Architectures for Massive DM

Architectures for massive data
management
(part 2)

loana Manolescu
INRIA Saclay
ioana.manolescu@inria.fr
http://pages.saclay.inria.fr/ioana.manolescu/

M2 Data and Knowledge
Université de Paris Saclay

D&K / UPSay 2015-2016

loana Manolescu 1

Architectures for Massive DM

Dimensions of distributed systems

Data model:
— Relations, trees (XML, JSON), graphs (RDF, others...), nested

relations

— Query language
Heterogeneity (DM, QL): none, some, a lot
Scale: small (~10-20 sites) or large (~10.000 sites)
ACID properties
Control:
— Single master w/complete control over N slaves (Hadoop/HDFS)
— Sites publish independently and process queries as directed by

single master/mediator

— Many-mediator systems, or peer-to-peer (P2P) with super-peers
— Sites completely independent (P2P)

D&K / UPSay 2015-2016

loana Manolescu 2

07/10/15

MEDIATOR SYSTEMS

Mediator systems

* A set of data sources, of the same or different data model,

guery language; source schemas

* A mediator data model and mediator schema

* Queries are asked against the mediator schema

Common data model
(sources+mediator)

Query Mediator
Q => schema

Source 1 ... | Sourcen
schema schema

* ACID: mostly read-only; size: small

Mediator data model

Query Mediator
Q — schema

/\\

\ Wrapper \ \ Wrapper \
Source 1 Source n
data model data model
Source 1 Source n
schema schema

* Control: Independent publishing; mediator-driven integration

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

4

07/10/15

Many-mediator systems

e Each mediator interacts with a

. Mediator DM
subset of the sources Q2 ——» Mediator ‘
¢ Mediators interact w/ each other schema
Q2.4 Q2.6
Source 4 Source6
Mediat Mediator DM data model data model
Query__) eh ator A Source 4 Source 6
Q schema schema « || schema
Ql.l Ql.3 A ‘
\ Wrapper 1 \ \ Wrapper 3 \
Source 1 Source 3
dat. del -
aiamoce Mediator DM
Source 1 Source 3 ‘ Mediator ‘
schema schema schema
\ Wrapper 7 \ \ Wrapper 9 \
Source 7 Source 9
data model data model
Architectures for Massive DM Source 7 Source 9
D&K / UPSay 2015-2016 loana schema schema >

Many-mediator systems

Each mediator interacts with a

. Mediator DM
subset of the sources | Q2 Mediator ‘
* Mediators interact w/ each other result schema
Q2.4 res Q2.6 res.
Source 4 Source6
Mediat Mediator DM data model data model
Qresult «— s:h;?n:r S Source 4 Source 6
schema ~ | | schema
Q1.1 M3 res. \ /
\ Wrapper 1 \ \ Wrapper 3 \
Source 1 Source 3
dat del -
alamode . Mediator DM
Source 1 Source 3 ‘ Mediator ‘
schema schema schema
* Size: Small | Wrapper7 | | Wrapper9 |
. . Source 7 Source 9
*Data mapping/query translation data model data model
ave complex logics
Architectures for%asswve D% Source 7 Source 9)
D&K / UPSay 2015-2016 loana schema schema 6

07/10/15

Integration approach in mediator
systems

* Global-as-view:

— Mediator (global) schema defined as view based
on the source schemas

— Query over the global schema requires view
unfolding

* Local-as-view:

— Source (global) schema defined as views over the
mediator schema

— Query over the global schema requires query
rewriting using views

PEER-TO-PEER NETWORKS

07/10/15

Peer-to-peer architectures

* |dea: easy, large-scale sharing of data with no central point of control
* Advantages:
— Distribute work; preserve peer independence

* Disadvantages:
— Lack of control over peers which may leave or fail = need for
mechanisms to cope with peers joining or leaving (churn)
— Schema unknown in advance; need for data discovery
* Two variants:
— Unstructured P2P networks
¢ Each peer is free to connect to other peers;
* Variant: super-peer networks

— Structured P2P networks
¢ Each peer is connected to a set of other peers determined by the system

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

Unstructured P2P networks

A peer joins the network by connecting to another peer
(« getting introduced »)

g
-] Qi\ .

