
Architectures for massive data
management

MapReduce

Albert Bifet
albert.bifet@telecom-paristech.fr

September 22, 2015

Who am I

• Associate Professor at Télécom ParisTech
• I work on data stream mining algorithms and systems

• MOA: Massive Online Analytics
• Apache SAMOA: Scalable Advanced Massive Online Analytics

• PhD: UPC BarcelonaTech, 2009
• Previous affiliations:

• University of Waikato (New Zealand)
• Yahoo! Labs (Barcelona)
• Huawei (Hong Kong)

Course Goals

1 Discuss the main characteristics (dimensions) of massive data
management plaforms
• Big Data

2 Present the main classes of such systems, according to the
above dimensions

3 Analyze advantage/disadvantage trade-offs
4 Introduce some open research issues

Today’s course plan

1. Motivation MapReduce

2. MapReduce

3. Apache Hadoop

4. MapReduce Algorithms

Motivation MapReduce

How Many Servers Does Google Have?

Figure: Asking Google

A Google Server Room

Figure: https://www.youtube.com/watch?t=3&v=avP5d16wEp0

https://www.youtube.com/watch?t=3&v=avP5d16wEp0

Typical Big Data Challenges

• How do we break up a large problem into smaller tasks that can
be executed in parallel?

• How do we assign tasks to workers distributed across a
potentially large number of machines?

• How do we ensure that the workers get the data they need?
• How do we coordinate synchronization among the different

workers?
• How do we share partial results from one worker that is needed

by another?
• How do we accomplish all of the above in the face of software

errors and hardware faults?

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Jeff Dean

MapReduce, BigTable, Spanner
MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
OSDI’04: Sixth Symposium on Operating System Design and
Implementation

Jeff Dean Facts

Google Culture Facts
”When Jeff Dean designs software, he first codes the binary and
then writes the source as documentation.”
”Jeff Dean compiles and runs his code before submitting, but only to
check for compiler and CPU bugs.”

Jeff Dean Facts

Google Culture Facts
“The rate at which Jeff Dean produces code jumped by a factor of 40
in late 2000 when he upgraded his keyboard to USB2.0.”
”The speed of light in a vacuum used to be about 35 mph. Then Jeff
Dean spent a weekend optimizing physics.”

MapReduce

References

Numbers Everyone Should Know (Jeff Dean)

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA to Netherlands to CA 150,000,000 ns

Typical Big Data Problem

• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

Typical Big Data Problem

• Iterate over a large number of records
• Extract something of interest from each –MAP–
• Shuffle and sort intermediate results
• Aggregate intermediate results –REDUCE–
• Generate final output

Functional Programming

Figure: Map as a transformation function and Fold as an aggregation
function

Map and Reduce functions

• In MapReduce, the programmer defines the program logic as
two functions:
• map: (k1, v1) → list[(k2, v2)]

• Map transforms the input into key-value pairs to process
• reduce: (k2, list[v2]) → list[(k3, v3)]

• Reduce aggregates the list of values for each key

• The MapReduce environment takes in charge distribution
aspects.

• A complex program can be decomposed as a succession of
Map and Reduce tasks

Simplified view of MapReduce

Figure: Two-stage processing structure

An Example Application: Word Count

Input Data
foo.txt: Sweet, this is the foo file

bar.txt: This is the bar file

Output Data
sweet 1

this 2

is 2

the 2

foo 1

bar 1

file 2

WordCount Example

1: class Mapper
2: method Map(docid a,doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c
6: end for
7: Emit(term t, count sum)
8: end method
9: end class

