Structured data management on
MapReduce

loana Manolescu
INRIA
ioana.manolescu@inria.fr
http://pages.saclay.inria.fr/ioana.manolescu

@@= UNIVERSITE

g
4 L S PARIS
lrrzia— S

Data management based on
MapReduce auery (e say

* |dea: use MapReduce 1st logicatquery plan
as a low-level
. ’ Query optimizer ‘ Recall:
programming |ayer classical
_ query
To take adv‘a ntage of (Chosen physialplan] _ Processing
the paraIIellsm pipeline
. ina
— In order to implement database

highly scalable query ’ Execution engine ‘
processors 772 E o
* Recall: DBMS query ~_Data storage (e.g. relational) _

processing stages T L

22/03/13

Data management based on MapReduce

First idea: translate each query into a program

Query (e.g. SQL)
Classical Query (e.g. SQL)

MapReduce
database 1st logical query plan setting
setting
’ Query optimizer ‘ h 4
MapReduce program
’Chosen physical plan‘
Parallel execution engine
’ Execution engine ‘ * 1master
* Nslaves
;""'/'D?asa)gge (e.g?glgﬁgﬁéT)"'j ﬁ
~ 1Dk Selrel = (B, Elehaleikel))

-r---- Datﬁaﬁ sjcorage: HDFS

3

Implementing queries through
MapReduce

* SELECT MONTH(c.start_date), COUNT(*)
FROM customer c
GROUP BY MONTH(c.start_date)

* SELECT c.name, o.total
FROM customer c, order o
WHERE c.id=o.cid

* SELECT c.name, SUM(o.total)
FROM customer c, order o
WHERE c.id=o.cid
GROUP BY c.name

22/03/13

Recall: query processing stages in a DBMS

ol

select driver.name
from driver, car
where X
driver.ID=car.driver | “® s

\driver.name,
driver.address

select... from driver, car, accident where...

date="1/11/13" .
b 1st logical query plan

and | Queryc;ptimizer ‘)N\

car.license=‘123AB’

A

|Chosen physical planl

X

i Execution engine

|

Driver

Julie 1

Damien 2

1 ‘123AB’
2 ‘171KZ’

Query language

Tlriver.name,
| driver.address \Z

|Chosen logical planl

m X
l /\odaie='1/11/13'

driver car acCident

| Chosen physical plan |

A4
Results

Data management based on MapReduce

Second idea: translate every physical operator into a program

Query (e.g. SQL)
Classical
database

setting

1st logical query plan

| Querydptimizer ‘

<
|Chosen physical planl

A

[Execution engine I

Data storage (e.g. relational)

Query (e.g. SQL)

1st logical query plan MapReduce
setting

i Query opﬁmizer for MR |

‘ Chosen MR-based physical plan |

A
Parallel execution engine
* 1 master
* Nslaves

s

Data storage: HDFS

22/03/13

Implementing physical operators on
MapReduce

* To avoid writing code for each query!

* |If each operator is a (small) MapReduce program, we
can evaluate queries by composing such small
programs

* The optimizer can then chose the best MR physical
operators and their orders (just like in the traditional
setting)

* Translate:

— Unary operators (o and)
— Binary operators (mostly: <] on equality, i.e. equijoin)
— N-ary operators (complex join expressions)

Implementing unary operators on
MapReduce

 Selection (opred(R)):
— Split the R input tuples over all the nodes
— Map:
foreach t which satisfies pred in the input
partition
* Output (hn(t.toString()), t); // hn fonction de hash

— Reduce:
* Concatenate all the inputs

What values should hn take?

22/03/13

22/03/13

Implementing unary operators on
MapReduce

* Projection (1t . (R)):
— Split R tuples across all nodes
— Map:
foreach t
output (hn(t), m(t))
— Reduce:

* Concatenate all the inputs

e Better idea?

Recall: physical operators for binary
joins (classical DBMS scenario)
Example: equi-join (R.a=S.b)

Nested loops join: Merge join: // requires sorted inputs
foreach t1in R{ repeat{ O(|R|+]S])
foreach t2in S { while (laligned) { advance Ror S };
if t1.a = t2.b then output (t1 || t2) while (aligned) { copy R into topR, S into topS };
} output topR x topS;

}

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory Also:
While (lendOf(R)) { t € R.next; put(hash(t.a), t);} Block nested loops join
While (!lendOf(S)) { t € S.next; Index nested loops join
matchingR = get(hash(S.b)); Hybrid hash join
output(matchingR x t); Hash groups / teams
O(|R|+|SI) }

Implementing equi-joins on MapReduce (1)

Repartition join [Blanas 2010] (~symetric hash)
R.a=S.b

R S Mapper:

e Output (t.a, («R», t)) for each tin R
Output (t.b, («S», t)) foreach tin S
Reducer:

* Foreach input key k

— Res, = set of all R tuples on k x
set of all S tuples on k

Output Res,

Implementing equi-joins on MapReduce (1)
Repartition join
* R(rID, rVal) join(rID = SID) S(sID, sVal)

