandomSentenceSpout ( ) , 5 ) ;
bu i l d e r . se tBo l t ( ” s p l i t ” , new Spl i tSentence ( ) , 8 ) . shuff leGrouping ( ” spout ” ) ;bu i l d e r . se tBo l t ( ” count ” , new WordCount ( ) , 1 2 ) . f i e ldsGroup ing ( ” s p l i t ” , new F ie lds ( ”word ” ) ) ;
Config conf = new Config ( ) ;StormSubmitter . submitTopologyWithProgressBar ( args [ 0 ] , conf , bu i l d e r . createTopology ( ) ) ;



Storm API

publ ic s t a t i c class Spl i tSentence extends She l l Bo l t implements I R i chBo l t {
publ ic Spl i tSentence ( ) {

super ( ” python ” , ” sp l i t sen tence . py ” ) ;
}

@Override
publ ic void dec la reOutputF ie lds ( OutputF ie ldsDec la re r dec la re r ) {dec la re r . dec lare (new F ie lds ( ”word ” ) ) ;
}

@Override
publ ic Map<St r ing , Object> getComponentConfiguration ( ) {

re turn nu l l ;
}
}



Storm API

publ ic s t a t i c class WordCount extends BaseBasicBolt {Map<St r ing , In teger> counts = new HashMap<St r ing , In teger >();
@Override
publ ic void execute ( Tuple tuple , Bas icOutputCo l lec tor co l l e c t o r ) {S t r i ng word = tup le . ge tS t r i ng ( 0 ) ;I n t ege r count = counts . get (word ) ;

i f ( count == nu l l )count = 0 ;count ++ ;counts . put (word , count ) ;c o l l e c t o r . emit (new Values (word , count ) ) ;
}

@Override
publ ic void dec la reOutputF ie lds ( OutputF ie ldsDec la re r dec la re r ) {dec la re r . dec lare (new F ie lds ( ”word ” , ” count ” ) ) ;
}
}



Apache Storm

Storm characteristics for real-time data processing workloads:
1 Fast
2 Scalable
3 Fault-tolerant
4 Reliable
5 Easy to operate



Twitter Heron



Twitter Heron

Heron includes these features:
1 Off the shelf scheduler
2 Handling spikes and congestion
3 Easy debugging
4 Compatibility with Storm
5 Scalability and latency



Twitter Heron

Figure: Heron Architecture



Twitter Heron

Figure: Topology Architecture



Twitter Heron

Figure: Throughput with acks enabled



Twitter Heron

Figure: Latency with acks enabled



Twitter Heron

Twitter Heron Highlights:
1 Able to re-use the code written using Storm
2 Efficient in terms of resource usage
3 3x reduction in hardware
4 Not open-source
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