Each peer may advertise data that it publishes—>peers « know
their nei%hbors » up to some level

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu

07/10/15

Unstructured P2P networks

am
(p1, «GoT»)
(p1, «GoT») (p1, «MR»*
(p1, «<MR») (p1, «GoT»)
(p1, «MR»)

« GoT season 1» (p1, «GoT: (p1, «GoT»)

« Mr. Robot » _4 e (p1, «MR»)

(p1, «GoT») ’ . (p1, «GoT»)
(p1, «MR») (5 RCTEIRD) 1 (p1, «MR»)

(p1, «MR») (p1, «ivir..,

Architectures for Massive DM
D&K / UPSay 2015-2016

Unstructured P2P networks

Queries are evaluated by propagation from the query peer to its
neighbors and so on recursively (flooding)

To avoid saturating the network, queries have TTL (time-to-live)
This may lead to missing answers = a. replication; b. superpeers

Architectures for Massive DM loana Manolescu 12
D&K / UPSay 2015-2016

07/10/15

Unstructured P2P with sﬁuperpeers
-

* Small subset of superpee th other

e Specialized by data domain, e.g. [Aa—Bw], [Ca—Dw], ... or by address space
* Each peer is connected at least to a superpeer, which routes the peer’s queries

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 13

Indexing (catalog construction) in
structured P2P networks

* Peers form a logical address space 0... 2k-1
— Some positions may be vacant

* The catalog is built as a set of key-value pairs
— Key: expected to occur in search queries, e.g. «GoT », « Mr Robot »

— Value: the address of content in the network matching the key, e.g. « peer5/
Users/a/movies/GoT »

* A hash function is used to map every Iéey into the address space; this
distributes (éey, value) pairs
— H(Eey)=n - the (léey, value) is sent to peer n
— If nis unoccupied, the next peer in logical order is chosen

* The catalog is distributed across the peers
(also the name: distributed hash table, DHT)

Architectures for Massive DM

D&K / UPSay 2015-2016 loana Manolescu 14

07/10/15

Catalog construction (indexing) in

structured P2P networks

2, B
Ti%‘ﬁ 1 3 ‘® SCE
@ »

== 5 el

Rey

™00 r0r0

Catalog construction (indexing) in

structured P2P networks

{27{15}}
{Y {1,15,15}}
Q T

%
{ ,{12,1%} Ei? ?8
%‘15 ‘@ @cﬁ

{f,{4}} =85 e

(12

{21{3,9}}

Rey

hash

™00 rO0r0

- NN

o w

14

07/10/15

Searching in structured P2P networks

Locate all items characterized by | ?
Hash(71)=6
Peer 6 knows all the locations

Locate all items characterized by CE?
Hash(T)=14

Peer 15 knows all the locations

How do we find peers 6 and 157

Connections between peers in
structured P2P networks

A peer’s connections are dictated by the network organization
and the logical address of each peer in the space 0... 2k-1

Example: Chord (widely popular)

Each peer n is connected to

* n+1, n+2, ..., n+2%1, or to the first peer following that position
in the address space;

* The predecessor of n

The connections are called fingers

07/10/15

Connections between peers in Chord

hash

{D,{15}} Rey
T “, 5
T

{~{12,12}}

0

0

i
™00 rO0r0

(P B2 =
O {12 {D,{3,9}} 14
(T
Peers joining in Chord
To join, a peer n must know (any) peer
n’ already in the network
hash(n)=2
Procedure n.join(n'): succ(2)?
s = n'.findSuccessor(n); \
buildFingers(s); \Q

SUCCeSsor=s,

07/10/15

10

Peers joining in Chord

To join, a peer n must know (any) peer
n’ already in the network

hash
Procedure n.join(n'):
s = n'".findSuccessor(n);
buildFingers(s);

SUCCEeSSOor=s,

—~

n)

2

Peers joining in Chord

To join, a peer n must know (any) peer n’
already in the network

Procedure n.join(n'):
s = n".findSuccessor(n);
buildFingers(s);
successor=s;

If 3 had some key-value pairs for
the key 2, 3 gives them over to 2

The network is not stabilized yet...

