Architectures for massive data

management
Apache Spark

Albert Bifet
albert.bifet@telecom-paristech.fr

R TELECOM

universite Mmd

PARIS-SACLAY =53 L |

October 20, 2015

Spark Motivation

Apache Spark

IBM Announces Major Commitment to
Advance Apache®Spark™, Calling it

Nows rloasos. c N
Potentially the Most Significant Open Source
D Project of the Next Decade
image galery 18M Joins Spark Community, Plans to Educate More Than 1 Million Data
Sciontists
Blographies
Bockground Seloct a toplo or year 1BM Nows Room Twitter —
News room foeds & Nows roloase ¥ Contact(s) information @ Joln the conversation
e & Related XML foods Related rosources
Nows room search
Media contacts ARMONIG NY - e hatle
-
1B Cioud. 18N wil
Rolated inks o Sndpoc
™
Investor relations ‘scientists and data engineers on Spark.

Al
>/

Figure: IBM and Apache Spark

What is Apache Spark

Spor‘lzg

Apache Spark is a fast and general engine for large-scale data
processing.

- Speed: Run programs up to 100x faster than Hadoop MapReduce
in memory, or 10x faster on disk.

- Ease of Use: Write applications quickly in Java, Scala, Python, R.
< Generality: Combine SQL, streaming, and complex analytics.

< Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or
in the cloud.

http://spark.apache.org/

http://spark.apache.org/

Spark Ecosystem

(machine
learning)

Apache Spark

Spark API

Spcwr‘l:Z

text_file = spark.textFile("hdfs://...")

text_file.flatMap (lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

Word count in Spark’s Python API

val f = sc.textFile(hdfs://...")

val we = f.flatMap(l => I|.split(" "))
.map(word => (word, 1))
.reduceByKey (- + _)

Word count in Spark’s Scala API

Apache Spark

Apache Spark Project

r

Spa

- Spark started as a research project at UC Berkeley

» Matei Zaharia created Spark during his PhD
« lon Stoica was his advisor

- DataBricks is the Spark start-up, that has raised $46 million

$databricks

Resilient Distributed Datasets (RDDs)

Spor‘l'\(z

- An RDD is a fault-tolerant collection of elements that can be
operated on in parallel.
- RDDs are created :

- parallelizing an existing collection in your driver program, or
- referencing a dataset in an external storage system

Spark API: Parallel Collections

Spcwr‘lgZ

data = [1, 2, 3, 4, 5]
distData = sc.parallelize (data)

Spark’s Python API

val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize (data)

Spark’s Scala API

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> distData = sc.parallelize (data);

Spark’s Java API

Spark API: External Datasets

Spor‘lgZ

>>> distFile = sc.textFile("data.txt"”)

Spark’s Python API

scala> val distFile = sc.textFile("data.txt")
distFile: RDD[String] = MappedRDD@1d4cee08

Spark’s Scala API

JavaRDD<String> distFile = sc.textFile("data.txt");

Spark’s Java API

Spark API: RDD Operations

.&’pcwr‘ll\(Z

lines = sc.textFile("data.txt”)
lineLengths = lines.map(lambda s: len(s))
totalLength = lineLengths.reduce(lambda a, b: a + b)

Spark’s Python API

val lines = sc.textFile("data.txt")

val lineLengths = lines.map(s => s.length)

val totalLength = lineLengths.reduce((a, b) => a + b)
Spark’s Scala API

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(s —> s.length ());
int totalLength = lineLengths.reduce((a, b) — a + b);

Spark’s Java API

Spark API: Working with Key-Value Pairs

Spofll(\z

lines = sc.textFile("data.txt")
pairs = lines.map(lambda s: (s, 1))
counts = pairs.reduceByKey(lambda a, b: a + b)

Spark’s Python API

val lines sc.textFile("data.txt"”)
val pairs lines.map(s => (s, 1))
val counts = pairs.reduceByKey((a, b) => a + b)

Spark’s Scala API

JavaRDD<String> lines = sc.textFile("data.txt”);
JavaPairRDD<String , Integer> pairs =

lines . mapToPair(s — new Tuple2(s, 1));
JavaPairRDD<String , Integer> counts =

pairs.reduceByKey((a, b) —> a + b);

Spark’s Java API

Spark API: Shared Variables

Spofll(\z

>>> broadcastVar = sc.broadcast([1, 2, 3])

>>> broadcastVar.value
[1, 2, 3]

Spark’s Python API

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

scala> broadcastVar.value
resO: Array[Int] = Array(1, 2, 3

Spark’s Scala API

Broadcast<int[]> broadcastVar = sc.broadcast(new int[] {1, 2, 3});

broadcastVar.value ();
// returns [1, 2, 3]

Spark’s Java API

Spark Cluster

Driver Program

—

SparkContext

#» Cluster Manager

.

Worker Node

Executor | Cache

\

—~—

Worker Node

Executor | Cache

Figure: Cluster Components

Spark Cluster

Spcwr‘[‘(Z

 Spark is agnostic to the underlying cluster manager.