Simple MapReduce Variations

No Reducers

Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers

Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

MapReduce Framework

Figure: Runtime Framework

MapReduce Framework

• Handles scheduling
• Assigns workers to map and reduce tasks

• Handles “data distribution”
• Moves processes to data

• Handles synchronization
• Gathers, sorts, and shuffles intermediate data

• Handles errors and faults
• Detects worker failures and restarts

• Everything happens on top of a distributed filesystem

Fault Tolerance

The Master periodically checks the availability and reachability of
the tasktrackers (heartbeats) and whether map or reduce jobs make
any progress
• if a mapper fails, its task is reassigned to another tasktracker
• if a reducer fails, its task is reassigned to another tasktracker;

this usually require restarting mapper tasks as well (to produce
intermediate groups)

• if the jobtracker fails, the whole job should be re-initiated
Speculative execution: schedule redundant copies of the remaining
tasks across several nodes

Complete MapReduce Framework

Figure: Partitioners and Combiners

Partitioners and Combiners

Partitioners
Divide up the intermediate key space and assign intermediate
key-value pairs to reducers: “simple hash of the key”

partition: (k, number of partitions)→ partition for k

Combiners
Optimization in MapReduce that allow for local aggregation before
the shuffle and sort phase: “mini-reducers”

combine: (k2, list[v2])→ list[(k3, v3)]

Run in memory, and their goal is to reduce network traffic.

Apache Hadoop

Origins of Apache Hadoop

• Hadoop was created by Doug Cutting (Apache Lucene) when he
was building Apache Nutch, an open source web search engine.

• Cutting was an employee of Yahoo!, where he led the Hadoop
project.

• The name comes from a favorite stuffed elephant of his son.

Initial Differences between Hadoop MapReduce
and Google MapReduce

• In Hadoop MapReduce, the list of values that arrive to the
reducers are not ordered. In Google MapReduce it is possible to
specify a secondary sort key for ordering the values.

• In Google MapReduce reducers, the output key should be the
same as the input key. Hadoop MapReduce reducers can ouput
different key-value pairs (with different keys to the input key)

• In Google MapReduce mappers output to combiners, and in
Hadoop MapReduce mappers output to partitioners.

What Is Apache Hadoop?

The Apache Hadoop project develops open-source software for
reliable, scalable, distributed computing.
It includes these modules:
• Hadoop Common: The common utilities that support the other

Hadoop modules.
• Hadoop Distributed File System (HDFS): A distributed file

system that provides high-throughput access to application
data.

• Hadoop YARN: A framework for job scheduling and cluster
resource management.

• Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets

Hadoop v2

Figure: Apache Hadoop NextGen MapReduce (YARN)

Apache Hadoop NextGen MapReduce (YARN)

Figure: MRv2 splits up the two major functionalities of the JobTracker,
resource management and job scheduling/monitoring, into separate
daemons. An application is either a single job in the classical sense of
Map-Reduce jobs or a DAG of jobs.

Apache Hadoop NextGen MapReduce (YARN)

In YARN, the ResourceManager has two main components:
• The Scheduler: responsible for allocating resources to the

various running applications subject to familiar constraints of
capacities, queues etc.

• The ApplicationsManager: responsible for accepting
job-submissions, negotiating the first container for executing
the application specific ApplicationMaster and provides the
service for restarting the ApplicationMaster container on failure.

The Hadoop Distributed File System HDFS

Assumptions and Goals
• Hardware Failure
• Streaming Data Access
• Large Data Sets
• Simple Coherency Model (write-once-read-many access model)
• “Moving Computation is Cheaper than Moving Data”
• Portability Across Heterogeneous Hardware and Software

Platforms

The Distributed File System

Figure: Distributed File System Architecture

The Distributed File System

Figure: Block Replication

An Example Application: Word Count

Input Data
foo.txt: Sweet, this is the foo file

bar.txt: This is the bar file

Output Data
sweet 1

this 2

is 2

the 2

foo 1

bar 1

file 2

WordCount Example

1: class Mapper
2: method Map(docid a,doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c
6: end for
7: Emit(term t, count sum)
8: end method
9: end class

Mapper Java Code

publ ic s t a t i c class TokenizerMapper
extends Mapper<Object , Text , Text , I n t W r i t a b l e >{

p r i v a t e f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e (1) ;
p r i v a t e Text word = new Text () ;

publ ic void map(Object key , Text value , Context context
) throws IOException , In te r ruptedExcept ion {

