Graph stores

loana Manolescu
INRIA Saclay
ioana.manolescu@inria.fr
http://pages.saclay.inria.fr/ioana.manolescu/

M2 Data and Knowledge
Université de Paris Saclay

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

Motivation

* Graphs correspond to a natural organization of
knowledge
* They generalize
— Relations
— Trees (documents)
— Key-value pairs ...

* Graph stores simplify / facilitate data representation
* They do not simplify query evaluation (and may

make it more complex)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

27/10/15

Graph database models

Graph = N (nodes) and E (edges, subset of ExE)
Directed vs. undirected edges

Nodes:
— Unlabeled
— With a single label (in some cases called type)

— With a set of attribute-value pairs
— With complex internal structure (persistent objects)

Graphs may have semantics (RDF, RDFS)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

Object-oriented databases

* 1980 - 2000 (approx)

* Idea: capitalize on the flexibility of OO programming
languages such as C++ and Java to handle databases of
persistent objects

* Object Database Management Group (ODMG): consortium
of OODB vendors which produced a standard
1. Object Model // classes, attributes, methods...
2. Object Definition Language (ODL)
// persistency roots (persistent collections)
3. Object Query Language (0QL)
// navigation from one object to its attribute

// method invocation
// structured query language

4. C++andJava Bindings

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

27/10/15

Sample OQL queries

* select a.number
from ain ATM_MACHINE.accounts_list
where a.balance >0
* select max(select c.age from p.children c) // nested queries

from Persons p
where p.name = "Paul"

* select p.oldest_child.address.street
from Persons p
where p.lives_in("Paris") // method invocation

select ((Student)p).grade // explicit type test
from Persons p
where "course of study" in p.activities // set attribute

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 5

Where are OODBs now?

* Object-oriented extensions are present in all major (relational)
databases = Object-Relational Database Management Systems
(ORDBMS)

— Mostly relational
— Modest but useful object extensions
* E.g. complex types in Postgres:
— create type inventory_item as (name text, supplier_id
integer, price numeric);
— create table on_hand (item inventory_item, count integer);

— insert into on_hand values (ROW('fuzzy dice', 42, 1.99),
1000);

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 6

27/10/15

Working with composite type in the
Postgres ORDBMS

create type inventory_item as (name text, supplier_id integer,
price numeric);

create table on_hand (item inventory_item, count integer);
select (on_hand.item).name // () specific to composite type

from on_hand

where (on_hand.item).price > 9.99; This would have

required a joinin a
classical RDBMS!

create type complex as (r double precision, i double precision);
insert into mytab (complex_col) values ((1.1,2.2));
update mytab set complex_col = row(1.1,2.2) where ...;

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 7

The first (graph) semistructured data
model: OEM [pcwas]

OEM: Object Exchange Model, introduced as a global data model for mediator
systems

E.g. GAV scenario where several product databases are integrated under a
unique global schema

« Some have one price, some have several (e.g. price reductions)

» Some have a description, some have a technical_description, some

have description.text, description.price... CariE e e dEiE

+ Some have a photo, some don't the data has internal

OEM: Labeled, directed, unordered graph of objects structure (as opposed
Every object has a unique identity to a BLOB) but the
Every edge has a direction and a label structure is not

regular, some parts
may be more
structured than
others

loana Manolescu 8

Atomic object = value (simple atomic type)
No (a priori) schema

Architectures for Massive DM
D&K / UPSay 2015-2016

27/10/15

A restaurant OEM database

Guide

restayrant

9oty ngme addyess addlpess neaxh
© © ©

Vietnamese Saigon Mountain Menlo Park
View

cheap fastfood McDonald’s

strget cty zijcode

El Camino Real Palo Alto 92310

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 9

Restaurant database, serialized

Guide &12
restaurant &19 restaurant &35

category &17 "gourmet" category &66 "Vietnamese"

name &13 "Chef Chu" name &=21 Saigon"

address &14 address &23 "Mountain View"
street &44 "E1 Camino Real" address &25 '"Menlo Park"
city &15 "Palo Alto" nearby_eating_place &19
zipcode &16 92310 zipcode &54 "92310"

nearby_eating_place &35

price &55 "cheap"
nearby_eating_place &77

restaurant &77
category &79 '"fast food"
name &80 "McDonald’s"

price &55

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 10

27/10/15

Querying OEM data with LOREL [aqH+97]

