
16/10/15	

1	

Database	
 index	
 structures	

Ioana	
 Manolescu	
 1	
 Architectures	
 for	
 Massive	
 DM	
 	

D&K	
 /	
 UPSay	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2015-­‐2016	

From:	
 Database	
 System	

Concepts,	
 6th	
 ediJon	

Avi	
 Silberschatz,	
 Henry	

Korth,	
 S.	
 Sudarshan	

McGraw-­‐Hill	
 	

©Silberschatz, Korth and Sudarshan11.2Database System Concepts - 6th Edition

Chapter 12: Indexing and Hashing

■  Basic Concepts
■  Ordered Indices
■  B+-Tree Index Files
■  B-Tree Index Files
■  Static Hashing
■  Dynamic Hashing
■  Comparison of Ordered Indexing and Hashing

2

16/10/15	

2	

©Silberschatz, Korth and Sudarshan11.3Database System Concepts - 6th Edition

Basic Concepts

■  Indexing mechanisms used to speed up access to desired data.
●  E.g., author catalog in library

■  Search Key - attribute to set of attributes used to look up records in a
file.

■  An index file consists of records (called index entries) of the form 
 

■  Index files are typically much smaller than the original file
■  Two basic kinds of indices:

●  Ordered indices: search keys are stored in sorted order
●  Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

3

©Silberschatz, Korth and Sudarshan11.4Database System Concepts - 6th Edition

Index Evaluation Metrics

■  Access types supported efficiently. E.g.,
●  records with a specified value in the attribute
●  or records with an attribute value falling in a specified range of

values.
■  Access time
■  Insertion time
■  Deletion time
■  Space overhead

4

16/10/15	

3	

©Silberschatz, Korth and Sudarshan11.5Database System Concepts - 6th Edition

Ordered Indices

■  In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.

■  Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.
●  Also called clustering index
●  The search key of a primary index is usually but not necessarily the

primary key.
■  Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called  
non-clustering index.

■  Index-sequential file: ordered sequential file with a primary index.

5

©Silberschatz, Korth and Sudarshan11.6Database System Concepts - 6th Edition

Dense Index Files

■  Dense index — Index record appears for every search-key
value in the file.

■  E.g. index on ID attribute of instructor relation

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

6

16/10/15	

4	

©Silberschatz, Korth and Sudarshan11.7Database System Concepts - 6th Edition

Dense Index Files (Cont.)

■  Dense index on dept_name, with instructor file sorted on
dept_name

Biology
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

7

©Silberschatz, Korth and Sudarshan11.8Database System Concepts - 6th Edition

Sparse Index Files

■  Sparse Index: contains index records for only some search-key
values.
●  Applicable when records are sequentially ordered on search-key

■  To locate a record with search-key value K we:
●  Find index record with largest search-key value < K
●  Search file sequentially starting at the record to which the index

record points
10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

8

16/10/15	

5	

©Silberschatz, Korth and Sudarshan11.9Database System Concepts - 6th Edition

Sparse Index Files (Cont.)

■  Compared to dense indices:
●  Less space and less maintenance overhead for insertions and

deletions.
●  Generally slower than dense index for locating records.

■  Good tradeoff: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block.

…
…

…
index
block 0

index
block 1

data
block 0

data
block 1

inner index
9

©Silberschatz, Korth and Sudarshan11.10Database System Concepts - 6th Edition

Secondary Indices Example

■  Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

■  Secondary indices have to be dense

Secondary index on salary field of instructor

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

10

16/10/15	

6	

©Silberschatz, Korth and Sudarshan11.11Database System Concepts - 6th Edition

Primary and Secondary Indices

■  Indices offer substantial benefits when searching for records.
■  BUT: Updating indices imposes overhead on database

modification: when a file is modified, every index on the file
must be updated

■  Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive
●  Each record access may fetch a new block from disk
●  Block fetch requires about 5 to 10 milliseconds, versus

about 100 nanoseconds for memory access

11

©Silberschatz, Korth and Sudarshan11.12Database System Concepts - 6th Edition

Index Update: Deletion

■  Dense indices – deletion of search-key is similar to file record
deletion.

■  Sparse indices –
●  if an entry for the search key exists in the index, it is deleted

by replacing the entry in the index with the next search-key
value in the file (in search-key order).

●  If the next search-key value already has an index entry, the
entry is deleted instead of being replaced.

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000■  If deleted record was the

only record in the file with its
particular search-key value,
the search-key is deleted
from the index also.

