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Twitter Heron



Twitter Heron

Heron includes these features:

@ Off the shelf scheduler

® Handling spikes and congestion
©® Easy debugging

@ Compatibility with Storm

® Scalability and latency



Twitter Heron

Topology 1

TOPOLOGY Topology 2

SUBMISSION

Topology 3

Topology N

Figure: Heron Architecture



Twitter Heron
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Twitter Heron
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Twitter Heron

Twitter Heron Highlights:
@ Able to re-use the code written using Storm
© Efficient in terms of resource usage
® 3xreduction in hardware
@ Not open-source



Google Cloud DataFlow



Google 2004

There was need for an abstraction that hides
many system-level details from the
programmetr.



Google 2004

There was need for an abstraction that hides
many system-level details from the
programmetr.

MapReduce addresses this challenge by
providing a simple abstraction for the
developer, transparently handling most of the
details behind the scenes in a scalable, robust,
and efficient manner.
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“We don’t really use MapReduce anymore,”

The company stopped using the system “vears
ago.”



Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”

The company stopped using the system “vears
ago.”

“Cloud Dataflow is the result of over a decade

of experience in analytics,” “It will run faster

and scale better than pretty much any other
system out there.”



Google Cloud Data Flow

The processing model of Google Cloud Dataflow is based upon
technology from

» FlumeJava(2010): Java library that makes it easy to develop,
test, and run efficient data parallel pipelines.

» MillWheel(2013): framework for building low-latency
data-processing applications



Google Cloud Data Flow

Cloud Dataflow consists of :

- A set of SDKs that you use to define data processing jobs:
- PCollection: specialized collection class to represent pipeline
data.
- PTransforms: powerful data transforms, generic frameworks that
apply functions across an entire data set
< 1/0 APIs: pipeline read and write data to and from a variety of
formats and storage technologies.

« A Google Cloud Platform managed service:

« Google Compute Engine VMs, to provide job workers.
- Google Cloud Storage, for reading and writing data.
- Google BigQuery, for reading and writing data.



Google Cloud Data Flow

Service Features

- Dynamic Optimization: the Dataflow service constructs a
directed graph of the job and optimizes the graph for the most
efficient execution.

- Resource Management: it includes spinning up and tearing
down Compute Engine resources, collecting logs, and
communicating with Cloud Storage technologies.

- Job Monitoring: its interface shows the different stages of the
data processing pipeline.

« Native I/0 Adapters for Cloud Storage Technologies: to Cloud
Platform storage systems such as Cloud Storage and BigQuery.



Google Cloud Data Flow Paper

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, Sam Whittle
Google
{takidau, robertwb, chambers, chernyak, rfernand,
relax, sgmc, millsd, fip, cloude, samuelw}@google.com

ABSTRACT

Unbounded, unordered, global-scale datasets are increas-
ingly common in day-to-day business (e.g. Web logs, mobile
usage statistics, and sensor networks). At the same time,
consumers of these datasets have evolved sophisticated re-
quirements, such as event-time ordering and windowing by
features of the data themselves, in addition to an insatiable
hunger for faster answers. Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. As a re-
sult, data processing practitioners are left with the quandary
of how to reconcile the tensions between these seemingly
competing propositions, often resulting in disparate imple-
mentations and systems.

1. INTRODUCTION

Modern data processing is a complex and exciting field
From the scale enabled by MapReduce [16] and its successors
(e.g Hadoop [4], Pig [18], Hive [2
body of work on streaming within the SQL comtmunity (e.g
query systems [1, 14, 15], windowing [22], data streams [24],
time domains [28], semantic models [9]), to the more recent
forays in low-latency processing such as Spark Streaming
(34], MillWheel, and Storm [5], modern consumers of data
wield remarkable amounts of power in shaping and tam-
ing massive-scale disorder into organized structures with far
greater value. Yet, existing models and systems still fall
short in a number of common use cases.

Consider an initial example: a streaming video provider

Figure: VLDB 2015



Watermark

12:02  12:03 12:04
1)
&

Processing Time

12:01
)
]
]

12:01 12:02 12:03 12:04
Event Time

Actual watermark: CCEEEEE T

Ideal watermark:



API

PCollection<KV<String, Integer>> input = [O.read (...

PCollection<KV<String, Integer>> output = input
.apply(Sum.integersPerKey ());

Streaming:

PCollection<KV<String , Integer>> input = [0.read (...

PCollection<KV<String, Integer>> output = input
.apply (Window. into (Sessions.withGapDuration (
Duration.standardMinutes (30))))

.apply (Sum.integersPerKey ());
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Example
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Example

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtPeriod (1, MINUTE)))

.accumulating() )
.apply (Sum.integersPerKey ());
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Example

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtPeriod (1, MINUTE)))
.discarding())
.apply (Sum.integersPerKey());
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Figure: GlobalWindows, AtPeriod, Discarding




Example

PCollection<KV<String, Integer>> ocutput = input
.apply{Window.trigger (Repeat (AtCount (2)))
.discarding ()}
.apply(Sum.integersPerKey () );
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Example
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Example

PCollection<KV<String, Integer>> output = input
.apply (Window.into (FixedWindows.of (2, MINUTES))
.trigger (SequenceOf (
RepeatUntil |
AtPeriod (1, MINUTE),
AtWatermark()),
Repeat (AtWatermark())))
.accumulating())
.apply(Sum.integersPerKey ());
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Example

PCollection<KV<String, Integer>> output = input
.apply (Window.into (Sessions.withGapDuration(l, MINUTE))
.trigger (SequenceOf (
RepeatUntil(
AtPeriod(l, MINUTE),
AtWatermark () ),
Repeat (AtWatermark())))
.accumulatingAndRetracting () }
.apply (Sum. integersPerKey () ) ;
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Google Cloud Data Flow

4. CONCLUSIONS

The future of data processing is unbounded data. Though
bounded data will always have an important and useful
place, it is semantically subsumed by its unbounded counter-
part. Furthermore, the proliferation of unbounded data sets
across modern business is staggering. At the same time,
consumers of processed data grow savvier by the day, de-
manding powerful constructs like event-time ordering and
unaligned windows. The models and systems that exist to-
day serve as an excellent foundation on which to build the
data processing tools of tomorrow, but we firmly believe
that a shift in overall mindset is necessary to enable those
tools to comprehensively address the needs of consumers of
unbounded data.

Figure: Conclusions of the VLDB 2015 paper



Google Cloud Data Flow
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Google Cloud Data Flow Summary

Cloud Dataflow code can run in:

« Cloud Dataflow runner for Flink

« Cloud Dataflow runner for Spark
Cloud Dataflow replaced MapReduce:

- Itis based on FlumeJava and MillWheel, a stream engine as
Storm, Samza

« It writes and reads to Google Pub/Sub, a service similar to Kafka
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