Semistructured database principle: no query should fail; query
evaluation should adapt gracefully

select Guide.restaurant.address
where Guide.restaurant.address.zipcode=92310
Guide is a persistence root (name starts with a capital)
Empty results if expected labels are not found
Tries to convert zipcode to an integer; also accepts strings
select Guide.restaurant.name,
Guide.restaurant.(address?).zipcode
where Guide.restaurant.% grep "cheap"

Address is optional; "cheap" can occur anywhere in the
restaurant object

Architectures for Massive DM loana Manolescu
D&K / UPSay 2015-2016 ’ °

The first (graph) semistructured data
model: OEM [pcwas]

Semistructured data: the data has internal structure (opposed to e.g.

unstructured fext or blob — Binary Large OBject) but the structure is not
regular

Some items have comments/bids, others do not
One description may be just text, another one have complex structure

No schema Aucﬁons

ite item
/Lopen_a ctions
bject j

Architectures for Massive DM loana Manolescu
D&K / UPSay 2015-2016 ’ °

27/10/15

Storing OEM objects in LORE mac+97]

Objects clustered in pages in depth-first order, including simple value
leaves

Basic physical operator: Scan(obj, path)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 13

Navigation in a persistent graph

Navigation-based scan implementation (aka tuple-at-a-time, pointer-chasing)
Scan(Auctions, "item"): 2 pages accessed

Architectures for Massive DM
D&K / UPSay 2015-2016

loana Manolescu 14

27/10/15

Navigation in a persistent graph

Scan(Auctions, "item.description"): 4 pages accessed

Scan(Auctions, "open_auctions.auction.object"): 4 pages accessed

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 15

Indexing objects in a graph mws7mwa+es, Mweg]

VIndex(l, o, pred): all objects o with an incoming l-edge, satisfying
pred

LIndex(o, I, p): all parents of o via an l-edge
— "Reverse pointers" Return(n2)

Bindex(x, I, y): all edges labeled | f

Name(n4,"Auctions")

Lindex(n3, "open_auctions", n4)
select X

from Auction.open_auctions.auction X Lindex(n2, "auction",n3) tuple at
where X.initial < 10 ! a time

LIndex(n1, "initial", n2)

!

bulk
Vindex("initial", n1, "<10") access

Architectures for Massive DM
loana Manolescu 16

D&K / UPSay 2015-2016

27/10/15

Indexing objects in a graph mwsr

Plndex(p, o): all objects o reachable by the path p
select X
from Auction.open_auctions.auction.initial X
where X.initial < 10

Return(n2) Set at
Tuple T atime

ata Intersect(n2,n3)
time

Bulk Lindex(n1,"initial",n3) \
access v I PlIndex("Auction. access

Index("initial’, n1, "<10") open_auctions.auction", n2)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 17

The idea behind path indexes:
DataGuides [GW97]

Auitions

Architectures for Massive DM
D&K / UPSay 2015-2016

loana Manolescu 18

27/10/15

The idea behind path indexes:
DataGuides [GW97]

Graph-shaped summaries of graph data
— "A-posteriori schema"

— Groups all nodes reachable
by the same paths

Architectures for Massive DM
D&K / UPSay 2015-2016 loana Manolescu 19

More on graph indexing

Graph indexing:
1. Partition nodes into equivalence classes

2. Store the extent of each equivalence class, use it as "pre-cooked"
answer to some queries

Equivalence notions:

