Structured data management on MapReduce

Ioana Manolescu

<u>ioana.manolescu@inria.fr</u> http://pages.saclay.inria.fr/ioana.manolescu

Data management based on MapReduce Query (e.g. SQL) 1st logical query plan • Idea: use MapReduce as a low-level Query optimizer Recall: programming layer classical query - To take advantage of processing Chosen physical plan the parallelism pipeline In order to implement database Execution engine highly scalable query processors Data storage (e.g. relational) • Recall: DBMS query processing stages

Implementing queries through MapReduce

- SELECT MONTH(c.start_date), COUNT(*)
 FROM customer c
 GROUP BY MONTH(c.start_date)
- SELECT c.name, o.total FROM customer c, order o WHERE c.id=o.cid
- SELECT c.name, SUM(o.total)
 FROM customer c, order o
 WHERE c.id=o.cid
 GROUP BY c.name

Implementing physical operators on MapReduce

- To avoid writing code for each query!
- If each operator is a (small) MapReduce program, we can evaluate queries by composing such small programs
- The optimizer can then chose the best MR physical operators and their orders (just like in the traditional setting)
- Translate:
 - Unary operators (σ and π)
 - Binary operators (mostly:
 ✓ on equality, i.e. equijoin)
 - N-ary operators (complex join expressions)

7

Implementing unary operators on MapReduce

- Selection (σ_{pred} (R)):
 - Split the R input tuples over all the nodes
 - Map:

foreach t which satisfies pred in the input partition

- Output (hn(t.toString()), t); // hn fonction de hash
- Reduce:
 - Concatenate all the inputs

What values should hn take?

Implementing unary operators on MapReduce

- Projection (π cols(R)):
 - Split R tuples across all nodes
 - Map:

```
foreach t output (hn(t), \pi_{cols}(t))
```

- Reduce:
 - · Concatenate all the inputs
- Better idea?

9

Recall: physical operators for binary joins (classical DBMS scenario)

Example: equi-join (R.a=S.b)

```
Nested loops join:
foreach t1 in R{
foreach t2 in S {
    if t1.a = t2.b then output (t1 || t2)
    }
}
```

```
\label{eq:mash_join:} \begin{split} & \underline{\textbf{Hash join}} : \text{// builds a hash table in memory} \\ & \text{While (!endOf(R)) } \{ t \leftarrow \text{R.next; put(hash(t.a), t); } \\ & \text{While (!endOf(S)) } \{ t \leftarrow \text{S.next;} \\ & \text{matchingR = get(hash(S.b));} \\ & \text{O(|R|+|S|)} \\ & \} \end{split}
```

Also: Block nested loops join Index nested loops join Hybrid hash join Hash groups / teams

•••

Implementing equi-joins on MapReduce (1)

Repartition join [Blanas 2010] (~symetric hash)

Mapper:

- Output (t.a, («R», t)) for each t in R
- Output (t.b, («S», t)) for each t in S

Reducer:

- Foreach input key k
 - Res_k = set of all R tuples on k × set of all S tuples on k
- Output Res_k

Implementing equi-joins on MapReduce (2)

- Semijoin-based MapReduce join
- Based on the classical semijoin optimization technique:
 - R join S = (R semijoin S) join S

- Useful in distributed settings to reduce transfers: if the distinct
 S.b values are smaller than the non-matching R tuples
- Symetrical alternative: R join S = R join (S semijoin R)

12

Implementing equi-joins on MapReduce (2) Semijoin-based MapReduce join Broadcasting the results of the previous job $(S^{'})$ to all the splits of R, and locally joining R with SBroadcasting keys of R to all the splits of S and join S with keys of RExtracting join keys Mapper 1 Mapper 1 Key 1 3 4 Key Value S1 S3 S1 S4 S2 R.1 Key Value Mapper 2 R1 Key 1 3 4 R2 Value S3 Mapper 2 Job 3 Map-only job Job 1 Full MapReduce job Job 2 Map-only job

Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join [Blanas2010]

If |R| << |S|, broadcast R to all nodes!

- Example: S is a *log* data collection (e.g. log table)
- R is a *reference* table e.g. with user names, countries, age, ...
- Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.

Reduce: nothing (« map-only join »)

11

Implementing equi-joins on MapReduce (4)

- Trojan Join [Dittrich 2010]
- A Map task is sufficient for the join if relations are already copartitioned by the join key
 - The slice of R with a given join key is already next to the slice of S with the same join key
 - This can be achieved by a MapReduce job similar to repartition join but which builds co-partitions at the end

Co-partitioned split	Co-partitioned split
Co-group HR DR HS DS Co-group HR DR HS DS	Co-group HR DR HS DS

- Useful when the joins can be known in advance (e.g. keys – foreign keys)

Implementing binary equi-joins in MapReduce

Algorithm	+	-
Repartition Join	Most general	Not always the most efficient
Semijoin-based Join	Efficient when semijoin is selective (has small results)	Requires several jobs, one must first do the semi-join
Broadcast Join	Map-only	One table must be very small
Trojan Join	Map-only	The relations should be co- partitioned

17

Implementing n-ary (« multiway ») join expressions in MapReduce

- R(RID, C) join T(RID, SID, O) join S(SID, L)
- « Mega » operator for the whole join expression?...
- Three relations, two join attributes (RID and SID)
- We split the SIDs into Ns groups and the RIDs in Nr groups.
 Assume Nr x Ns reducers available.
- Hash T tuples according to a composite key made of the two attributes. Each T tuple goes to one reducer.
- Hash R and S tuples on partial keys (RID, null) and (null, SID)
- Distribute **R** and **S** tuples to each reducer where the nonnull component matches (potentially multiple times!)