Tagging origins Grouping by keys Local join
A

7~ TN ﬁ/\ﬁ ﬁ/\ ™~
Mapper 1 Reducer 1
R
Key | Value _ Key | Value | B Key TI;“‘I’S — Result
1 1 | RRI) 2 o g
! TR | & Sst # R1 | S1
2 # 2 | RR2 & 3 | 53
e | pa | T | prRa | =
3 . | 3 R’,R3 | =] s sg
4 4 |RR4| &
g 53
a2
Mapper 2 AZ Reducer 2
S E
2 Key | Tuple
Key | Value | Key | Yz?lue *é’ W 3 Result
Sum RENCENSEL ol) S5 e B 7
! f g L= T R’ R4 £ R4 | S4
3 S3 3 S’,S3 4 5S4
4 S4 4 ‘S’,S4 >
— =4 ~—
Map Phase Reduce Phase 12

22/03/13

Implementing equi-joins on MapReduce (2)

* Semijoin-based MapReduce join
* Based on the classical semijoin optimization technique:
— Rjoin S = (R semijoin S) join S

N Rz[a>§Sb R}=\S.b
Rasp =) N\ oo s

R\ X A
R™ S R” §(S.b)

— Useful in distributed settings to reduce transfers: if the distinct
S.b values are smaller than the non-matching R tuples

— Symetrical alternative: R join S = R join (S semijoin R)

Implementing equi-joins on MapReduce (2)

* Semijoin-based MapReduce join

Broadcasting the results of the

Broadcasting keys of R to all the previous job (S)bD all the splits
Extracting join keys splits of S and join S with keys of R of R, and locally joining R with S
Mapper 1 N Mapper 1
{Key |1 3| i»ﬁ S
/ “ s & Key | Value K;}y Vglile
R /| Key Value £ 1 S1 | »
Koy | Val i / 1 S1 3 3 S3
ey ue g Key| / o | s2 N4 S4 ~ Result
1 | Rl 5 1V - Vi Sp) R1|[S1
38 | R2 2 i/ R Rz S3
1 | R3 X 43 \\\ Mapper 2 Y Key Value
4 | M = 4 ey 1]]4mp[] 1 RL
» T / 3 R2
S Key Value [/
g 3 s3 |
Key | Value g
3| S5 mp 4 | 4 -
4 S4 { Mapper 2
—— ——
Job 1 Job 2 Job3
Full MapReduce job Map-only job Map-only job

22/03/13

Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join [Blanas2010]
R.a=S.b If |R| << |S|, broadcast R to all nodes!

R S + Example: Sis alog data collection (e.g. log table)

* Ris areference table e.g. with user names,
countries, age, ...

* Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.
Reduce: nothing (« map-only join »)

Implementing equi-joins on
MapReduce (4)

* Trojan Join [Dittrich 2010]

* A Map task is sufficient for the join if relations are already co-
partitioned by the join key
— The slice of R with a given join key is already next to the slice of S with the
same join key

— This can be achieved by a MapReduce job similar to repartition join but
which builds co-partitions at the end

Co-partitioned split Co-partitioned split
Co-group Co-group Co-group
[HR[DR[Hs [Ds || - |[[HR]DR[Hs [Ds ||| ~ |[[HR]DR]Hs][DS] -

— Useful when the joins can be known in advance (e.g. keys — foreign keys)

22/03/13

22/03/13

Implementing binary equi-joins in
MapReduce

Algorithm S PO

Repartition Join Most general Not always the most
efficient

Semijoin-based Join Efficient when semijoin is Requires several jobs, one

selective (has small results) must first do the semi-join

Broadcast Join Map-only One table must be very
small

Trojan Join Map-only The relations should be co-
partitioned

Implementing n-ary (« multiway »)
join expressions in MapReduce

* R(RID, C) join T(RID, SID, O) join S(SID, L)
* « Mega » operator for the whole join expression?...

* Three relations, two join attributes (RID and SID)

* We split the SIDs into Ns groups and the RIDs in Nr groups.
Assume Nr x Ns reducers available.

* Hash T tuples according to a composite key made of the
two attributes. Each T tuple goes to one reducer.

* Hash R and S tuples on partial keys (RID, null) and (null,
SID)

* Distribute R and S tuples to each reducer where the non-
null component matches (potentially multiple times!)

22/03/13

Generating keys and tagging origins Joining the three
e A — B tables locally -
< Y
Mapper 1 Reducer 1 RID=1 SID=1
_R) Key | Value
Rid | Value o1, | Key [Value wp| Loul | C,C1 q g Result
1 ¢ g 1,null | ‘C/C1 L1 | T,L1 g C1,L1,01
2 | C2 2, null | C,C2 B null,l | ‘0%, 01 2
%, |
E; Reducer 2 RID=1 SID=2
EE Key | Value
Mapper 2 £ 3 mp| Loul | ©,C1 g Result
T &% 12 | L, L2 q'g C1,12,02
S null,2 | ‘0", 02 =
Rid | Sid | Value Key | Value | » fE
11| 1 » sl 411 TL1 |
P12 L2 PIETYL2 | L2 w8 Reducer 3 RID=2 SID=1
2 |2 | L3 22 TL3 £2 v
£ ey | Value 8
£5 * 2,null | C, C2 3 Result
58 nulll | ‘0%, 01 2
A :
g
Mapper 3 5 Reducer 4 RID=2 SID=2
s
Key | Value
Sid | Value = Koy | Value | S)| 2l ©,C2 8 Result
1 o1 I null1 | ‘0%01 22 | L,L3 q'g C2,L3,02
2 02 null,2 | ‘0,02 null,2 | ‘0,02
~ ~ o N g _
Map Phase Reduce Phase

Particular case of multi-way joins:
star joins on MapReduce

e Same join attribute in all relations:
R(x, y) join S(x, z) join T(x, u)

g
&

* |If N reducers are available, it suffices to
partition the space of x values in N

* Then co-partition R, S, T = map-only join

20

10

Query optimization for MapReduce

e Given a query over relations R1, R2, ..., Rn,
how to translate it into a MapReduce
program?

