Architectures for massive data

management
Apache Kafka, Samza, Storm

Albert Bifet
albert.bifet@telecom-paristech.fr

R TELECOM

universite Mmd

PARIS-SACLAY =53 L |

October 20, 2015

Stream Engine Motivation

Digital Universe

EMC Digital Universe with Research &
Analysis by IDC
The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the

Internet of Things
April 2014

Digital Universe

If the Digital
P The Digital Universe were

Universe is Huge represented by the
4 : 4 —And Growing 44 memory in a stack
| Exponentially I 7B of tablets, in 2013
it would have

stretched
two-thirds the
way to the Moon*

By 2020, there
would be 6.6 stacks
from the Earth to
the Moon*

Figure: EMC Digital Universe, 2014

u]
]
I
ul
i

Digital Universe

Memory unit Size | Binary size
kilobyte (kB/KB) | 103 210
megabyte (MB) | 108 220
gigabyte (GB) 10° 230
terabyte (TB) 10'? 240
petabyte (PB) 10" 7R
exabyte (EB) 10" 2
zettabyte (ZB) 107 270
yottabyte (YB) 10%4 7

Digital Universe

IoT Embedded Systems as % of the DU
12

g, e

-

_____,__.___,_______
.« o o °

O ED

2013 2014 2015 2016 2017 2018 2019 2020

Figure: EMC Digital Universe, 2014

Digital Universe

C 0IGITA

UNIVERSE

With Research & Anshysia by IDC.

1
[
=
=
&
E

IoT Specific
Traditional ICT

Figure: EMC Digital Universe, 2014

Big Data 6V’s

e Volume

« Variety
Velocity
e Value
Variability
< Veracity

Hadoop

Compute Cluster

DFS Block 1
Data (o s
dlata data data da OIF5 Bleck 1

data data data data data
data data data data data .-“"F’

data data data data data _* OFS Block 2 du cisrs i iy

data data data data data = | s chata s St
dala data data data data —hr s i e Saty

dwen cists dws Saty

dwa cara das San
data data data data data ::::::dd::::::
dita data data data data | |_-.| % Black 2 dua shata s St
dala dats dats data data \\ dwen cists dws Saty
data data data data data
dala data data data data
B ST R PR

' DFS Block 3

Figure: Hadoop architecture deals with datasets, not data streams

Requirements

« We should have some ways of coupling programs like garden
hose—screw in another segment when it becomes when it
becomes necessary to massage data in another way. This is the
way of |0 also.

 Our loader should be able to do link-loading and controlled
establishment.

« Our library filing scheme should allow for rather general indexing,
responsibility, generations, data path switching.

- It should be possible to get private system components (all
routines are system components) for buggering around with.

Requirements

- We should have some ways of coupling programs like garden
hose—screw in another segment when it becomes when it
becomes necessary to massage data in another way. This is the
way of 10 also.

« Our loader should be able to do link-loading and controlled
establishment.

e Our library filing scheme should allow for rather general indexing,
responsibility, generations, data path switching.

- It should be possible to get private system components (all
routines are system components) for buggering around with.

M. D. Mcllroy 1968

Unix Pipelines

'olow -
Wi
Bumgarys-whet, s cost
Tg put my strongest concerns in a nllﬂahelll
| 1. We shovld heve avoe waya of ecupling progrape Bike
g,ux'dzn hogg=--aorew in unnther zegrent when 14 heoomes shen. .
it Deoores nesosLary Lo massage detn 1n encther way. .
¥z1e ik the way of ID sleo. ’
2. Gur loader stculd be able to 4o link-leading end
sontrolled esiatliskment. . .
3s Tur llbrery Flling scheme ehculd & lew for raiher
egenerel Indexing, responslbility, gerereticns, deis path
swltohing. :
4, It sheuld he possible ti get privete i;yaf.er: ccoponents
{s11 routines ers eytsc corponerts) fof topgering around with,

K, D, Xolirov
cet. 1}7*'-196&

Unix pipelines

cat file.txt | tr —s '[[:punct:][:space:]]" | sort | unig —c | sort —rn | head —n 5

cat file.txt
| tr —s ' [[:punct:][:space:]]"’

| sort

| uniq —c
| sort —rn
|

head —n 5

Unix Pipelines

The Unix philesophy (axcar):
~Make eadh progrem do
ne thing s well .