12

16/10/15	

7	

©Silberschatz, Korth and Sudarshan11.13Database System Concepts - 6th Edition

Index Update: Insertion

■  Insertion:
●  Perform a lookup using the search-key value appearing in

the record to be inserted.
●  Dense indices – if the search-key value does not appear in

the index, insert it.
●  Sparse indices – if index stores an entry for each block of

the file, no change needs to be made to the index unless a
new block is created.
! If a new block is created, the first search-key value

appearing in the new block is inserted into the index.

13

©Silberschatz, Korth and Sudarshan11.14Database System Concepts - 6th Edition

Secondary Indices

■  Frequently, one wants to find all the records whose values in
a certain field (which is not the search-key of the primary
index) satisfy some condition.
●  Example 1: In the instructor relation stored sequentially by

ID, we may want to find all instructors in a particular
department

●  Example 2: as above, but where we want to find all
instructors with a specified salary or with salary in a
specified range of values

■  We can have a secondary index with an index record for
each search-key value

14

16/10/15	

8	

©Silberschatz, Korth and Sudarshan11.15Database System Concepts - 6th Edition

B+-Tree Index Files

■  Disadvantage of indexed-sequential files
●  performance degrades as file grows, since many overflow

blocks get created.
●  Periodic reorganization of entire file is required.

■  Advantage of B+-tree index files:
●  automatically reorganizes itself with small, local, changes,

in the face of insertions and deletions.
●  Reorganization of entire file is not required to maintain

performance.
■  (Minor) disadvantage of B+-trees:

●  extra insertion and deletion overhead, space overhead.
■  Advantages of B+-trees outweigh disadvantages

●  B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

15

©Silberschatz, Korth and Sudarshan11.16Database System Concepts - 6th Edition

Example of B+-Tree

16

16/10/15	

9	

©Silberschatz, Korth and Sudarshan11.17Database System Concepts - 6th Edition

B+-Tree Index Files (Cont.)

■  All paths from root to leaf are of the same length
■  Each node that is not a root or a leaf has between ⎡n/2⎤ and

n children.
■  A leaf node has between ⎡(n–1)/2⎤ and n–1 values
■  Special cases:

●  If the root is not a leaf, it has at least 2 children.
●  If the root is a leaf (that is, there are no other nodes in

the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

17

©Silberschatz, Korth and Sudarshan11.18Database System Concepts - 6th Edition

B+-Tree Node Structure

■  Typical node  
 
 

●  Ki are the search-key values
●  Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).
■  The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

 (Initially assume no duplicate keys, address duplicates later)

P1 K1 P2 Pn-1 Kn-1 Pn…

18

16/10/15	

10	

©Silberschatz, Korth and Sudarshan11.19Database System Concepts - 6th Edition

Leaf Nodes in B+-Trees

■  For i = 1, 2, . . ., n–1, pointer Pi points to a file record with
search-key value Ki,

■  If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than or equal to Lj’s search-key values

■  Pn points to next leaf node in search-key order

Properties of a leaf node:

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

leaf node
Pointer to next leaf nodeBrandt Califieri Crick

19

©Silberschatz, Korth and Sudarshan11.20Database System Concepts - 6th Edition

Non-Leaf Nodes in B+-Trees

■  For a non-leaf node with m pointers:
●  All the search-keys in the subtree to which P1 points are

less than K1

●  For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which
Pi points have values greater than or equal to Ki–1 and less
than Ki

●  All the search-keys in the subtree to which Pn points have
values greater than or equal to Kn–1

P1 K1 P2 Pn-1 Kn-1 Pn…

20

16/10/15	

11	

©Silberschatz, Korth and Sudarshan11.21Database System Concepts - 6th Edition

Example of B+-tree

■  Leaf nodes must have between 3 and 5 values  
(⎡(n–1)/2⎤ and n –1, with n = 6).

■  Non-leaf nodes other than root must have between 3
and 6 children (⎡(n/2⎤ and n with n =6).

■  Root must have at least 2 children.

B+-tree for instructor file (n = 6)

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

21

©Silberschatz, Korth and Sudarshan11.22Database System Concepts - 6th Edition

Observations about B+-trees

■  Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.

■  The B+-tree contains a relatively small number of levels
! Level below root has at least 2* ⎡n/2⎤ values
! Next level has at least 2* ⎡n/2⎤ * ⎡n/2⎤ values
! .. etc.

●  If there are K search-key values in the file, the tree height is
no more than ⎡ log⎡n/2⎤(K)⎤

●  Thus searches can be conducted efficiently.
■  Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time
(as we shall see).