— Use one replicated join. Pbm: the space of
composite join keys (Att1|Att2]...| Attk) is limited
by the number of reducers = may shuffle some
tuples to many reducers.

— Use n-1 binary joins

— Use n-ary (multiway) joins only: CliqueSquare
(next)

21

CliqueSquare: flat plans for LI[LUEZ

massively parallel RDF queries

* Focus: Build massively parallel flat plans for RDF
queries by exploiting n-ary (star) equality joins.
* Contributions:
* Novel algorithms for exploring the search space of logical
plans by relying on n-ary equality joins
* Formal guarantees regarding the flatness of the plans
generated by our algorithms

* Implementation & experimental evaluation on top of
MapReduce
[Goasdoué,Kaoudi,Manolescu,Quiané,Zampetakis15]

22

22/03/13

11

CliqueSquare plan LI[LLIE2

1. Logical query optimization
Physical data organization

From logical to physical query plans to MapReduce
execution

Publication, code at:
https://team.inria.fr/oak/projects/cliguesquare/

23

Query optimization overview
— Left deep plans with binary joins

— Left deep plans with n-ary joins

)
DT
o4

— Bushy plans with binary joins

— Bushy plans with n-ary joins only at leafs

— Bushy plans with n-ary joins | Query Join Graph

24

22/03/13

12

Query plans on MapReduce

— Left deep plans with binary joins: y

X
[Olston08][Rohloff10][Schatzle11] M/\

— Left deep plans with n-ary joins M/\
PN
M T9
VAN

M T8
VN

X
VAN

— Bushy plans with n-ary joins only akleafs

/N

5

— Bushy plans with binary joins

0T=3y319H

X
— Bushy plans with n-ary joins Dq/\m

N\

M T3
A\ v

T1 T2

25

Query optimization overview
— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]
— Left deep plans with n-ary joins:
[Papailioul3]
— Bushy plans with binary joins /"‘\

— Bushy plans with n-ary joins only at leafs®_ ™

W319H

X

L

— Bushy plans with n-ary joins
M o1 s 16

T1 T2 T3 A

26

22/03/13

13

Query optimization overview
— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]
— Left deep plans with n-ary joins
[Papailioul3]

— Bushy plans with binary joins: Xt
[Neumann10][Tsialiamanis12][Gubichev14] ¥ N
. - I
— Bushy plans with n-ary joins only at s 5 o
0a
N N |F
— Bushy plans with n-ary joins /N\ /N\ R
X M XX
VA NEVANENAN \
27
Query optimization overview
— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]
— Left deep plans with n-ary joins
[Papailioul3]
— Bushy plans with binary joins
[Neumann10][Tsialiamanis12][Gubichev14] X 1
— Bushy plans with n-ary joins only at leafs: N g,
[Wu11][Kim11][Huangl1][Ravindrall][=y
— Bushy plans with ngaryjoms /iﬁ]\m A
X
//1\\ /¢\ A
T1 T2 T3 T4 5176 T7 T8 T9 A

28

22/03/13

14

Query optimization overview

— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]

— Left deep plans with n-ary joins
[Papailioul3]

— Bushy plans with binary joins
[Neumann10][Tsialiamanis12][Gubichev14]

— Bushy plans with n-ary joins only at leafs

[Wull][Kim11][Huangl1][Ravindrall][Leel3]

— Bushy plans with n-ary joins: X
yp yjoins: M

[Husain1l] | CliqueSquare

[Goasdoué15] /N\
X M
e NV AN AN AN

1 T2 T3 T4 T5T6 T7 T8 T1I0 T9 T11

X
X>X
>X

W319H

€=

G InLE

CliqueSquare optimization algorithm:
Components

“ Variable Graphs

Variable Cliques

Clique
Decompositions

Clique Reductions

30

22/03/13

15

SELECT ?x ?y
WHERE {

T1:
T2:
T3:
T4:

(GHLIDLE?