~Expack the ovtput of Qvery

PO3m to become Lhe input

to another, as yet unknown
f’l"Dgr'm.

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Unix Pipelines
Good:

- CoMPOSa«bi'—a'-‘f /do one_ ‘Univg well
~Streams

- 5iw~f|e, powerful interface
roblems -

—Sirgle. madhing only
—One-to-one communication on(',
_I'”fvl' PArsing, oviput escaping
—No favlk <“olerance.

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Unix Pipelines

meS(qge. L

O/

S‘Lremm rr'ocess ms)"'S

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Unix Pipelines

—Sirale. madiine only
= Distributed processing

-'One ;{o~ane c_mnmmiﬁafilh onl,
@ PVH..‘SL -sU\n.sq-iL»e Px"l'{_rh
"‘No ﬁwlk 'éoleromce
'_'_> QQPU(B‘&EOn, QV'I'D-I'Q.C‘D\[er
—~Toput PArsing, oviput escaping
= Schema Management £
Cvolvable e,hcoolt'nj

Figure: Apache Kafka, Samza, and the Unix Philosophy of Distributed Data:
Martin Kleppmann, Confluent

Real Time Processing

Jay Kreps, LinkedIn

The Log: What every software engineer
should know about real-time data’s
unifying abstraction

https://engineering.linkedin.com/distributed-systems/

log-what-every-software-engineer-should-know-about-real-time-datas-unifying

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

The Log

Mext

Record
1 EI FtECOrd wrinen

/ '

=
-
3%
(%)
.
o
o
=]
o
w
—
=
-
-
—
3]

Figure: Jay Kreps, LinkedIn

The Log

Partition 0

Partition 1

Partition 2

4]

| P ———

Figure: Jay Kreps, LinkedIn

i
[|

Py =
[|

The Log

Operational
Logs

=
Espresso I

Operational
Metrics

=

Data
Warehouse

social

Hacoop Grapn

Manioring

Rec.

Emall

Figure: Jay Kreps, LinkedIn

Source System A

Source System A

i | i
I i I
i i i Owned by
- 1 - : } Source
Publisher g Fublisher i System Team
A | : B i
Owned by
Log System }Pipeline Team
L
Owned by
Consumer X | [ConsumerY | | Consumer Z Consumer
Teams

Figure: Jay Kreps, LinkedIn

Apache Kafka

Apache Kafka from LinkedIn

&3 kafka
producer \ consumer

producer —* Kafka consumer

/ Cluster

Apache Kafka is a fast, scalable, durable, and fault-tolerant
publish-subscribe messaging system.

producer consumer

Apache Kafka from LinkedIn

§@ kafka

Components of Apache Kafka

- topics: categories that Kafka uses to maintains feeds of
messages

- producers: processes that publish messages to a Kafka topic

< consumers: processes that subscribe to topics and process the
feed of published messages

- broker: server that is part of the cluster that runs Kafka

Apache Kafka from LinkedIn

&3 kafka

Partition0 Partition1 Partition 2

=]
=

o

z
S
z
BN v s w N

2o vonswnro

Writes

- The Kafka cluster maintains a partitioned log.

- Each partition is an ordered, immutable sequence of messages
that is continually appended to a commit log.

< The messages in the partitions are each assigned a sequential id
number called the offset that uniquely identifies each message
within the partition.

Apache Kafka from LinkedIn

Kafka Cluster

Server 1— Server 2
ﬂF’UllPSl ﬂP1 ||P2_||
7 ~ ~

/ 25 o /\\\
£} LY LY
c2 C3 C4 G5 C6
Consumer Group A Consumer Group B——

Figure: A two server Kafka cluster hosting four partitions (P0-P3) with two
consumer groups.

Apache Kafka from LinkedIn

§g kafka

Guarantees:

- Messages sent by a producer to a particular topic partition will
be appended in the order they are sent.

< A consumer instance sees messages in the order they are stored
in the log.

« For a topic with replication factor N, Kafka tolerates up to N-1
server failures without losing any messages committed to the
log.

Kafka API

class kafka.javaapi.consumer.SimpleConsumer {
/**

* Fetch a set of messages from a topic.
*

* @param request specifies the topic name, topic partition, starting byte offset, maximum bytes to be fetche
* @return a set of fetched messages

*/

public FetchResponse fetch(kafka.javaapi.FetchRequest request);

J**
* Fetch metadata for a sequence of topics.