22

16/10/15	

12	

©Silberschatz, Korth and Sudarshan11.23Database System Concepts - 6th Edition

Queries on B+-Trees
■  Find record with search-key value V.

1.  C=root
2.  While C is not a leaf node {

1.  Let i be least value s.t. V ≤ Ki.
2.  If no such exists, set C = last non-null pointer in C
3.  Else { if (V= Ki) Set C = Pi +1 else set C = Pi}
}

3.  Let i be least value s.t. Ki = V
4.  If there is such a value i, follow pointer Pi to the desired record.
5.  Else no record with search-key value k exists.

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri
23

©Silberschatz, Korth and Sudarshan11.24Database System Concepts - 6th Edition

Queries on B+-Trees (Cont.)

■  If there are K search-key values in the file, the height of the tree is no
more than ⎡log⎡n/2⎤(K)⎤.

■  A node is generally the same size as a disk block, typically 4
kilobytes
●  and n is typically around 100 (40 bytes per index entry).

■  With 1 million search key values and n = 100
●  at most log50(1,000,000) = 4 nodes are accessed in a lookup.

■  Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup
●  above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

24

16/10/15	

13	

©Silberschatz, Korth and Sudarshan11.25Database System Concepts - 6th Edition

Updates on B+-Trees: Insertion

1.  Find the leaf node in which the search-key value would appear
2.  If the search-key value is already present in the leaf node then

1.  Add record to the file
2.  If necessary add a pointer to the bucket.

3.  Else
1.  add the record to the main file (and create a bucket if

necessary)
2.  If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node
3.  Otherwise, split the node (along with the new (key-value,

pointer) entry) as discussed in the next slide.

25

©Silberschatz, Korth and Sudarshan11.26Database System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)

■  Splitting a leaf node:
●  take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first ⎡n/2⎤ in the original
node, and the rest in a new node.

●  let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

●  If the parent is full, split it and propagate the split further up.
■  Splitting of nodes proceeds upwards till a node that is not full is found.

●  In the worst case the root node may be split increasing the height
of the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

Adams Califieri CrickBrandt

26

16/10/15	

14	

©Silberschatz, Korth and Sudarshan11.27Database System Concepts - 6th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Brandt Califieri Crick

27

©Silberschatz, Korth and Sudarshan11.28Database System Concepts - 6th Edition

B+-Tree Insertion

Srinivasan

Gold

Califieri Einstein

Mozart

Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

B+-Tree before and after insertion of “Lamport”

28

16/10/15	

15	

©Silberschatz, Korth and Sudarshan11.29Database System Concepts - 6th Edition

■  Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N
●  Copy N to an in-memory area M with space for n+1 pointers and n

keys
●  Insert (k,p) into M
●  Copy P1,K1, …, K ⎡n/2⎤-1,P ⎡n/2⎤ from M back into node N
●  Copy P⎡n/2⎤+1,K ⎡n/2⎤+1,…,Kn,Pn+1 from M into newly allocated node

N’
●  Insert (K ⎡n/2⎤,N’) into parent N

Crick

Insertion in B+-Trees (Cont.)

Adams Brandt Califieri Crick Adams Brandt

 Califieri

29

©Silberschatz, Korth and Sudarshan11.30Database System Concepts - 6th Edition

Examples of B+-Tree Deletion

■  Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

30

16/10/15	

16	

©Silberschatz, Korth and Sudarshan11.31Database System Concepts - 6th Edition

Examples of B+-Tree Deletion (Cont.)

Deletion of “Singh” and “Wu” from result of previous example

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

■  Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

■  Search-key value in the parent changes as a result

31

©Silberschatz, Korth and Sudarshan11.32Database System Concepts - 6th Edition

Example of B+-tree Deletion (Cont.)

Before and after deletion of “Gold” from earlier example

■  Node with Gold and Katz became underfull, and was merged with its sibling
■  Parent node becomes underfull, and is merged with its sibling

●  Value separating two nodes (at the parent) is pulled down when merging
■  Root node then has only one child, and is deleted

Adams Brandt Einstein El Said Katz Kim Mozart

GoldCalifieri

Califieri

Einstein

Crick

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

32

16/10/15	

17	

©Silberschatz, Korth and Sudarshan11.33Database System Concepts - 6th Edition

Updates on B+-Trees: Deletion

■  Find the record to be deleted, and remove it from the main file and
from the bucket (if present)

■  Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty

■  If the node has too few entries due to the removal, and the entries in
the node and a sibling fit into a single node, then merge siblings:
●  Insert all the search-key values in the two nodes into a single node

(the one on the left), and delete the other node.
●  Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure.