CliqueSquare algorithm:
Variable Graphs

* Represent incoming queries and intermediary
relations

?x takesCourse ?y .
?x member ?z.
?w advisor ?x .
?wW name ?u .}

’ Variable graph ‘

31
:
GP(LIDLE))
CliqueSquare algorithm:
Variable Graphs
* Represent incoming queries and intermediary
relations
SELECT ?x ?y
WHERE {
T1: ?xtakesCourse ?y.
T2: ?x member ?z.
T3: ?w advisor ?x.
T4: ?wname ?u .}
’ Variable graph ‘
Each triple pattern corresponds to a node in the graph
32

22/03/13

16

(@LinLE®
CliqueSquare algorithm:

Variable Graphs

* Represent incoming queries and intermediary
relations

SELECT ?x ?y

WHERE {

T1: ?x takesCourse ?y .
T2: ?x member ?z.
T3: ?w advisor

T4: ?w name ?u .}

Nodes are connected with an edge if they share a

variable
33
:
GP(LIDLE . .
CliqueSquare algorithm:
Variable Cliques
* Model n-ary joins among relations
SELECT ?x ?y @ - @
WHERE { .
T1: ?x takesCourse ?y . Maximal ' >
T2: ?x member ?z. Clique of ‘?x’ e
T3: ?w advisor ?x. w
T4: ?wname ?u .} a
’ Variable graph ‘
A variable clique is a set of nodes which are connected
to each other with the same edge
34

22/03/13

17

(@LinLE®
CliqueSquare algorithm:

Variable Cliques

* Model n-ary joins among relations

SELECT ?x ?y

WHERE {
T1: ?x takesCourse ?y . Partial
T2: ?x member ?z. Clique of ?x’

T3: ?w advisor ?x.
T4: ?wname ?u .}

A variable clique is a set of nodes which are connected
to each other with the same edge

35

(GHLIDLE?

CligueSquare algorithm: Cligue Decompositions

* Correspond to identifying partial results to be joined
"* OJOINO
e : % e X
(> ©

Q - a

’ Variable graph ‘ ’ Decomposition 1 ‘ ’ Decomposition 2 ‘ ’ Decomposition 3 ‘

A clique decomposition is a set of variable cliques
which covers all the nodes of the graph

36

22/03/13

18

22/03/13

(G LInUE?

CligueSquare algorithm — Clique Decompositions

* Correspond to identifying partial results to be joined

exact
decomposition

:Y@@.’

’ Variable graph ‘ Decomposition 1 ’ Decomposition 2 ‘ ’ Decomposition 3 ‘

simple decompositions

A clique decomposition is a set of variable cliques
which covers all the nodes of the graph

37

@LInE

CligueSquare algorithm — Clique Decompositions

* Correspond to identifying partial results to be joined
minimum
decomposition

not
minimum
decomposition

minimum
decomposition

- -
»
< .
Y
< .
»
X

1
1
1
1
1
1
1
1
1
1
1
X X 1
1
1
1
1
1
1
1

1

1

Decomposition 2 ‘ ’ Decomposition 3 ‘

|

’ Variable graph ‘ ’ Decomposition 1 ‘

A clique decomposition is a set of variable cliques
which covers all the nodes of the graph

S. Zampetakis "Scalable algorithms for cloud-based Semantic Web data 38

19

(@ LinuE?
CligueSquare algorithm — Clique Decompositions

* Correspond to identifying partial results to be
joined

The cliqgue decomposition is not unique

* We identify eight decomposition alternatives based on:
* Type of variable cliques: maximal or partial
* Type of cover: simple or exact
* Cover size: minimum or not

Minimum All
I Exact 1:: | Simple :: | Exact 1:: I simple ::
I o i o |
.) | |
Maximal Cliques l” MXC+ ’ :i :i I MSC+ “: HI XC+ I:i :i SC+ ’ ::
I B g I I

1l (- 1l (-
(- 1 1 E 2 y
i 1l | 1] | |
Partial Cliques i mxc_|§i| msc | 1 xc ¥ _sc i
R — v N — . 1

39

(G LinuE?
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

X X
° E X X

w

Q = a

’ Variable graph ‘

’ Decomposition 1 ‘ ’ Decomposition 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a new variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

40

22/03/13

20

(GHLIDLE?

CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Decomposition 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

41

(GHLIDLE?

CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

Q . Q
?x ?X °
° w

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Decomposition 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

42

22/03/13

21

SLinuE? _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

6 . Q
?x ?X °
° w

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Decomposition 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

43

(PLinuE _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Reduction 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

44

22/03/13

22

LinuE _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

Q . Q
. °
u w w

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Reduction 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

45

(PLinuE _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Reduction 2 ‘ ’ Decomposition 3 ‘

A clique reduction is a new variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

46

22/03/13

23

LinuE _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

Y

W

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Reduction 2 ‘ ’ Reduction 3

|

A clique reduction is a new variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

47

(PLinuE _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Reduction 2 ‘ ’ Reduction 3

|

A clique reduction is a new variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

48

22/03/13

24

SLinuE? _ _ _
CligueSquare algorithm — Clique Reductions

* Correspond to applying the joins identified by the
decompositions

’ Variable graph ‘ ’ Reduction 1 ‘ ’ Reduction 2 ‘ ’ Reduction 3

|

A clique reduction is a new variable graph: (i) each clique becomes a node in
the new graph; (ii) cliques sharing a variable are connected

49

(@ LinLE®
CliqueSquare algorithm - Example

» Create the variable graph for the given query

SELECT ?x ?y

WHERE {

T1: ?w:propl<Cl>.
T2: ?w :prop2<C2>.
T3: ?w :prop3

T4: ?x:propd <C3>.
T5: ?x:prop5 <C4>.
T6: ?x:propb ?z.
T7: ?z:prop7 ?f.
T8: ?f:prop8?y.
T9: ?f:prop9