*

* (@param request specifies the versionld, clientld, sequence of topics.
* @return metadata for each topic in the request.

*/
public kafka.javaapi.TopicMetadataResponse send(kafka.javaapi.TopicMetadataRequest request);

Jxx
* Get a list of valid offsets (up to maxSize) before the given time.

*

* (@param request a [[kafka.javaapi.OffsetRequest]] object.

* @return a [[kafka.javaapi.OffsetResponse]] object.

*/

public kafak.javaapi.OffsetResponse getOffsetsBefore(OffsetRequest request);

Jx%
* Close the SimpleConsumer.
*/

public void close ();

Apache Samza

Samza

Samza is a stream processing framework with the following features:

- Simple API: it provides a very simple callback-based "process
message” APl comparable to MapReduce.

- Managed state: Samza manages snapshotting and restoration
of a stream processor’s state.

- Fault tolerance: Whenever a machine fails, Samza works with
YARN to transparently migrate your tasks to another machine.

- Durability: Samza uses Kafka to guarantee that messages are
processed in the order they were written to a partition, and that
no messages are ever lost.

Samza

Samza is a stream processing framework with the following features:

- Scalability: Samza is partitioned and distributed at every level.
Kafka provides ordered, partitioned, replayable, fault-tolerant
streams. YARN provides a distributed environment for Samza
containers to run in.

 Pluggable: Samza provides a pluggable API that lets you run
Samza with other messaging systems and execution
environments.

 Processor isolation: Samza works with Apache YARN

Apache Samza from LinkedIn

Storm and Samza are fairly similar. Both systems provide:
@ a partitioned stream model,
® a distributed execution environment,
® an API for stream processing,
O fault tolerance,
® Kafka integration

Samza

Samza components:

« Streams: A stream is composed of immutable messages of a
similar type or category

« Jobs: code that performs a logical transformation on a set of
input streams to append output messages to set of output
streams

Samza parallel Components:

« Partitions: Each stream is broken into one or more partitions.
Each partition in the stream is a totally ordered sequence of
messages.

- Tasks: A job is scaled by breaking it into multiple tasks. The task
is the unit of parallelism of the job, just as the partition is to the
stream.

Samza

Stream E

1

G Job3

1

Stream F

Figure: Dataflow Graphs

Samza and Yarn

MapReduce

YARN

HDFS

Samza API

YARN

Kafka

Samza

Samza

YARN = RM

Client

/
NM NM
— 5

Samza

Samza | | “rask
Runner

Kafka Kafka

Broker Broker

Figure: Samza, Yarn and Kafka integration

Samza API

package com.example.samza;
public class MyTaskClass implements StreamTask {

public void process(IncomingMessageEnvelope envelope,
MessageCollector collector,
TaskCoordinator coordinator) {
// process message

Samza API

Job
job.factory.class=org.apache.samza.job.local.ThreadJobFactory
job.name=hello—world

Task
task.class=samza.task.example.StreamTask
task.inputs=example—system.example—stream

Serializers
serializers.registry.json.class=org.apache.samza. serializers.JsonSerdeFactory
serializers.registry.string.class=org.apache.samza. serializers.StringSerdeFactory

Systems

systems . example—system.samza. factory=samza. stream.example. ExampleConsumerFactory
systems. example—system.samza. key.serde=string

systems . example—system.samza.msg. serde=json

Apache Storm

Apache S4 from Yahoo

A keyless event (EV) arrives at PE1 with quote:
EV. _Quote . “/meantwhat!said and | said what | meant.", Dr. Seuss
KEY. null QuoteSplitterPE (PE1) counts unique
words in Quote and emits events for
each word.

EV
- KEY
VAL _ count=4

EV WordEvent

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is

EV _ UpdatedCountEv.
i updated.

KEY sortiD=2

EV UpdatedCountEv.
* KEY sortID=9
VAL word="i" count=35

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

MergePE (PE8) combines partial
TopK lists and outputs final
TopK list.

EV PartialTopKEv.
KEY topk=1234

VAL words={w:cnt;

P PE Name Key Tuple
"~ QuotesplitterPE null
WordCountPE word="said"
WordCountPE word='
SortPE sortl
SortPE sortiD=9
MergePE topk=1234

Not longer an active project.