07/10/15

11

Network stabilization in Chord

Each peer periodically runs stabilize()

n.stabilize():
X = n.succ().pred()
if (n < x < succ) then succ = x;

succ.notify(n)

n.notify(p):
if (pred < p <n)
then pred =p

Network stabilization in Chord

First stabilize() of 2: 3 learns its new
predecessor

n.stabilize():
x = n.succ().pred()
if (n < x < succ) then succ = x;
succ.notify(n)

n.notify(p):
if (ored < p <n)
then pred =p

07/10/15

12

Network stabilization in Chord

First stabilize() of 1: 1 and 2 connect

n.stabilize():
X = n.succ().pred()
if (n < x < succ) then succ = x;
succ.notify(n)

n.notify(p):
if (pred < p <n)
then pred =p

Peer leaving the network

* The peer leaves (with some advance notice,
« in good order »)

* Network adaptation to peer leave:

— (key, value) pairs: the leaving peer P sends are
sent to the successor

— Routing: P notifies successor and predecessor,
which reconnect "over P"

07/10/15

13

Peer failure

* Without warning

* Inthe absence of replication, the (key, value) pairs held on P
are lost

— Peers may also re-publish periodically
Example Running stab(), 6 notices 9 is down
6 replaces 9 with its next finger 10 >

all nodes have correct successors,
but fingers are wrong

Routing still works, even if a
little slowed down

Fingers must be recomputed

Peer failure

Chord uses successors to adjust to any change

* Adjustment may « slowly propagate » go along the
ring, since it is relatively rare

To prevent erroneous routing due to successor failure,
each peer maintains a list of its r direct successors (2
log2N)

When the first one fails, the next one is used...

All r successors must fail simultaneously in order to
disrupt search

07/10/15

14

Gossip in P2P architectures

¢ Constant, « background » communication between peers
e Structured or unstructured networks
« Disseminates information about peer network, peer data
-
= L]
u =
=

/

kim

-
g_la
L)

kim

==

kim

E.g. Cassandra (« Big Table » system):

« During gossip exchanges, every node maintains a sliding window of inter-arrival times of
gossip messages from other nodes in the cluster. Configuring the phi_convict threshold
property adjusts the sensitivity of the failure detector. Lower values increase the likelihood
that an unresponsive node will be marked as down, while higher values decrease the
likelihood that transient failures causing node failure.

Use the default value for most situations, but increase it to 10 or 12 for Amazon EC2 (due to
frequently encountered network congestion) to help prevent false failures.

Values higher than 12 and lower than 5 are not recommended. »

Peer-to-peer networks: wrap-up

* Data model:

— Catalog and search at a simple key level
* Query language: keys
* Heterogeneity: not the main issue

e Control:
— peers are autonomous in storing and publishing

— query processing through symetric algorithm (except
for superpeers)

* Concurrency: conflicting data operations are always
at the same peer = local concurrency control!

Architectures for Massive DM

S 3
D&K / UPSay 2015-2016 loana Manolescu 30

07/10/15

15

Peer-to-peer data management

* Extract key-value pairs from the data & index them
* To process queries:

— Look up relevant ‘ Peer | !
data fragments Localdata [T
in the P2P network Local query |||

processor

— Run distributed query

plan) ‘
Indexing & look-up

Peer 1
, Peer n

Peerp || Peerm

1
2 < r

Example: relational P2P data
management platform

* Each peer stores a horizontal slice of a table

» Catalog at the granularity of the table:
— Keys: table names, e.g. Singer, Song
— Value: peerl:postgres:sch1/Singer&u=ul&p=p1,
— Query: select Singer.birthday
from Singer, Song
where Song.title= « Come Away » and
Singer.sID=Song.singer
— What can happen?

* Try other granularities

07/10/15

16

NOSQL SYSTEMS

NoSQL systems

NoSQL = Not Only SQL

Goal 1: more flexible data models

— One attribute could be a set...

— Tuples could have heterogeneous attributes...
— Trees, graphs, no types etc.

Goal 2: lighter architectures and systems
— Fewer constraints, faster development

— Among the heaviest aspects of data in relational databases:
concurrency control

Goal 3: large-scale distribution

NoSQL systems may have weaker concurrency control
(recall: CAP theorem from course 1)

07/10/15

17

Some NoSQL systems

R_eclis FH9): sG& Ak

HBASE Cassandra Hive
.mongoDB scriak Pig
B DynamoDB
: Tok ok Giraphe...
Cablnet 81528
CouchDB U
ﬁcalarlsw Project Volden

Neo
.. the grap41'.1]database "‘\me m bO €

O3 Ar ango

Google Bigtable [cDG+06]

One of the earliest NoSQL systems

Goal: store data of varied form to be used by
Google applications:

— Web indexing, Google Analytics, Finance etc.

Approach:
— very large, heterogeneous-structure table

Data model:
Row key = column key = timestamp - value

Different rows can have different columns, each
with their own timestamps etc.