T10: <C5> :propl0
T11: ?y :propll <C6>.}

’ Variable Graph ‘

50

22/03/13

25

@ InuE
States

CligueSquare algorithm example

G= —> States=StatesUG

|

0 CligueDecomposition(G)

/1N

[For each d in D]

< CliqgueReduction(d) -«

—> CliqueSquare(G’)

¢ —> CliqueSquare(G’)
51
IS T
E(L]l LIE : :
A CliqgueSquare algorithm example
G= —> States =StatesU G
0 0 CliqueDecomposition(G)
D=
[For each d in D]
<— CliqgueReduction(d) -«

Gl

52

22/03/13

26

@ InuE
States

CligueSquare algorithm example

G= —> States =States UG

|

0 CliqgueDecomposition(G)
/LN
U2
0-00-0 AN

[For each d in D]

< CliqgueReduction(d) -«

—> CliqueSquare(G’)

53

@ InuE
States

CligueSquare algorithm example

G= —> States =StatesU G

|

0 CligueDecomposition(G)
wp’| ! Sp
0-00 0 . & .

Gl

[For each d in D]
<—CliqueReduction(d) < Q0 Ob

—> CliqueSquare(G’) 0-00-0

54

22/03/13

27

GP(LINLE

CligueSquare algorithm example

G= —> States =States UG

|

0 CligueDecomposition(G)

0-00-0

/1N
Qz«ogb F b

0 dgb 0

é < CliqueReduction(d) -«

[For each din D]

)

¢ —> CliqueSquare(G’) 0-00-0
55
E)
@PLInIE® : .
States CligueSquare algorithm example
G= %E —> States=StatesUG
0 CliqueDecomposition(G)
D=
[For each d in D]
<— CliqgueReduction(d) -«

Gl

—> CliqueSquare(G’)

56

22/03/13

28

l‘ﬁ'._.,..__.:_.

CligueSquare algorithm example

G= %E —> States=StatesUG

CligueDecomposition(G)

/1N

[For each d in D]

< CliqgueReduction(d) -«

¢ —> C(CliqueSquare(G’)
57
@RI LE® : .
CliqueSquare algorithm example
G= X —> States=StatesUG
0000 CliqueDecomposition(G)
0—0
& ¢
0-0
[For each d in D]
<— CliqgueReduction(d) -«
¢ —> C(CliqueSquare(G’)
58

22/03/13

29

L IILE

CligueSquare algorithm example

G= %E —> States =States UG

CligueDecomposition(G)

[N

Gl

[For each d in D]
0—0

< CliqgueReduction(d) -«

—> CliqueSquare(G’)

59

L IILE

CligueSquare algorithm example

G= %E —> States =StatesU G

CligueDecomposition(G)
/1N
0—0
& 00

Gl

[For each d in D]
0—0

< CliqueReduction(d) -«

—> CliqueSquare(G’)

60

22/03/13

30

l‘ﬁ'._.,..__.:_.

CligueSquare algorithm example

G= 8 —> States =States UG

|

CligueDecomposition(G)

/1N

[For each d in D]

< CliqgueReduction(d) -«

¢ —> C(CliqueSquare(G’)
61
(L .2
CligueSquare algorithm example
G= 8 —> States =StatesU G
_____________Q_ CliqgueDecomposition(G)
______ z ___;______ D=
[For each d in D]
<— CliqgueReduction(d) -«
¢ —> C(CliqueSquare(G’)

62

22/03/13

31

IS
@ LI L

CligueSquare algorithm example

G= 8 —> States=StatesUG

|

CliqgueDecomposition(G)

}
x

[For each d in D]

< CliqgueReduction(d) -«

¢ —> CliqueSquare(G’)
63
CligueSquare algorithm example
G= 8 —> States=StatesUG
CligueDecomposition(G)
D=
[For each d in D]

<— CliqgueReduction(d) -« 8

Gl

—> CliqueSquare(G’)

64

22/03/13

32

IS
@ LI L

CligueSquare algorithm example

G= 8 —> States=StatesUG

|

CligueDecomposition(G)

}
x

[For each d in D]

0 < CliqueReduction(d) -« 8
¢ —> CliqueSquare(G’)
65
CligueSquare algorithm example
G= 0 —> States=StatesUG
CligueDecomposition(G)
D=
[For each d in D]

<— CliqgueReduction(d) -«

Gl

—> CliqueSquare(G’)

66

22/03/13

33

AILE
States

CligueSquare algorithm example

G= 0 —> States=StatesUG

|

CligueDecomposition(G)

/1N

[For each d in D]

< CliqgueReduction(d) -«

G —> CliqueSquare(G’)

67
CligueSquare algorithm example
CreateQueryPlan(States)
Each node of the graph corresponds to a
scan operator
0
Tl T2 T3 T4 T5 T6 7 T8 T11 T9 T10
68

22/03/13

34

States

CligueSquare algorithm example

CreateQueryPlan(States)

Each node of the graph corresponds to a clique
of nodes of the previous graph.

Introduce the join operators.