Apache Storm

o
/@’/@,

m\
=y
0

oM

& &

Stream, Spout, Bolt, Topology

lllll

BBBBB

/ —
Z% =
\ \aouc

o

Storm

APACHE

STORM_

tributed + Resilient

Storm cluster nodes:
« Nimbus node (master node, similar to the Hadoop JobTracker):

« Uploads computations for execution

- Distributes code across the cluster

« Launches workers across the cluster

» Monitors computation and reallocates workers as needed

» ZooKeeper nodes: coordinates the Storm cluster

- Supervisor nodes: communicates with Nimbus through
Zookeeper, starts and stops workers according to signals from
Nimbus

Storm

é}) APACHE
STORM™

Distributed + Resilient + Real-timg

Storm Abstractions:

Tuples: an ordered list of elements.
Streams: an unbounded sequence of tuples.
Spouts: sources of streams in a computation

Bolts: process input streams and produce output streams. They
can: run functions; filter, aggregate, or join data; or talk to
databases.

Topologies: the overall calculation, represented visually as a
network of spouts and bolts

Storm

@ APACHE
STORM™

Main Storm Groupings:

Shuffle grouping: Tuples are randomly distributed but each bolt
is guaranteed to get an equal number of tuples.

Fields grouping: The stream is partitioned by the fields specified
in the grouping.

Partial Key grouping: The stream is partitioned by the fields

specified in the grouping, but are load balanced between two
downstream bolts.

All grouping: The stream is replicated across all the bolt’s tasks.

Global grouping: The entire stream goes to the task with the
lowest id.

Storm API

Distributed * Resilient - Real-time

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(”spout”, new RandomSentenceSpout(), 5);

builder.setBolt("split”, new SplitSentence(), 8).shuffleGrouping(“spout”);
builder.setBolt("count”, new WordCount(), 12).fieldsGrouping(”split”, new Fields("word”));
Config conf = new Config();

StormSubmitter. submitTopologyWithProgressBar(args[0], conf, builder.createTopology());

Storm API

52) APACHE
STORM~

Distributed * Resilient - Real-time

public static class SplitSentence extends ShellBolt implements IRichBolt {

public SplitSentence () {
super("python”, "splitsentence.py”);

@Override
public void declareOutputFields (OutputFieldsDeclarer declarer) {
declarer.declare (new Fields("word”));

@Override
public Map<String, Object> getComponentConfiguration() {
return null;

Storm API

éz) APACHE
STORM~

Distributed Resilient - Real-time

public static class WordCount extends BaseBasicBolt {
Map<String , Integer> counts = new HashMap<String, Integer >();

@Override
public void execute(Tuple tuple, BasicOutputCollector collector) {
String word = tuple.getString (0);
Integer count = counts.get(word);
if (count null)
count = 0;
count++;
counts. put(word, count);
collector.emit(new Values(word, count));

i

@Override
public void declareOutputFields (OutputFieldsDeclarer declarer) {
declarer.declare (new Fields("word”, "count”));

Apache Storm

52) APACHE
STORM'

Storm characteristics for real-time data processing workloads:
@ Fast
® Scalable
® Fault-tolerant
O Reliable
@ Easy to operate

Twitter Heron

Twitter Heron

Heron includes these features:

@ Off the shelf scheduler

® Handling spikes and congestion
® Easy debugging

@ Compatibility with Storm

® Scalability and latency

Twitter Heron

Topology 1

TOPOLOGY Topology 2

SUBMISSION

Topology 3

Topology N

Figure: Heron Architecture

Twitter Heron

Logical Plan,
Topology Physical Plan and
Master Execution State

Sync Physical Plan

Stream Metrics Stream Metrics
Manager l Manager Manager

ll Manager
000D 2 ©OooD

CONTAINER

CONTAINER

Figure: Topology Architecture

Twitter Heron

M Storm M Heron
1400
1050
<
£
@
°
S 700
c
S
€
350
0
25 100 200 500

Spout Parallelism

Figure: Throughput with acks enabled

Twitter Heron

M Storm M Heron
2500
1875
@
E
3 1250
f=
2
=
625
0
25 100 200 500

Spout Parallelism

Figure: Latency with acks enabled

Twitter Heron

Twitter Heron Highlights:
@ Able to re-use the code written using Storm
@© Efficient in terms of resource usage
® 3x reduction in hardware
@ Not open-source

	Stream Engine Motivation
	Apache Kafka
	Apache Samza
	Apache Storm
	Twitter Heron

