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Architectures



Lambda Architecture

Figure: Nathan Marz



Kappa Architecture

Figure: Questioning the Lambda Architecture by Jay Kreps



Twitter Heron



Twitter Heron

Heron includes these features:
1 Off the shelf scheduler
2 Handling spikes and congestion
3 Easy debugging
4 Compatibility with Storm
5 Scalability and latency



Twitter Heron

Figure: Heron Architecture



Twitter Heron

Figure: Topology Architecture



Twitter Heron

Figure: Throughput with acks enabled



Twitter Heron

Figure: Latency with acks enabled



Twitter Heron

Twitter Heron Highlights:
1 Able to re-use the code written using Storm
2 Efficient in terms of resource usage
3 3x reduction in hardware
4 Not open-source



Google Cloud DataFlow



Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.
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Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”
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Google Cloud Data Flow

The processing model of Google Cloud Dataflow is based upon
technology from
• FlumeJava(2010): Java library that makes it easy to develop,

test, and run efficient data parallel pipelines.
• MillWheel(2013): framework for building low-latency

data-processing applications



Google Cloud Data Flow

Cloud Dataflow consists of :
• A set of SDKs that you use to define data processing jobs:

• PCollection: specialized collection class to represent pipeline
data.

• PTransforms: powerful data transforms, generic frameworks that
apply functions across an entire data set

• I/O APIs: pipeline read and write data to and from a variety of
formats and storage technologies.

• A Google Cloud Platform managed service:
• Google Compute Engine VMs, to provide job workers.
• Google Cloud Storage, for reading and writing data.
• Google BigQuery, for reading and writing data.



Google Cloud Data Flow

Service Features
• Dynamic Optimization: the Dataflow service constructs a

directed graph of the job and optimizes the graph for the most
efficient execution.

• Resource Management: it includes spinning up and tearing
down Compute Engine resources, collecting logs, and
communicating with Cloud Storage technologies.

• Job Monitoring: its interface shows the different stages of the
data processing pipeline.

• Native I/O Adapters for Cloud Storage Technologies: to Cloud
Platform storage systems such as Cloud Storage and BigQuery.



Google Cloud Data Flow Paper

Figure: VLDB 2015



Watermark

Figure:



API

PCol lect ion<KV<Str ing , Integer>> input = IO . read ( . . . ) ;
PCol lect ion<KV<Str ing , Integer>> output = input
. apply (Sum. integersPerKey ( ) ) ;

Streaming:
PCol lect ion<KV<Str ing , Integer>> input = IO . read ( . . . ) ;
PCol lect ion<KV<Str ing , Integer>> output = input
. apply ( Window . i n t o ( Sessions . withGapDuration (
Durat ion . standardMinutes ( 3 0 ) ) ) )
. apply (Sum. integersPerKey ( ) ) ;



Example

Figure: Example Inputs



Example

Figure: Standard Batch Execution



Example

Figure: GlobalWindows, AtPeriod, Accumulating



Example

Figure: GlobalWindows, AtPeriod, Discarding



Example

Figure: GlobalWindows, AtCount, Discarding



Example

Figure: FixedWindows, Batch



Example

Figure: FixedWindows, Micro-Batch



Example

Figure: FixedWindows, Streaming



Example

Figure: FixedWindows, Streaming, Partial



Example

Figure: Sessions, Retracting



Google Cloud Data Flow

Figure: Conclusions of the VLDB 2015 paper



Google Cloud Data Flow

Figure: Architecture



Google Cloud Data Flow Summary

Cloud Dataflow code can run in:
• Cloud Dataflow runner for Flink
• Cloud Dataflow runner for Spark

Cloud Dataflow replaced MapReduce:
• It is based on FlumeJava and MillWheel, a stream engine as

Storm, Samza
• It writes and reads to Google Pub/Sub, a service similar to Kafka
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