M o M X
VANV ANEZAN

T1 T2 T3 T4 T5T6 T7 T8 T11 T9 T10

69

States

CligueSquare algorithm example

CreateQueryPlan(States)

Each node of the graph corresponds to a clique
of nodes of the previous graph.

Introduce the join operators.

X D X X

T1 T2 T3 T4 T5T6 T7 T8 T11 T9 T10

70

22/03/13

35

. CliqueSquare algorithm example

CreateQueryPlan(States)

Each node of the graph corresponds to a clique
of nodes of the previous graph.

X Introduce the join operators.

X
_______________ N/\M
0 /\/I\
[R ™ T~ TR - S

T1 T2 T3 T4 T5T6 T7 T8 T11 T9 T10

71

@ Linue?
CliqueSquare algorithm — Logical plans

* The choice of the decomposition method (m) affects the
production of plans - Plan space (Pm)

* 8 CliqueSquare variants with 8 plan spaces
* Plan space inclusion relationships:

T,
1 | 1

X \PMSC+/ PMXC

PMXC+

SC

72

22/03/13

36

(FLinuE®
CliqueSquare algorithm — Logical plans

* Height-Optimal (Flat) plans: having the least height
* Decomposition variants are categorized based on height
optimality into:
* HO-Complete: all height optimal plans for a query g

SC
* HO-Partial: at least one height optimal plan for a query g

| msc+ | | sc+ | [wmsc |
* HO-Lossy: possibly no height optimal plan for a query g

[mxc | [mxer || xer |[xc |

73

(SFLinuE®
CliqueSquare algorithm — Logical plans

* Height-Optimal (Flat) plans: having the least height
* Decomposition variants are categorized based on height
optimality into:
* HO-Complete: all height optimal plans for a query g

SC
* HO-Partial: at least one height optimal plan for a query g

| mscr | | sc+ | [msc |
* HO-Lossy: possibly no height optimal plan for a query g

| mxc | [mxer || xer |[xc |

74

22/03/13

37

e

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property Object

[Node1 fBNodez JINode3 JNodes JNodes |

G InuE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property Object

Hash triple by subject

Node (Node2 [l Nodes | [Nodes |
db

:stud1, :takesCourse, :

22/03/13

38

e

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property Object

Hash triple by property

[SN (%2 N 5 N | 2

:stud1, :takesCoul :studl, takesCou

L InuE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property Object

Hash triple by object

[SN (%2 N 5 N | 2

:stud1, :takesCoul :studl, takesCou

:stud1, :takesCourse,

22/03/13

39

e

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property

[SN (%2 N 5 N | =

:stud1, :takesCoul :studl, takesCou

:stud1, :takesCourse,

L InuE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,

property & object
tid Subject Property Object
tl | :studl :takesCourse :db
t2 :takesCourse :0S

Hash triple by subject

(SN =2 N 5 M| 2

:stud1, :takesCoul :stud2, :takesCou :studl, takesCou

:stud1, :takesCourse,

22/03/13

40

e

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property Object
tl | :studl :takesCourse :db
t2 :takesCourse :0S

Hash triple by property
Noder fINode2 WNodes | [Nodes |

:stud1, :takesCourse, :db :stud2, :takesCourse, :0s :studl, takesCourse, :db

:stud1, :takesCourse,

:stud2, :takesCourse, :0s

L InuE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property Object
tl | :studl :takesCourse :db
t2 | :stud2 :takesCourse

Hash triple by object
Noder fINode2 WNodes | [Nodes |

:stud1, :takesCourse, :db :stud2, :takesCourse, :0s :studl, takesCourse, :db :stud2, :takesCourse, :0s

:stud1, :takesCourse,

:stud2, :takesCourse, :0s

22/03/13

41

e

Data organization within CliqueSquare

1. Eachtriple is partitioned based on its subject, property &

object
tid Subject Property Object
t1 | :studl ‘takesCourse :db
t2 | :stud2 :takesCourse :0S
t3 | :profl :advisor :studl
t4 | :prof2 :advisor :stud2
Noder fINodez MINode3 | [Nodes |
:stud1, :takesCourse, :db :stud2, :takesCourse, :0s :studl, takesCourse, :db :stud2, :takesCourse, :0s

:stud1, :takesCourse,

:stud2, :takesCourse, :0s

L InuE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject, property &

object
tid Subject Property Object
t1 | :studl :takesCourse :db
t2 | :stud2 :takesCourse :0s
t3 | :profl :advisor :studl
t4 | :prof2 :advisor :stud2
Noder fINode2 WNodes | [Nodes |
:stud1, :takesCourse, :db :stud2, :takesCourse, :0s :studl, takesCourse, :db :stud2, :takesCourse, :0s profi, :advisor, :studl
:profl, :advisor, :studl :prof2, :advisor, :stud2 D :prof2, :advisor, :stud2

:profl, :advisor, :stud1 :stud2, :takesCourse, :0s

:prof2, :advisor, :stud2

22/03/13

42

e

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

tid Subject Property

Triples sharing a value appear in the same node

A large number of joins can be performed locally in
each node

L InuE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject,
property & object