33

©Silberschatz, Korth and Sudarshan11.34Database System Concepts - 6th Edition

Updates on B+-Trees: Deletion

■  Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then
redistribute pointers:
●  Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.
●  Update the corresponding search-key value in the parent of the

node.
■  The node deletions may cascade upwards till a node which has ⎡n/2⎤

or more pointers is found.
■  If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root.

34

16/10/15	

18	

©Silberschatz, Korth and Sudarshan11.35Database System Concepts - 6th Edition

B-Tree Index Files

■  Similar to B+-tree, but B-tree allows search-key values to
appear only once; eliminates redundant storage of search
keys.

■  Search keys in nonleaf nodes appear nowhere else in the B-
tree; an additional pointer field for each search key in a
nonleaf node must be included.

■  Generalized B-tree leaf node  
 

■  Nonleaf node – pointers Bi are the bucket or file record
pointers. 

P1 K1 P2 Pn-1 Kn-1 Pn…

P1 B1 K1 P2 B2 K2 … Pm-1 Bm-1 Km-1 Pm

(a)

(b)

35

©Silberschatz, Korth and Sudarshan11.36Database System Concepts - 6th Edition

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

Brandt Califieri Crick El Said Gold Kim Mozart Srinivasan Wu

Einstein Katz Singh

Einstein
record

Katz
record

Singh
record

Brandt
record

Califieri
record ... and soon for other records...

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Brandt Califieri Crick

36

16/10/15	

19	

©Silberschatz, Korth and Sudarshan11.37Database System Concepts - 6th Edition

B-Tree Index Files (Cont.)

■  Advantages of B-Tree indices:
●  May use less tree nodes than a corresponding B+-Tree.
●  Sometimes possible to find search-key value before reaching leaf

node.
■  Disadvantages of B-Tree indices:

●  Only small fraction of all search-key values are found early
●  Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree
●  Insertion and deletion more complicated than in B+-Trees
●  Implementation is harder than B+-Trees.

■  Typically, advantages of B-Trees do not out weigh disadvantages.

37

©Silberschatz, Korth and Sudarshan11.38Database System Concepts - 6th Edition

Multiple-Key Access

■  Use multiple indices for certain types of queries.
■  Example:

select ID
from instructor
where dept_name = “Finance” and salary = 80000

■  Possible strategies for processing query using indices on
single attributes:
1. Use index on dept_name to find instructors with

department name Finance; test salary = 80000
2. Use index on salary to find instructors with a salary of

$80000; test dept_name = “Finance”.
3. Use dept_name index to find pointers to all records

pertaining to the “Finance” department. Similarly use index
on salary. Take intersection of both sets of pointers
obtained.

38

16/10/15	

20	

©Silberschatz, Korth and Sudarshan11.39Database System Concepts - 6th Edition

Indices on Multiple Keys

■  Composite search keys are search keys containing more
than one attribute
●  E.g. (dept_name, salary)

■  Lexicographic ordering: (a1, a2) < (b1, b2) if either
●  a1 < b1, or
●  a1=b1 and a2 < b2

39

©Silberschatz, Korth and Sudarshan11.40Database System Concepts - 6th Edition

Indices on Multiple Attributes

■  With the where clause  
 where dept_name = “Finance” and salary = 80000  
the index on (dept_name, salary) can be used to fetch only records
that satisfy both conditions.
●  Using separate indices in less efficient — we may fetch many

records (or pointers) that satisfy only one of the conditions.
■  Can also efficiently handle  

 where dept_name = “Finance” and salary < 80000
■  But cannot efficiently handle  

 where dept_name < “Finance” and balance = 80000
●  May fetch many records that satisfy the first but not the second

condition

Suppose we have an index on combined search-key
(dept_name, salary).

40

16/10/15	

21	

©Silberschatz, Korth and Sudarshan11.41Database System Concepts - 6th Edition

Static Hashing

■  A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

■  In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.

■  Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B.

■  Hash function is used to locate records for access, insertion as well
as deletion.

■  Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

41

©Silberschatz, Korth and Sudarshan11.42Database System Concepts - 6th Edition

Example of Hash File Organization

■  There are 10 buckets,
■  The binary representation of the ith character is assumed to be the

integer i.
■  The hash function returns the sum of the binary representations of

the characters modulo 10
●  E.g. h(Music) = 1 h(History) = 2  

 h(Physics) = 3 h(Elec. Eng.) = 3

 
Hash file organization of instructor file, using dept_name as key 
 (See figure in next slide.)