07/10/15

18

Google Bigtable

r2 \ ts1l:vl

c0 cl c4 c7
cl c2 c3 c4 c5 c6
ts21:v22 | ts31:v31 | ts41l:v41 | ts22:v51 | ts61:v61l
ts22:v22 | ts32:v32 | ts42:v42 ts22:v62
ts33:v33

Google Bigtable

* Row key 2 column key 2 timestamp = value

* Rows stored sorted in lexicographic order by the key

* Row range dynamically partitioned into tablets
— Tablet = distribution / partitioning unit
* Writes to a row key are atomic
— concurrency control unit = row
» Access control unit = column families
— Family = typically same-type, co-occurring columns
— « At most hundreds for each table »
— E.g. anchor column family in Webtable

07/10/15

19

Apache projects around Hadoop

IIVE" HiveQL language:

Hive: relational-like interface on top of Hadoop

CREATE table pokes (foo INT, bar STRING);
SELECT a.foo FROM invites a WHERE a.ds='2008-08-15’;

FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar)
Ig?ERT OVERWRITE TABLE events SELECT t1.bar, t1.foo,
t2.foo;

+ possibility to plug own Map or Reduce function when needed...

Apache projects around Hadoop

AP ACHE
HBASE
* HBASE: very large tables on top of HDFS («goal: billions of

rows x millions of columns »), based on « sharding »

* Apache version of Google’s BigTable [CDG+06] (used for
Google Earth, Web indexing etc.)

* Main strong points:
— Fast access to individual rows
— read/write consistency
— Selection push-down (~ Hadoop++)

* Does not have: column types, query language, ...

07/10/15

20

07/10/15

Apache projects around Hadoop

; . PlG: rich dataflow (« SQL + PL/SQL » style) language on
top of Hadoop

Suited for many-step data transformations (« extract-
transform-load »)

A = LOAD 'student' USING PigStorage() | ----- B
AS (name:chararray, age:int, gpa:float); T hame

B = FOREACH A GENERATE name; [— A

DUMPB; student

* Flexible data model (~ nested relations)
* Some nesting in the language (< 2 FOREACH ©)

Apache projects around Hadoop

. PlG: rich dataflow (« SQL + PL/SQL » style) language
on top of Hadoop

A = LOAD 'data' AS (f1:int,f2:int,f3:int);
DUMP A;

(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
B=GROUPABYfL; 7T 7=T X
DUMP B; count(*)
(1,{(1,2,3)}) (4,{(4,2,1),(43,3)}) (7{(7,25}) [----- B
(8,{(8,3,4),(8,4,3)}) M1
X = FOREACH B GENERATE COUNT(A); |=ac-- A
DUMP X;

(1) (2L) (L) (2L)

21

Apache projects around Hadoop
S . & cassandra
— (Large, distributed) relations on top of Hadoop
— Some nesting (a field can be a collection); indexes; SQL-like access
rights
— Queries: select, project. No joins.
Table songs:

ALTER TABLE songs ADD tags set<text>;

UPDATE songs SET tags = tags + {'2007'} WHERE id = 8a172618...;
UPDATE songs SET tags = tags + {'covers'} WHERE id = 8a172618...;
UPDATE songs SET tags = tags + {'1973'} WHERE id = a3e64f8f-...;

SELECT id, tags from songs;

|
[. }
| ,

Spanner: A More Recent Google
Distributed Database [CD+12]

* A few Universes (e.g. one for production, one for
testing)

* Universe = set of zones
— Zone = unit of administrative deployment
— One or several zones in a datacenter

— 1 zone = 1 zone master + 100s to 1000s of span servers
* The zone master assigns data to span servers
* Each span servers answers client requests
* Each span server handles 100 to 1000 tablets

* Tablet = { key 2 timestamp - string }
* Table = set of tablets.

07/10/15

22

More on the Spanner data model

* Basic: key = timestamp - value

* Directory (or bucket): set of contiguous keys
that share a common prefix
— Data moves around by the bucket/directory

* On top of the basic model, applications see a
surface relational model
— Rows x columns (tables with a schema)

— Primary keys: each table must have one or several
primary-key columns

Spanner tables

* Tables can be organized in hierarchies

— Tables whose primary key extends the key of the
parent can be stored interleaved with the parent

— Example: photo album metadata organized first by
the user, then by the album

CREATE TABLE Users {

uid INT64 NOT NULL, email STRING Users(i
} PRIMARY KEY (uid), DIRECTORY; “Albums(1,1) Directory 3665
,,,,, Albums(1,2)
CREATE TABLE Albums { Users(2
uid INT64 NOT NULL, aid INT64 NOT NULL, (2.1) ,
name STRING ﬁ:gﬂg:(% ;) Directory 453
} PRIMARY KEY (uid, aid), ~ [Albums(2,3) |