2. The triples are grouped into 3 partitions (subject,
property, object) based on the partition attribute

22/03/13

43

G InLE

Data organization within CliqueSquare

1. Each triple is partitioned based on its subject, property &
object

2. The triples are grouped into 3 partitions (subject, property,
object) based on the partition attribute

3. The triples inside each partition are grouped by property and

stored on the filesystem
|Nodes

e o profl studi
:stud2 :os prof2 :stud2

Nodel

studl :db | :stud2 :os l
:profl sstudl | :prof2 istud2 l
:studl :db

:studl
:prof2 :stud2

11k
|

:profl

e Handling property skew

* Problem: Frequency distribution of property
[oemner] values is highly skewed leading to:

:studl :dbl

* Very big property files
* Unbalanced load
* Solution: Split the file based on a threshold
and ensure that the splits end up in different
nodes

:studl :dbl :studl :end1 :studl :end2

:studl :end2 :studl :big

:studl :end1

[Node1 [Nodez ___JNodes

22/03/13

44

(FLinuE®
From logical plan to physical plans

T~

N X

/\ /,\
M M X M X
AN A AN N
G 0 T3 O 6 T7 18 O 719

(I |

| |
T1 T2 T4 T5 Ti1 T10

89

(SFLinuE®
Logical plan = physical plan

66 Ms OO MS MS mMs © MS o
S Nm1 / N\ e o e | M|
MS MS MS MS MS MmS
[T1] [T2] [T4] [T5] [T11] [T10]

» Reading the triples from HDFS requires a Map Scan (MS) operator

90

22/03/13

45

@ Linue
Logical plan = Physical plan
X
< T

X X X

FFmMs FF mMs mMs ms F MSF
/ Nm1 [N\ e m e | M|
MS MS MS MS MS MmS
[T1] [T2] [T4] [T5] [T11] [T10]

» Logical selections (o) are translated to physical selections (F)

91
2
@P(LIDLE
Logical plan = Physical plan
n
|
/D‘\
A X
MI MIN MJ/N\ M% MJ M
FF ms FF MSMSMSFMSF
S/ N\m [\ m m omym | ™
mMS MS MSs MS MS MS
[T1] [12] [ta] [75] [T11] [T10]
» First level joins are translated to Map side joins (MJ) taking advantage of the
data partitioning
92

22/03/13

46

(G LInUE?

[
X

RI M RI N

MIM MIN MJ 4 MIp MIN

29

FFms FF Ms MS ms F MSF
S/ N\m [\ m m gy | ™

MS MS MS MS MS MS

[T1] [12] [ta] [75] [T11] [T10]

» All subsequent joins are translated to Reduce side joins (RJ)

Logical plan = Physical plan

93
2
@P(LIDLE
Physical plan = MapReduce jobs
|
RI N
MSER MS R
RI M RJ D|4
MJ X MJ X M) 4 MIp MIN
~7\N /N AN A
F F ms F F MS MS MS F MS F
| | mw | | ma o om | |
MS MS MS MS MS MS
[T1] [12] [Ta] [75] [T11] [T10]
» Group the physical operators into Map/Reduce tasks and jobs
94

22/03/13

47

L _
Physical plan =_MapReduce jobs

RJ
3

MS N MS R
|

RI X RJ N

MJ M MJN

MS Ms Ms F MS F

el 7] (78] (ro]
MS MS
[r11] [T10]

» Selections (F) and projections (rt) belong to the same task as their child operator

95
L e
ysical plan 2 MapReduce jobs
RJ E
3
MSER MS R
RI M RJ D|4
TR M M Myh\ MJ /N\
F F ms F F MS MS MS F MS F
I waf | 1 ||ma || ma | |
MS MS MS MS MS MS
[T1] [12] [ta] [15] [T11] [T10]
» Map joins (MJ) along with all their descendants are executed in the same task
96

22/03/13

48

(G LInUE?

Physical plan 2 _MapReduce jobs

RI Y
/}\

YR vupd (v (v
/\

AN

F F ms|| F F [lms ms[|ms F || MSF
I mf|l 1 | || m | |

MS MS MSs MS MS MS

[r1] [12] [ra] [15] [T11] [T10]

» Any other operator (RJ or IVIS) is executed in a separate task

97
:
GALINLE® .
Physical plan = MapReduce jobs
JOB 2
JOB1
YR vupd (v (v
/\ AN
F F ms F F MS MS MS F MS F
I waf | 1 ||ma || ma | |
MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]
» Tasks are grouped into jobs in a bottom-up traversal
98

22/03/13

49

2
e Experiments — Plan comparison

EBest CSQ Plan EBest Binary Bushy Plan B Best Binary Linear Plan

1000
900
800

@700

2

5600
Q

$500
2400 -

400

F300
200 -
100 -

58)

M)

@V) 412 (e 2 (gEN2 72D g2 oEN 30 N3 BT ATL AT pa0

Q2 o

v'CSQ flat plans faster than bushy plans (up to X2)
v/ CSQ flat plans faster than linear plans (up to X16)
v/ CSQ flat plans require less number of jobs

99

Experiments — System comparison

BCsQ ESHAPE-2f EH2RDF+

100000 timeout timeout

10000

1000

[

[=]

o
I

Time (seconds)