42

16/10/15	

22	

©Silberschatz, Korth and Sudarshan11.43Database System Concepts - 6th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key
(see previous slide for details).

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

bucket 7

45565

15151 Mozart Music 40000

80000
Wu12121 Finance 90000

76543 FinanceSingh

10101 Comp. Sci.Srinivasan
Katz Comp. Sci. 75000

92000

6500032343
58583

El Said
Califieri

History
History

80000
60000

Einstein
Gold
Kim

22222
33456
98345

Physics
Physics
Elec. Eng.

95000
87000
80000

Brandt83821 Comp. Sci.

76766 Crick Biology 72000

43

©Silberschatz, Korth and Sudarshan11.44Database System Concepts - 6th Edition

Hash Functions

■  Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key
values in the file.

■  An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.

■  Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of
search-key values in the file.

■  Typical hash functions perform computation on the internal binary
representation of the search-key.
●  For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

44

16/10/15	

23	

©Silberschatz, Korth and Sudarshan11.45Database System Concepts - 6th Edition

Handling of Bucket Overflows

■  Bucket overflow can occur because of
●  Insufficient buckets
●  Skew in distribution of records. This can occur due to two

reasons:
! multiple records have same search-key value
! chosen hash function produces non-uniform distribution of key

values
■  Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

45

©Silberschatz, Korth and Sudarshan11.46Database System Concepts - 6th Edition

Handling of Bucket Overflows (Cont.)

■  Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.

■  Above scheme is called closed hashing.
●  An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

overflow buckets for bucket 1

bucket 0

bucket 1

bucket 2

bucket 3

46

16/10/15	

24	

©Silberschatz, Korth and Sudarshan11.47Database System Concepts - 6th Edition

Hash Indices

■  Hashing can be used not only for file organization, but also for index-
structure creation.

■  A hash index organizes the search keys, with their associated record
pointers, into a hash file structure.

■  Strictly speaking, hash indices are always secondary indices
●  if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.
●  However, we use the term hash index to refer to both secondary

index structures and hash organized files.

47

©Silberschatz, Korth and Sudarshan11.48Database System Concepts - 6th Edition

Example of Hash Index
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

76766

45565
76543

10101

15151
33456

58583

83821

22222

98345

bucket 7
12121
32343

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

hash index on instructor, on attribute ID

48

16/10/15	

25	

©Silberschatz, Korth and Sudarshan11.49Database System Concepts - 6th Edition

Deficiencies of Static Hashing

■  In static hashing, function h maps search-key values to a fixed set of B
of bucket addresses. Databases grow or shrink with time.
●  If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.
●  If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).
●  If database shrinks, again space will be wasted.

■  One solution: periodic re-organization of the file with a new hash
function
●  Expensive, disrupts normal operations

■  Better solution: allow the number of buckets to be modified dynamically.

49

©Silberschatz, Korth and Sudarshan11.50Database System Concepts - 6th Edition

Dynamic Hashing

■  Good for database that grows and shrinks in size
■  Allows the hash function to be modified dynamically
■  Extendable hashing – one form of dynamic hashing

●  Hash function generates values over a large range — typically b-bit
integers, with b = 32.

●  Buckets are created on demand
●  At any time use only a prefix of the hash function result to index into

a table of bucket addresses.
●  Let the length of the prefix be i bits, 0 ≤ i ≤ 32.

! Bucket address table size = 2i. Initially i = 0
! Value of i grows and shrinks as the size of the database grows

and shrinks.
●  Multiple entries in the bucket address table may point to a bucket

(why?)
●  Thus, actual number of buckets is < 2i

! The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

50

16/10/15	

26	

©Silberschatz, Korth and Sudarshan11.51Database System Concepts - 6th Edition

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next
slide for details)

i i1

i2

i3

bucket 1

bucket 2

bucket 3

00..
01..
10..

11..

bucket address table

hash prefix

…

…

51

©Silberschatz, Korth and Sudarshan11.52Database System Concepts - 6th Edition

Use of Extendable Hash Structure

■  Each bucket j stores a value ij
●  All the entries that point to the same bucket have the same values

on the first ij bits.
■  To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X
2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket
■  To insert a record with search-key value Kj

●  follow same procedure as look-up and locate the bucket, say j.
●  If there is room in the bucket j insert record in the bucket.
●  Else the bucket must be split and insertion re-attempted (next slide.)