1. Reachable by some common paths: DataGuide [MW97]

2. Reachable by exactly the same paths: 7-index [MS99] or, equivalently,
indistinguishable by any forward path expression

3. Indistinguishable by any (forward and backward) path expression: F&B
Index [KBN+02]

4. Indistinguishable by the (forward and backward) path expressions in
the set Q: covering index [KBN+02]

5. Indistinguishable by any path expression of length < k: A(k) index [KSB
+02]

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 20

27/10/15

10

F&B index

Group together nodes reachable by exactly the same paths
Path language:

— Navigate along one edge in both directions

— Navigate along any number of edges, in both directions

n1 ~ n2: for any path expression p, either n1 and n2 are in the
answer of p, or neither are in the answer of p.

Data F&B
graph index
C
5
Architectures for Massive DM | M | 271
D&K / UPSay 2015-2016 oana Manolescu
DB-Engines Ranking of Graph DBMS
10
-~ Neo4j
e—— -+ Titan
/—/\' OrientDB
—a=t—a—i— ArangoDB
- ° -* Giraph
2 1 Hr.o—/ _m -#- AllegroGraph
g 7 Stardog
v -& InfiniteGraph
E N -+ Sqrrl
] » Sparksee
) o N ‘___‘—.__./\\'A HyperGraphDB
= 01 - =" = ~+- InfoGrid
v e VM = = FlockDB
2 VelocityGraph
- GlobalsDB
0.01 [
October 2015, DB-Engines.com
0.001

Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015

Architectures for Massive DM loana Manolescu 2
D&K / UPSay 2015-2016

27/10/15

11

Neo4) basics
Data model: labeled, directed graphs

Data manipulation language (CRUD): Cypher, used to describe data

and patterns to be matched
Node descriptions in Cypher:

() // empty anonymous node
(matrix) // node whose identifier is matrix.
(:Movie) // node of type Movie

Identifiers
can be used
to refer to
this node in
another
place in the
same
statement

(matrix:Movie) // node whose ID is matrix and type Movie

(matrix:Movie {title: "The Matrix"})
// node with an attribute

(matrix:Movie {title: "The Matrix", released: 1997})

// node with two attributes

Identifiers are
not stored in the
database (they

Arehitectires for Maceive D Strings vs. | are related to
DL)CQ‘/LJPZ';T o 0153016 loana Manolescu integers 7"variables")
Neo4) basics

Relationship descriptions in Cypher

-- (undirected) vs. --> or <-- (directed)
Sample relationship descriptions:

>

-[role]-> // relationship ID
-[:ACTED_IN]-> // relationship type

-[role:ACTED_IN]->

-[role:ACTED_IN {roles: ["Neo"]}]-> // relationship with

attributes

Architectures for Massive DM

D&K/UPSay 2015-2016 loana Manolescu

24

27/10/15

12

Data manipulation with Cypher

Patterns combine node and relationship descriptors:

(keanu:Person:Actor {name: "Keanu Reeves"})
-[role:ACTED_IN {roles: ["Neo"] }]-> (matrix:Movie {title: "The
Matrix"})

Data creation:

CREATE (a:Person { name:"Tom Hanks", born:1956 })
-[r:ACTED_IN { roles: ["Forrest"]}]->
(m:Movie { title:"Forrest Gump",released:1994 })
CREATE (d:Person { name:"Robert Zemeckis", born:1951 })
-[:DIRECTED]->(m)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 25

Data manipulation with Cypher

Querying data: MATCH pattern RETURN matched variables

MATCH (p:Person { name:"Tom Hanks" })
-[r:ACTED_IN]->(m:Movie)
RETURN m.title, r.roles

Successive match-create-return steps can be used to update the
data:

MATCH (p:Person { name:"Tom Hanks" })

CREATE (m:Movie { title:"Cloud Atlas",released:2012 })
CREATE (p)-[r:ACTED_IN { roles: ['Zachry']}]->(m)
RETURN p,r,m