INTERLEAVE IN PARENT Users ON DELETE CASCADE;

07/10/15

23

Spanner replication

Used for very high-availability storage
Store data with a replication factor (3 to 5)

Applications can control:
— Which datacenters store which data
— How far data is from users (to control read latency)

— How far replicas are from each other (to control write
latency)

— How many replicas are maintained

* Concurrency control relies on a global timestamp
mechanism called « TrueTime » (see next)

Spanner TrueTime service

e TT.now() returns a Ttinterval [earliest; latest]
— Uncertainty interval made explicit

— The interval is guaranteed to contain the absolute
time during which TT.now() was invoked

— TrueTime clients wait to avoid the uncertainty

* Based on GPS and atomic clocks

— Implemented by a set of time master machines per
datacenter and a timeslave daemon per machine

— Every daemon polls a variety of masters to reduce
vulnerability to
* Errors from a single master
* Attacks

07/10/15

24

Spanner consistency guarantees

* Linearizability:
If transaction T1 commits before T2 starts
then the commit timestamp of T1 is guaranteed to be
smaller than the commit timestamp of T2

- globally meaningful commit timestamps

- globally-consistent reads across the database at a
timestamp

May not read the last version, but one from 5-10 seconds
ago! (Last globally committed version.)

Spanner consistency guarantees

* Linearizability:
If transaction T1 commits before T2 starts
Then the commit timestamp of T1 is

i o 1 11 al .

gu

« Some authors have claimed that general two-
phase commit is too expensive to support,
because of the performance or availability
problems it brings. We believe it is better to

have application programmers deal with}

performance problems due to overuse of
transactions as bottlenecks arise, rather than
always coding around the lack of transactions. »

it

p

abase

07/10/15

25

F1: Distributed Database from Google
[SVS+13]

* Built on top of Spanner
* Goals:
— Scalability, availability
— Consistency (= ACID)
— Usability (= full SQL + transactional indexes etc.)
* F1 from genetics « Filial 1 Hybrid » (cross
mating of very different parental types)

— Flis a hybrid between relational DBs and scalable
NoSQL systems

F1 data model

* Clustered, inlined table hierarchies as in Spanner

Traditional Relational Clustered Hierarchical
Customer(Customerld, ...) { Customer(Customerld, ...)
Campaign(Campaignld, Customerld, ...) L'Campaign(_Qusmmeﬂd, Campaignld, ...)
Logical . .
Schema AdGroup(AdGroupld, Campaignld, ...) AdGroup(Customerld, Campaignld, AdGroupld, ...)

Primary key includes
foreign keys that reference
all ancestor rows.

Foreign key references only
the parent record.

Joining related data often requires reads Customer(l,...)
spanning multiple machines.

Campaign(1,3,...)

Related data is clustered
for fast common-case

AdGroup (1,3,7,...) join processing.

Campaign(1l,4,...)

AdGroup (1,4,8,...)

AdGroup (1,3,6,...)
Customer(1l,...)

Physical Customer(2,...)
Layout

AdGroup(6,3,...)
AdGroup(7,3,...)

AdGroup(8,4,...)
AdGroup(9,5,...)

Physical data partition
boundaries occur
between root rows.

07/10/15

26

Transactions in F1

* Snapshot (read-only) transactions (no locks)
— Read at Spanner global safe timestamp, typically 5-10 seconds old,
from a local replica
— Default for SQL and MapReduce. All clients see the same data at the
same timestamp.

* Pessimistic transactions
— Shared or exclusive locks; may abort

* Optimistic transactions

— Read phase (no lock) then write phase

— Each row has last modification timestamp

— To commit T1, F1 creates a short pessimistic T2 which attempts to
read all of T1’s rows. If T2 has a different version than T1, then T1 is
aborted. Otherwise, T1 commits.