! Overflow buckets used instead in some cases (will see shortly)

52

16/10/15	

27	

©Silberschatz, Korth and Sudarshan11.53Database System Concepts - 6th Edition

Insertion in Extendable Hash Structure (Cont)

■  If i > ij (more than one pointer to bucket j)
●  allocate a new bucket z, and set ij = iz = (ij + 1)
●  Update the second half of the bucket address table entries originally

pointing to j, to point to z
●  remove each record in bucket j and reinsert (in j or z)
●  recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full)
■  If i = ij (only one pointer to bucket j)

●  If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

●  Else
!  increment i and double the size of the bucket address table.
!  replace each entry in the table by two entries that point to the

same bucket.
!  recompute new bucket address table entry for Kj  

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

53

©Silberschatz, Korth and Sudarshan11.54Database System Concepts - 6th Edition

Deletion in Extendable Hash Structure

■  To delete a key value,
●  locate it in its bucket and remove it.
●  The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).
●  Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it is
present)

●  Decreasing bucket address table size is also possible
! Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes
much smaller than the size of the table

54

16/10/15	

28	

©Silberschatz, Korth and Sudarshan11.55Database System Concepts - 6th Edition

Use of Extendable Hash Structure: Example

!"#$%&'(" !"!"#$%&'("#

$%&'&() **+* ++*+ ++++ +*++ **+* ++** **++ ****
,&-./ 01%/ ++++ ***+ **+* *+** +**+ **++ *++* ++*+
2'31/ 24(/ *+** **++ +*+* ++** ++** *++* ++*+ ++++
5%46413 +*+* **++ +*+* **** ++** *++* +**+ ++++
7%89&:) ++** *+++ +++* ++*+ +*++ ++++ **++ +*+*
;<8%1 **++ *+*+ +*+* *++* ++** +**+ +++* +*++
=!)8%18 +**+ +*** **++ ++++ +**+ ++** **** ***+

55

©Silberschatz, Korth and Sudarshan11.56Database System Concepts - 6th Edition

Example (Cont.)

■  Initial Hash structure; bucket size = 2

0 0

bucket 1bucket address table

hash prefix

56

16/10/15	

29	

©Silberschatz, Korth and Sudarshan11.57Database System Concepts - 6th Edition

Example (Cont.)

■  Hash structure after insertion of “Mozart”, “Srinivasan”,  
 and “Wu” records

1 1

bucket address table

hash prefix

1

15151 Music 40000

10101
12121

Srinivasan 90000
Wu 90000

Mozart

Comp. Sci.
Finance

57

©Silberschatz, Korth and Sudarshan11.58Database System Concepts - 6th Edition

Example (Cont.)
■  Hash structure after insertion of Einstein record
(assume it hashed with Wu and Srinivasan)

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

58

16/10/15	

30	

©Silberschatz, Korth and Sudarshan11.59Database System Concepts - 6th Edition

Example (Cont.)
■  Hash structure after insertion of Gold and El Said records

3

1

3

3

bucket address table

hash prefix

2

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
32343

Srinivasan
El Said

Comp. Sci.
History 60000

65000

59

©Silberschatz, Korth and Sudarshan11.60Database System Concepts - 6th Edition

Example (Cont.)
■  Hash structure after insertion of Katz record

3

1

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

32343 El Said History 60000

3

60

16/10/15	

31	

©Silberschatz, Korth and Sudarshan11.61Database System Concepts - 6th Edition

Example (Cont.)

3

bucket address table

hash prefix

2

3

3

3

22222
33456

Physics 95000
Physics 87000

Music
Biology

15151 40000
72000

Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

Crick76766

Singh76543 Finance

92000Comp. Sci.Brandt83821

32343
58583

El Said
Califieri

History
History

60000
62000

80000

3

And after insertion of
eleven records

61

©Silberschatz, Korth and Sudarshan11.62Database System Concepts - 6th Edition

Example (Cont.)

3

2

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

Crick Biology 7200076766

Singh76543 Finance

80000Elec. Eng.Kim98345

92000Comp. Sci.Brandt83821

32343
58583

El Said
Califieri

History
History

60000
62000

2

80000

3

And after insertion of
Kim record in previous
hash structure

62

16/10/15	

32	

©Silberschatz, Korth and Sudarshan11.63Database System Concepts - 6th Edition

Extendable Hashing vs. Other Schemes

■  Benefits of extendable hashing:
●  Hash performance does not degrade with growth of file
●  Minimal space overhead

