
Architectures for massive data
management

Twitter Heron and Google Cloud DataFlow

Albert Bifet
albert.bifet@telecom-paristech.fr

October 20, 2015

Architectures

Lambda Architecture

Figure: Nathan Marz

Kappa Architecture

Figure: Questioning the Lambda Architecture by Jay Kreps

Twitter Heron

Twitter Heron

Heron includes these features:
1 Off the shelf scheduler
2 Handling spikes and congestion
3 Easy debugging
4 Compatibility with Storm
5 Scalability and latency

Twitter Heron

Figure: Heron Architecture

Twitter Heron

Figure: Topology Architecture

Twitter Heron

Figure: Throughput with acks enabled

Twitter Heron

Figure: Latency with acks enabled

Twitter Heron

Twitter Heron Highlights:
1 Able to re-use the code written using Storm
2 Efficient in terms of resource usage
3 3x reduction in hardware
4 Not open-source

Google Cloud DataFlow

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”

Google Cloud Data Flow

The processing model of Google Cloud Dataflow is based upon
technology from
• FlumeJava(2010): Java library that makes it easy to develop,

test, and run efficient data parallel pipelines.
• MillWheel(2013): framework for building low-latency

data-processing applications

Google Cloud Data Flow

Cloud Dataflow consists of :
• A set of SDKs that you use to define data processing jobs:

• PCollection: specialized collection class to represent pipeline
data.

• PTransforms: powerful data transforms, generic frameworks that
apply functions across an entire data set

• I/O APIs: pipeline read and write data to and from a variety of
formats and storage technologies.

• A Google Cloud Platform managed service:
• Google Compute Engine VMs, to provide job workers.
• Google Cloud Storage, for reading and writing data.
• Google BigQuery, for reading and writing data.

Google Cloud Data Flow

Service Features
• Dynamic Optimization: the Dataflow service constructs a

directed graph of the job and optimizes the graph for the most
efficient execution.

• Resource Management: it includes spinning up and tearing
down Compute Engine resources, collecting logs, and
communicating with Cloud Storage technologies.

• Job Monitoring: its interface shows the different stages of the
data processing pipeline.

• Native I/O Adapters for Cloud Storage Technologies: to Cloud
Platform storage systems such as Cloud Storage and BigQuery.

Google Cloud Data Flow Paper

Figure: VLDB 2015

Watermark

Figure:

API

PCol lect ion<KV<Str ing , Integer>> input = IO . read (. . .) ;
PCol lect ion<KV<Str ing , Integer>> output = input
. apply (Sum. integersPerKey ()) ;

Streaming:
PCol lect ion<KV<Str ing , Integer>> input = IO . read (. . .) ;
PCol lect ion<KV<Str ing , Integer>> output = input
. apply (Window . i n t o (Sessions . withGapDuration (
Durat ion . standardMinutes (3 0))))
. apply (Sum. integersPerKey ()) ;

Example

Figure: Example Inputs

Example

Figure: Standard Batch Execution

Example

Figure: GlobalWindows, AtPeriod, Accumulating

Example

Figure: GlobalWindows, AtPeriod, Discarding

Example

Figure: GlobalWindows, AtCount, Discarding

Example

Figure: FixedWindows, Batch

Example

Figure: FixedWindows, Micro-Batch

Example

Figure: FixedWindows, Streaming

Example

Figure: FixedWindows, Streaming, Partial

Example

Figure: Sessions, Retracting

Google Cloud Data Flow

Figure: Conclusions of the VLDB 2015 paper

Google Cloud Data Flow

Figure: Architecture

Google Cloud Data Flow Summary

Cloud Dataflow code can run in:
• Cloud Dataflow runner for Flink
• Cloud Dataflow runner for Spark

Cloud Dataflow replaced MapReduce:
• It is based on FlumeJava and MillWheel, a stream engine as

Storm, Samza
• It writes and reads to Google Pub/Sub, a service similar to Kafka

	Architectures
	Twitter Heron
	Google Cloud DataFlow