« The spark driver is the program that declares the transformations
and actions on RDDs of data and submits such requests to the
master.

- Each application gets its own executor processes, which stay up
for the duration of the whole application and run tasks in multiple
threads. Each driver schedules its own tasks.

» The drivers must listen for and accept incoming connections
from its executors throughout its lifetime

- Because the driver schedules tasks on the cluster, it should be
run close to the worker nodes, preferably on the same local area
network.

Apache Spark Streaming

Spoﬁ(\z Streaming
input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine 1]

Spark Streaming is an extension of Spark that allows processing data
stream using micro-batches of data.

Discretized Streams (DStreams)

Spoﬁg Streaming

 Discretized Stream or DStream represents a continuous stream
of data,
- either the input data stream received from source, or
- the processed data stream generated by transforming the input
stream.

- Internally, a DStream is represented by a continuous series of
RDDs

RDD @time1 RDD@tme2 RDD@time3 RDD @ time 4

DStream — —- datafrom | __ | datafrom |__| datafrom | _ | datafrom >

timeOto 1 time 1to 2 time2to3 time3to4

Discretized Streams (DStreams)

« Any operation applied on a DStream translates to operations on

SPC)I"I’(\Z Streaming

the underlying RDDs.

lines
DStream

words
DStream

lines from lines from lines from lines from
timeOto 1 time 1to 2 time2to3 time3to4
flatMap
operation
words from words from words from words from
timeOto 1 time 1to 2 time2to3 time3to4

Discretized Streams (DStreams)

.S‘pC)I'tll(\Z Streaming

« Spark Streaming provides windowed computations, which allow
transformations over a sliding window of data.

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

Spark Streaming

Spofll(\z Streaming

val conf = new SparkConf().setMaster("local[2]").setAppName("WCount”)
val ssc = new StreamingContext(conf, Seconds(1))

// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream(”localhost”, 9999)

// Split each line into words
val words = lines.flatMap(-.split(" "))

// Count each word in each batch
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(. + _)

// Print the first ten elements of each RDD generated in this DStream to the cor
wordCounts. print ()

ssc. start () // Start the computation
ssc.awaitTermination() // Wait for the computation to terminate

Spark SQL and DataFrames

Spor‘lz"

« Spark SQL is a Spark module for structured data processing.

- It provides a programming abstraction called DataFrames and
can also act as distributed SQL query engine.

- A DataFrame is a distributed collection of data organized into
named columns. It is conceptually equivalent to a table in a
relational database .

Spark Machine Learning Libraries

.S‘pcwr‘lgz

e MLLib contains the original API built on top of RDDs.
- spark.ml provides higher-level API built on top of DataFrames for
constructing ML pipelines.

Pipeline [i] [.] Logistic
(Estimator) Tokenizer | mp | HashingTF | =) Regression
Logistic
- = - = - == | Regression

Pipeline.fit() Words Feature Model
text vectors

Spark Machine Learning Libraries

.S‘pcwr‘lgz

e MLLib contains the original API built on top of RDDs.
- spark.ml provides higher-level API built on top of DataFrames for
constructing ML pipelines.

Logistic

PipelineModel [T keni] 3 [Hashi TF] m) | Regression
(Transformer) Model
H-8-=-080 -8
PipelineModel
.transform(() Raw Words Feature Predictions

text vectors

Spark GraphX

[

==Graph A’

« GraphX optimizes the representation of vertex and edge types
when they are primitive data types
e The property graph is a directed multigraph with user defined
objects attached to each vertex and edge.
Property Graph Vertex Table

Property (V)
(rxin, student)

a

(jgonzal, postdoc)

(frankiin, professor)

oo~ w

(istoica, professor)

Edge Table

Srld | Dstid | Property (E)
3 7 Collaborator

3 Advisor
5 Colleague
7 Pl

v (oo

Spark GraphX

ﬁﬁ@‘rapmf

// Assume the SparkContext has already been constructed
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(Vertexld, (String, String))] =
sc.parallelize (Array ((3L, ("rxin”, "student”)), (7L, ("jgonzal”, "postdoc”)),
(5L, ("franklin”, "prof”)), (2L, ("istoica”, "prof”))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
sc.parallelize (Array (Edge(3L, 7L, "collab”), Edge(5L, 3L, "advisor”),
Edge(2L, 5L, "colleague”), Edge(5L, 7L, "pi")))
// Define a default user in case there are relationship with missing user
val defaultUser = (”"John Doe”, "Missing”)
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

Apache Spark Summary

Spor‘lzg

Apache Spark is a fast and general engine for large-scale data
processing.

- Speed: Run programs up to 100x faster than Hadoop MapReduce
in memory, or 10x faster on disk.

- Ease of Use: Write applications quickly in Java, Scala, Python, R.
< Generality: Combine SQL, streaming, and complex analytics.

< Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or
in the cloud.

http://spark.apache.org/

http://spark.apache.org/

	Spark Motivation
	Apache Spark