■  Disadvantages of extendable hashing
●  Extra level of indirection to find desired record
●  Bucket address table may itself become very big (larger than

memory)
! Cannot allocate very large contiguous areas on disk either
! Solution: B+-tree structure to locate desired record in bucket

address table
●  Changing size of bucket address table is an expensive operation

■  Linear hashing is an alternative mechanism
●  Allows incremental growth of its directory (equivalent to bucket

address table)
●  At the cost of more bucket overflows

63

©Silberschatz, Korth and Sudarshan11.64Database System Concepts - 6th Edition

Comparison of Ordered Indexing and Hashing

■  Cost of periodic re-organization
■  Relative frequency of insertions and deletions
■  Is it desirable to optimize average access time at the expense of

worst-case access time?
■  Expected type of queries:

●  Hashing is generally better at retrieving records having a
specified value of the key.

●  If range queries are common, ordered indices are to be
preferred

■  In practice:
●  PostgreSQL supports hash indices, but discourages use due to

poor performance
●  Oracle supports static hash organization, but not hash indices
●  SQLServer supports only B+-trees

64

16/10/15	

33	

©Silberschatz, Korth and Sudarshan11.65Database System Concepts - 6th Edition

Bitmap Indices

■  Bitmap indices are a special type of index designed for efficient
querying on multiple keys

■  Records in a relation are assumed to be numbered sequentially
from, say, 0
●  Given a number n it must be easy to retrieve record n

! Particularly easy if records are of fixed size
■  Applicable on attributes that take on a relatively small number

of distinct values
●  E.g. gender, country, state, …
●  E.g. income-level (income broken up into a small number of

levels such as 0-9999, 10000-19999, 20000-50000, 50000-
infinity = 4 levels)

■  A bitmap is simply an array of bits

65

©Silberschatz, Korth and Sudarshan11.66Database System Concepts - 6th Edition

Bitmap Indices (Cont.)

■  In its simplest form a bitmap index on an attribute has a bitmap for
each value of the attribute
●  Bitmap has as many bits as records
●  In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is 0 otherwise

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000
66

16/10/15	

34	

©Silberschatz, Korth and Sudarshan11.67Database System Concepts - 6th Edition

Bitmap Indices (Cont.)

■  Bitmap indices are useful for queries on multiple attributes
●  not particularly useful for single attribute queries

■  Queries are answered using bitmap operations
●  Intersection (and)
●  Union (or)
●  Complementation (not)

■  Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap
●  E.g. 100110 AND 110011 = 100010
 100110 OR 110011 = 110111  

 NOT 100110 = 011001
●  Males with income level L1: 10010 AND 10100 = 10000

!  Can then retrieve required tuples.
!  Counting number of matching tuples is even faster

67

©Silberschatz, Korth and Sudarshan11.68Database System Concepts - 6th Edition

Bitmap Indices (Cont.)

■  Bitmap indices generally very small compared with relation size
●  E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space

used by relation.
!  If number of distinct attribute values is 8, bitmap is only 1% of

relation size
■  Deletion needs to be handled properly

●  Existence bitmap to note if there is a valid record at a record location
●  Needed for complementation

! not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
■  Should keep bitmaps for all values, even null value

●  To correctly handle SQL null semantics for NOT(A=v):
!  intersect above result with (NOT bitmap-A-Null)

68

16/10/15	

35	

©Silberschatz, Korth and Sudarshan11.69Database System Concepts - 6th Edition

Chapter 25: Indexing of Spatial Data

■  k-d tree - early structure used for indexing in multiple dimensions.
■  Each level of a k-d tree partitions the space into two.

●  choose one dimension for partitioning at the root level of the tree.
●  choose another dimensions for partitioning in nodes at the next level

and so on
●  cycling through the dimensions.

■  In each node, approximately half of the points stored in the sub-tree fall
on one side and half on the other.

■  Partitioning stops when a node has less than a given maximum number
of points.

■  The k-d-B tree extends the k-d tree to allow multiple child nodes for
each internal node; well-suited for secondary storage.

69

©Silberschatz, Korth and Sudarshan11.70Database System Concepts - 6th Edition

Division of Space by a k-d Tree

■  Each line in the figure (other than the outside box) corresponds to a
node in the k-d tree.
●  The maximum number of points in a leaf node has been set to 1.

■  The numbering of the lines in the figure indicates the level of the tree
at which the corresponding node appears.