Particular case of multi-way joins: star joins on MapReduce

Same join attribute in all relations:
 R(x, y) join S(x, z) join T(x, u)

• Then co-partition R, S, T → map-only join

Query optimization for MapReduce

- Given a query over relations R1, R2, ..., Rn, how to translate it into a MapReduce program?
 - Use one replicated join. Pbm: the space of composite join keys (Att1|Att2|...|Attk) is limited by the number of reducers → may shuffle some tuples to many reducers.
 - Use n-1 binary joins
 - Use n-ary (multiway) joins only: CliqueSquare (next)

2:

CliqueSquare: flat plans for massively parallel RDF queries

- **Focus:** Build massively parallel **flat** plans for RDF queries by exploiting **n-ary** (**star**) equality joins.
- Contributions:
 - Novel algorithms for exploring the search space of logical plans by relying on n-ary equality joins
 - Formal guarantees regarding the flatness of the plans generated by our algorithms
 - Implementation & experimental evaluation on top of MapReduce

[Goasdoué, Kaoudi, Manolescu, Quiané, Zampetakis 15]

CliqueSquare plan

- 1. Logical query optimization
- 2. Physical data organization
- 3. From logical to physical query plans to MapReduce execution

Publication, code at:

https://team.inria.fr/oak/projects/cliquesquare/

23

Query optimization overview

- Left deep plans with binary joins

– Left deep plans with n-ary joins (11

- Bushy plans with binary joins

Bushy plans with n-ary joins only at leafs

y at leafs

— Bushy plans with n-ary joins

Query Join Graph

Query plans on MapReduce - Left deep plans with binary joins: [Olston08][Rohloff10][Schatzle11] - Left deep plans with n-ary joins - Bushy plans with binary joins - Bushy plans with n-ary joins only ableafs - Bushy plans with n-ary joins

Query optimization overview

- Left deep plans with binary joins[Olston08][Rohloff10][Schatzle11]
- Left deep plans with n-ary joins [Papailiou13]

Query optimization overview

- Left deep plans with binary joins[Olston08][Rohloff10][Schatzle11]
- Left deep plans with n-ary joins[Papailiou13]
- Bushy plans with binary joins[Neumann10][Tsialiamanis12][Gubichev14] ⋈
- Bushy plans with n-ary joins only at leafs:
 [Wu11][Kim11][Huang11][Ravindra11][Leef3]

 Bushy plans with n-ary joins

Query optimization overview

- Left deep plans with binary joins [Olston08][Rohloff10][Schatzle11]
- Left deep plans with n-ary joins [Papailiou13]
- Bushy plans with binary joins[Neumann10][Tsialiamanis12][Gubichev14]
- Bushy plans with n-ary joins only at leafs[Wu11][Kim11][Huang11][Ravindra11][Lee13]

From logical plan to physical plans The state of the sta

Logical plan → Physical plan

> Logical selections (σ) are translated to physical selections (F)

91

Logical plan → Physical plan

> First level joins are translated to Map side joins (MJ) taking advantage of the data partitioning

Hadoop: performance issues and solutions

Performance problem 1: Idle CPU due to blocking steps

Performance problem 2: non-selective data access

Data access in Hadoop

- Basic model: read all the data
 - If the tasks are selective, we don't really need to!
- Database indexes? But:
 - Map/Reduce works on top of a file system (e.g. Hadoop file system, HDFS)
 - Data is stored only once
 - Hard to foresee all future processing
 - "Exploratory nature" of Hadoop

Accelerating data access in Hadoop

- Idea 1: Hadop++ [JQD2011]
 - Add header information to each data split, summarizing split attribute values
 - Modify the RecordReader of HDFS, used by the Map().
 Make it prune irrelevant splits

Accelerating data access in Hadoop

- Idea 2: HAIL [DQRSJS12]
 - Each storage node builds an in-memory, clustered index of the data in its split
 - There are three copies of each split for reliability ->
 Build three different indexes!
 - Customize RecordReader

Other MapReduce performance issues

- Speed up the straggler
 - Try to optimize distribution of data to Mappers and Reducers
 - · Data statistics
 - Dynamic re-distribution of straggler's load
- Eliminate the HDFS file writing
 - In-memory variants; loss of reliability; OK for short programs
- Identifying and reusing computations
 - Similar to view-based rewriting
 - At MapReduce level
 - At PigLatin level

References

- [BPERST10] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian, "A Comparison of Join Algorithms for Log Processing in MapReduce," in SIGMOD 2010.
- [LMDMcGS11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, Prashant Shenoy. "A Platform for Scalable One-Pass Analytics using MapReduce", ACM SIGMOD 2011
- [DQRSJS] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh, Alekh Jindal, Jorg Schad. "Only Aggressive Elephants are Fast Elephants", VLDB 2012
- [JQD11] A.Jindal, J.-A.Quiané-Ruiz, and J.Dittrich. "*Trojan Data Layouts: Right Shoes for a Running Elephant*" SOCC, 2011