10 -

1 -

\N\oﬁ\

2\
o\t o3 l

0}1\3\1 013

HIGH-SELECTIVE LOW-SELECTIVE

\&13\ \“’3\ \ﬂ’&\ \113\

an®

\111\ \“A\

Q1800

\N\xﬂ\ \;00\ \31_1\\ \N\“‘\

o (193 oyaod)

9V gq0\ a\? asBV T ged\V T BV ggl®

v/ CSQ outperforms both systems for non-selective queries

v/ CSQ performs closely for selective queries

22/03/13

50

solutions

Hadoop: performance issues and

Map

Reduce

Hadoop MapReduce

Data Load

Data Load Data Load Data Load
))) ¥
Map() Map() Map() Map()
v y v y
Local sort Local sort Local sort Local sort
v) v ¥V
Map write Map write Map write Map write
Merge Merge Merge Merge
) ¥y))
Reduce Reduce Reduce Reduce
v v))
Final write Final write Final write Final write

102

22/03/13

51

22/03/13

Performance problem 1:
Idle CPU due to blocking steps

Hadoop resource usage
: Data Load Data Load
))
Map() Map()
(Blocking sort [je—s LocaI sort LocaI sort
Je— Map wrlte Map wrlte
Blocking @
Lort-merge Merge Merge
Reduce Reduce
- v v
-~ % ~_“Final write Final write

52

Hadoop performance study

Benchmark from [LMDMcGS2011]

100
mmap
80 shuffle

I
> < 80
€ merge :)
3 oo m reduce 2 = 60 |
% 40 = 8 40 m
© - 3 A
+ 3 P \ ""‘"(\A‘)
2 AR
* S G 20 ;‘WWM?% |
o U A
W ;] W
% 1,000 2,000 3,000 4,000 % 1,000 2,000 3000 4000 % 1000 2,000 3,000 4000 .
time elapsed (s) 81 min. time elapsed (s) 81 min. time elapsed (s) 81 mi

(a) Hadoop: Task timeline. (b) Hadoop: CPU utilization. (c) Hadoop: CPU iowait.

CPU stalls during 1/0 intensive Merge
Reduce strictly follows Merge

105

Hash-based algorithms to improve
Hadoop performance
Data Load
Main idea: use non-blocking hash-based algorithms to v
group items by keys during Map.LocalSort and Map()
Reduce.Merge {
Principle :)flhzashing: Localsort
32 h(x) 0 933 Map write
’ & _/7 e.g.
13,1, x %3 1 1,131
2,3, E
9... 2 2,2,8,2 N
_ Merge
* Partitions can be in memory or flushed to disk i
* |If the Reduce works incrementally, early send Refuce
Final write

22/03/13

53

Performance problem 2:
non-selective data access

Data access in Hadoop

e Basic model: read all the data

— If the tasks are selective, we don't really
need to!

e Database indexes? But:

— Map/Reduce works on top of a file
system (e.g. Hadoop file system, HDFS)

— Data is stored only once

— Hard to foresee all future processing
* "Exploratory nature" of Hadoop

Data Load

i

Map()
)

Local sort

4

Map write

[7

N

Merge

i

Reduce

i

Final write

108

22/03/13

54

Accelerating data access in Hadoop

 |dea 1: Hadop++ [JQD2011]

— Add header information to each
data split, summarizing split
attribute values

— Modify the RecordReader of HDFS,

used by the Map().
Make it prune irrelevant splits

Data Load

4

Map()
)

Local sort

{

Map write

7

A

Merge

4

Reduce

4

Final write

Accelerating data access in Hadoop

* |ldea 2: HAIL [DQRSJS12]

— Each storage node builds an
in-memory, clustered index of the
data in its split

— There are three copies of each
split for reliability >
Build three different indexes!

— Customize RecordReader

Data Load

4

Map()
)

Local sort

{

Map write

7

A

Merge

4

Reduce

4

Final write

22/03/13

55

22/03/13

RR Runtime [ms]

Hadoop, Hadoop++ and HAIL
Data Load
M Hadoop M Hadoop++ [HAIL v
3000 Map()
{
2250 6o Local sort
1852 1615 1610 V
1500 Map write
750 [T
0 Merge
b c a b J
Syn-Q1 Syn-Q2 q
MapReduce Jobs Reiuce
Final write

Other MapReduce performance issues

* Speed up the straggler
— Try to optimize distribution of data to Mappers and
Reducers
* Data statistics
* Dynamic re-distribution of straggler’s load
* Eliminate the HDFS file writing
— In-memory variants; loss of reliability; OK for short
programs
* |dentifying and reusing computations
— Similar to view-based rewriting
— At MapReduce level
— At Piglatin level

112

56

References

[BPERST10] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y.
Tian, “A Comparison of Join Algorithms for Log Processing in MapReduce,”
in SIGMOD 2010.

[LMDMcGS11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor,
Prashant Shenoy. "A Platform for Scalable One-Pass Analytics using
MapReduce", ACM SIGMOD 2011

[DQRSJS] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan
Schuh, Alekh Jindal, Jorg Schad. "Only Aggressive Elephants are Fast
Elephants", VLDB 2012

[JQD11] A.Jindal, J.-A.Quiané-Ruiz,and J.Dittrich. "Trojan Data Layouts:
Right Shoes for a Running Elephant" SOCC, 2011

113

22/03/13

57