3 1 3

2

3 3

2

70

16/10/15	

36	

©Silberschatz, Korth and Sudarshan11.71Database System Concepts - 6th Edition

Division of Space by Quadtrees
Quadtrees
■  Each node of a quadtree is associated with a rectangular region of space;

the top node is associated with the entire target space.
■  Each non-leaf nodes divides its region into four equal sized quadrants

●  Correspondingly each such node has four child nodes corresponding to
the four quadrants and so on

■  Leaf nodes have between zero and some fixed maximum number of points
(set to 1 in example).

71

©Silberschatz, Korth and Sudarshan11.72Database System Concepts - 6th Edition

Quadtrees (Cont.)

■  PR quadtree: stores points; space is divided based on regions, rather
than on the actual set of points stored.

■  Region quadtrees store array (raster) information.
●  A node is a leaf node if all the array values in the region that it

covers are the same. Otherwise, it is subdivided further into four
children of equal area, and is therefore an internal node.

●  Each node corresponds to a sub-array of values.
●  The sub-arrays corresponding to leaves either contain just a single

array element, or have multiple array elements, all of which have
the same value.

■  Extensions of k-d trees and PR quadtrees have been proposed to
index line segments and polygons
●  Require splitting segments/polygons into pieces at partitioning

boundaries
! Same segment/polygon may be represented at several leaf

nodes

72

16/10/15	

37	

©Silberschatz, Korth and Sudarshan11.73Database System Concepts - 6th Edition

R-Trees

■  R-trees are a N-dimensional extension of B+-trees, useful for
indexing sets of rectangles and other polygons.

■  Supported in many modern database systems, along with variants
like R+ -trees and R*-trees.

■  Basic idea: generalize the notion of a one-dimensional interval
associated with each B+ -tree node to an  
N-dimensional interval, that is, an N-dimensional rectangle.

■  Will consider only the two-dimensional case (N = 2)
●  generalization for N > 2 is straightforward, although R-trees

work well only for relatively small N

73

©Silberschatz, Korth and Sudarshan11.74Database System Concepts - 6th Edition

R Trees (Cont.)
■  A rectangular bounding box is associated with each tree node.

●  Bounding box of a leaf node is a minimum sized rectangle that
contains all the rectangles/polygons associated with the leaf node.

●  The bounding box associated with a non-leaf node contains the
bounding box associated with all its children.

●  Bounding box of a node serves as its key in its parent node (if any)
●  Bounding boxes of children of a node are allowed to overlap

■  A polygon is stored only in one node, and the bounding box of the
node must contain the polygon.
●  The storage efficiency or R-trees is better than that of k-d trees or

quadtrees since a polygon is stored only once.

74

16/10/15	

38	

©Silberschatz, Korth and Sudarshan11.75Database System Concepts - 6th Edition

Example R-Tree
■  A set of rectangles (solid line) and the bounding boxes (dashed line) of the

nodes of an R-tree for the rectangles. The R-tree is shown on the right.

BB1 BB2 BB

B CA E F H I

A B

C

I

E F

H

1

2

3

D

G

D G

3

75

©Silberschatz, Korth and Sudarshan11.76Database System Concepts - 6th Edition

Search in R-Trees

■  To find data items (rectangles/polygons) intersecting (overlaps) a
given query point/region, do the following, starting from the root node:
●  If the node is a leaf node, output the data items whose keys

intersect the given query point/region.
●  Else, for each child of the current node whose bounding box

overlaps the query point/region, recursively search the child
■  Can be very inefficient in worst case since multiple paths may need

to be searched
●  but works acceptably in practice.

■  Simple extensions of search procedure to handle predicates
contained-in and contains

76

16/10/15	

39	

©Silberschatz, Korth and Sudarshan11.77Database System Concepts - 6th Edition

Insertion in R-Trees

■  To insert a data item:
●  Find a leaf to store it, and add it to the leaf

! To find leaf, follow a child (if any) whose bounding box contains
bounding box of data item, else child whose overlap with data
item bounding box is maximum

●  Handle overflows by splits (as in B+-trees)
! Split procedure is different though (see below)

●  Adjust bounding boxes starting from the leaf upwards
■  Split procedure:

●  Goal: divide entries of an overfull node into two sets such that the
bounding boxes have minimum total area
! This is a heuristic. Alternatives like minimum overlap are

possible
●  Finding the “best” split is expensive; several heuristics

77

©Silberschatz, Korth and Sudarshan11.78Database System Concepts - 6th Edition

Deleting in R-Trees

■  Deletion of an entry in an R-tree done much like a B+-tree deletion.
●  In case of underfull node, borrow entries from a sibling if possible,

else merging sibling nodes
●  Alternative approach removes all entries from the underfull node,

deletes the node, then reinserts all entries

78