— Only works with previously existent rows = insertion phantoms may
still occur

To Client

Query —

optimization in F1 —
Aggregation Aggregation
Sum(Clicks) ses Sum(Clicks)
N V. 1
SELECT agcr.CampaignId, click.Region, | — a??-.?:nri{io:m Lancuace
cr.Language, SUM(click.Clicks) RGN, SO
FROM AdClick click = ~7
JOIN AdGroupCreative agcr 3s§h Hash r‘:a_sh Hash
USING (AdGroupld, Creativeld) nictek | a0t |[= || aocing | Table
JOIN Creative cr AN) 4 X
USING (CustomerId, CreativeId) 7 ST Y
WHERE click.Date = '2013-03-23' I HASH(@:;‘:;'I?SIBE{WE“J
GROUP BY agcr.CampaignId, click.Region, -
cr.Language
Lookup Join Lookup Join Creative
(AdGroupld, (AdGroupld,
Creativeld) Creativeld)

AdClick

07/10/15

27

Controversy around NoSQL (1)

oF THE —

ACM HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH | PRACTICE | CAREERS MAGAZINE ARCHIVE

Home / Blogs / BLOG@CACM / The "NoSQL" Discussion has Nothing to Do With SQL / Full Text

Bocacach . . There are no valid performance
The "NoSQL" Discussion has Noth arguments to adopt NoSQL systems:

By Michael Stonebraker
November 4, 2009 1
Comments (12)

For many-nodes architecture

VEwAs: & | sHaRE = & @ @ (horizontal scale-out), use sharding

Recently, there hasbeen alotof buzzabl 2 For Sing|e_node performance' the

In fact there are at least two conferences

on each coast, Seemingly this buzz comd bottleneck is in the interface

proponents of: o between the program and the DB
;31’5222“:;?1’2;?2{5;‘313‘;3;‘i“;‘:” (think JDBC). To solve this, just use
class of system include CouchDB and 4 embedded database libraries (e.g.

systems document stores for simplici

+ key-value stores whose records consist] BerkeleyDB).

Usually, these are implemented by distr]
and we call these key-value stores for

- There is no problem that NoSQL
systems solve best!

(fragmentation) of very large tables.

Controversy around NoSQL (2)

(€ @ vawmeetup.com/siicon-Valley-NosQL events/ 153896752/

Home Members Sponsors Photos Discussions ~ More

"The Rights and Wrongs of the
NoSQL Phenomenon" with Dr. C.
Mohan

6 days ago - 5:30 PM
The Innovation Center

[...] there is currently a mad rush to develop and adopt a plethora of NoSQL systems
[...]

In rushing to develop these systems to overcome some of the shortcomings of the
relational systems, many good principles of the latter, which go beyond the
relational model and the SQL language, have been left by the wayside.

Now many of the features that were initially discarded as unnecessary in the NoSQL
systems are being brought in, but unfortunately in ad hoc ways.

Hopefully, the lessons learnt over three decades with relational and other systems
would not go to waste and we wouldn’t let history repeat itself with respect to
simple minded approaches leading to enormous pain later on for developers as well
as users of the NoSQL systems!

07/10/15

28

Controversy around NoSQL (3)

By Michael Stonebraker
September 30, 2010
Comments (14)

VIEWAS: [| SHARE: [¢ @ (34 B

According to a recent ReadWriteWeb blog post by Audrey Watters,
44% of enterprise users questioned had never heard of NoSQL and
an additional 17% had no interest. So why are 61% of enterprise
users either ignorant about or uninterested in NoSQL? This post
contains my two cents worth on the topic.

At a recent trade show I attended, which highlighted NoSQL
engines, there were many Web developers, mostly from startups.
However, I was struck by the absence of enterprise users. Hence,
my (totally unscientific) experience confirms the basic point of the
above blog post.

Moreover, in my experience, most information among enterprise

users occurs by word ;
1. No ACID equals no interest

2. Alow-level query language is death
3. NoSQL means no standards

NoSQL systems in perspective

* What for?

— Data model flexibility, performance, distribution?
* What kind of workload?

— Reads, writes? Concurrency control needs?

* Durability of the code ? Open source? Who maintains
it etc. Compare with expected lifetime of the project.

* Portable / compiles into major frameworks? E.g. many
systems on top of Hadoop etc.

* Interesting compromise solutions to some large-scale
distributed DB problems

07/10/15

29

07/10/15

References

* [CDG+06] Bigtable: A Distributed Storage System
for Structured Data. Fay Chang, Jeffrey Dean,
Sanjay Chemawat, Wilson Hsieh, Deborah
Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, Robert Gruber. OSDI, 2006

* [CDE+12] Spanner: Google’s Globally-Distributed
Database. James Corbett, Jeffrey Dean, Michael
Epstein, Andrew Fikes et al. OSDI, 2012

* [SVS+13] F1: A Distributed SQL Database That
Scales. Jeff Shute, Radek Vingralek, Bart Samwel,
Ben Handy, Chad Whipkey et al. PVLDB, 2013

30