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 26

27/10/15

13

Data manipulation with Cypher

Inserting data only if it didn't exist:
MERGE (m:Movie { title:"Cloud Atlas" })
// create or check the existence of movie node m
ON CREATE SET m.released = 2012
// if we had to create it, set the release year
RETURN m
Insert relationship only if it did not exist:
MATCH (m:Movie { title:"Cloud Atlas" })
MATCH (p:Person { name:"Tom Hanks" })
MERGE (p)-[r:ACTED_IN]->(m)
ON CREATE SET r.roles =['Zachry']
RETURN p,r,m

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

27

Returning results with Cypher

MATCH (a { name: "A" })-[r]->(b)
RETURN *

a b r

Node[0]{name:"A",happy:"Yes!",age:55} |Node[1]{name:"B"} | :BLOCKS[1]{}

Node[0]{name:"A",happy:"Yes!",age:55} |Node[1]{name:"B"} | :KNOWS[O0]{}

MATCH (n)
RETURN n.age // returns null if no age

Ed
MATCH (a { name: "A" }) crfaet'ion
RETURN a.age S 30’ ||||m a |itera|",(a)-—>() (ability to

return new

graphs)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

28

27/10/15

14

Other Cypher operations

* Booleans:
MATCH (n)
WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name =
"Tobias") OR NOT (n.name = "Tobias" OR n.name="Peter")
RETURN n

* Optional matching

* Returned data can be: ordered, truncated, aggregated

* Unwind: unfolds a collection into a set
UNWIND[1,2,3] AS x RETURN x // three results

* Indexes: CREATE INDEX ON :Person(name)

* EXPLAIN to get the query plan

* PROFILE to measure the effort

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 29

Richer path specification in SPARQL

* RDF: W3C standard for semantic Web data (graphs)
— Nodes are labeled with URIs or constants
— Edges are labeled with URIs

* SPARQL: query language for RDF data

* SPARQL 1.1 provides rich property path descriptions (think regular
expressions:
http://www.w3.org/TR/sparqll1-query/#propertypaths)

{:book1 dc:title|rdfs:label ?displayString }

{ ?x foaf:mbox <mailto:alice@example> .
?x foaf:knows/foaf:name ?name . }
{ ?x foaf:knows/*oaf:knows ?y . FILTER(?x !=?y) }

{ ?ancestor (ex:motherOf|ex:fatherOf)+ ?me}

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 30

27/10/15

15

Graph stores: summary

* Graph databases repeatedly "attempted" but not fully
"solved" yet

* Very convenient data model, natural representation
* Typically no strict schema
* No standard query language

* Semantic graphs are a particular case (RDF and SPARQL are
standards)

* Most powerful tools around: distributed graph stores (Pregel,
Spark Graphix)
— Extra dimension: graph partitioning
— Less effort on query language; in progress

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 31

References

[AQH+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener. "The Lorel
Query Language for Semistructured Data", International Journal on Digital
Libraries, 1997

[GW97] R.Goldman and J.Widom. "DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases", VLDB 1997

[KBN+02] R.Kaushik, P.Bohannon, J.Naughton and H.Korth. "Covering Indexes for
Branching Path Queries", SIGMOD 2002

[MW97] J.McHugh and J.Widom. "Query Optimization for Semistructured Data",
tech. report, 1997

[MWA+98] J.McHugh, J.Widom, S.Abiteboul, Q.Luo and A.Rajaraman. "Indexing
Semistructured Data", tech. report, 1998

[MW99] J.McHugh and J.Widom. "Query Optimization for XML", VLDB 1999
[MS99] T.Milo and D.Suciu. "Index Structures for Path Expressions", ICDT 1999

[PGW95] Y.Papakonstantinou, H.Garcia-Molina and J.Widom. "Object Exchange
Across Heterogeneous Information Sources”, ICDE 1995

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 32

27/10/15

16