Str ingTokenizer i t r = new Str ingTokenizer (value . t o S t r i n g ()) ;
while (i t r . hasMoreTokens ()) {

word . set (i t r . nextToken ()) ;
context . w r i t e (word , one) ;

}
}

}

Reducer Java Code

publ ic s t a t i c class IntSumReducer
extends Reducer<Text , I n t W r i t a b l e , Text , I n t W r i t a b l e> {

p r i v a t e I n t W r i t a b l e r e s u l t = new I n t W r i t a b l e () ;

publ ic void reduce (Text key , I t e r a b l e<I n t W r i t a b l e> values ,
Context context
) throws IOException , In te r ruptedExcept ion {

i n t sum = 0 ;
f o r (I n t W r i t a b l e va l : values) {

sum += va l . get () ;
}
r e s u l t . set (sum) ;
context . w r i t e (key , r e s u l t) ;

}
}

Driver Java Code

publ ic s t a t i c void main (S t r i n g [] args) throws Exception {
Conf igurat ion conf = new Conf igurat ion () ;
Job job = Job . getInstance (conf , ” word count ”) ;
job . setJarByClass (WordCount . class) ;
job . setMapperClass (TokenizerMapper . class) ;
job . setCombinerClass (IntSumReducer . class) ;
job . setReducerClass (IntSumReducer . class) ;
job . setOutputKeyClass (Text . class) ;
job . setOutputValueClass (I n t W r i t a b l e . class) ;
F i le InputFormat . addInputPath (job , new Path (args [0])) ;
Fi leOutputFormat . setOutputPath (job , new Path (args [1])) ;
System . e x i t (job . waitForCompletion (t rue) ? 0 : 1) ;

}

Hadoop MapReduce data flow

Figure: High-level MapReduce pipeline

Hadoop MapReduce data flow

Figure: Detailed Hadoop MapReduce data flow

Hadoop MapReduce data flow

Figure: Combiner step inserted into the MapReduce data flow

MapReduce Algorithms

Simple MapReduce Algorithms

Distributed Grep
• Grep: reports matching lines on input files

• Split all files across the nodes
• Map: emits a line if it matches the specified pattern
• Reduce: identity function

Count of URL Access Frequency
• Processing logs of web access

• Map: outputs <URL,1>

• Reduce: Adds together and outputs <URL, Total Count>

Simple MapReduce Algorithms

Reverse Web-Link Graph
• Computes source list of web pages linked to target URLs

• Map: outputs <target,source>

• Reduce: Concatenates together and outputs <target,

list(source)>

Inverted Index
• Build an inverted index

• Map: emits a sequence of <word, docID>

• Reduce: outputs <word, list(docID)>

Joins in MapReduce

Two datasets, A and B that we need to join for a MapReduce task
• If one of the dataset is small, it can be sent over fully to each

tasktracker and exploited inside the map (and possibly reduce)
functions

• Otherwise, each dataset should be grouped according to the
join key, and the result of the join can be computing in the
reduce function

WordCount Example Revisited

1: class Mapper
2: method Map(docid a,doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c
6: end for
7: Emit(term t, count sum)
8: end method
9: end class

WordCount Example Revisited
1: class Mapper
2: method Map(docid a,doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Mapper
2: method Map(docid a,doc d)
3: H← new AssociativeArray
4: for all term t ∈ doc d do
5: H{t} ← H{t}+ 1 . Tally counts for entire document
6: end for
7: for all term t ∈ H do
8: Emit(term t, count H{t})
9: end for

10: end method
11: end class

WordCount Example Revisited

1: class Mapper
2: method Initialize
3: H← new AssociativeArray
4: end method
5: method Map(docid a,doc d)
6: for all term t ∈ doc d do
7: H{t} ← H{t}+ 1 . Tally counts across documents
8: end for
9: end method

10: method Close
11: for all term t ∈ H do
12: Emit(term t, count H{t})
13: end for
14: end method
15: end class

Word count mapper using the“in-mapper combining”.

Average Computing Example

Example
Given a large number of key-values pairs, where
• keys are strings
• values are integers

find all average of values by key

Example
• Input: <‘‘a’’,1>, <‘‘b’’,2>, <‘‘c’’,10>, <‘‘b’’,4>,

<‘‘a’’,7>

• Output: <‘‘a’’,4>, <‘‘b’’,3>, <‘‘c’’,10>

Average Computing Example

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, integer r)
4: end method
5: end class
1: class Reducer
2: method Reduce(string t, integers [r1, r2, . . .])
3: sum← 0
4: cnt← 0
5: for all integer r ∈ integers [r1, r2, . . .] do
6: sum← sum + r
7: cnt← cnt + 1
8: end for
9: ravg ← sum/cnt

10: Emit(string t, integer ravg)
11: end method
12: end class

Average Computing Example

Example
Given a large number of key-values pairs, where
• keys are strings
• values are integers

find all average of values by key

Average computing is not associative
• average(1,2,3,4,5) 6= average(average(1,2), average(3,4,5))
• 3 6= average(1.5, 4) = 2.75

Average Computing Example
1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, pair (r, 1))
4: end method
5: end class
1: class Combiner
2: method Combine(string t, pairs [(s1, c1), (s2, c2) . . .])
3: sum← 0
4: cnt← 0
5: for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
6: sum← sum + s
7: cnt← cnt + c
8: end for
9: Emit(string t, pair (sum, cnt))
10: end method
11: end class
1: class Reducer
2: method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
3: sum← 0
4: cnt← 0
5: for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
6: sum← sum + s
7: cnt← cnt + c
8: end for
9: ravg ← sum/cnt
10: Emit(string t, integer ravg)
11: end method
12: end class

Monoidify!

Monoids as a Design Principle for Efficient
MapReduce Algorithms (Jimmy Lin)
Given a set S, an operator ⊕ and an identity element e, for all a, b,c in
S:
• Closure: a⊕ b is also in S.
• Associativity: a⊕ (b⊕ c) = (a⊕ b)⊕ c
• Identity: e⊕ a = a⊕ e = e

Average Computing Example

1: class Mapper
2: method Initialize
3: S ← new AssociativeArray
4: C ← new AssociativeArray
5: end method
6: method Map(string t, integer r)
7: S{t} ← S{t}+ r
8: C{t} ← C{t}+ 1
9: end method

10: method Close
11: for all term t ∈ S do
12: Emit(term t,pair (S{t},C{t}))
13: end for
14: end method
15: end class

Compute word co-occurrence matrices

Problem of building word co-occurrence matrices from large corpora
• The co-occurrence matrix of a corpus is a square n× n matrix

where n is the number of unique words in the corpus (i.e., the
vocabulary size).

• A cell mij contains the number of times word wi co-occurs with
word wj within a specific context
• a sentence,
• a paragraph
• a document,
• a certain window of m words (where m is an

application-dependent parameter).
• Co-occurrence is a symmetric relation

Compute word co-occurrence (“pairs” approach)

1: class Mapper
2: method Map(docid a,doc d)
3: for all term w ∈ doc d do
4: for all term u ∈ Neighbors(w) do
5: Emit(pair (w, u), count 1)
6: end for
7: end for
8: end method
9: end class
1: class Reducer
2: method Reduce(pair p, counts [c1, c2, . . .])
3: s← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: s← s + c
6: end for
7: Emit(pair p, count s)
8: end method
9: end class

Compute word co-occurrence (“stripes”
approach)

1: class Mapper
2: method Map(docid a,doc d)
3: for all term w ∈ doc d do
4: H← new AssociativeArray
5: for all term u ∈ Neighbors(w) do
6: H{u} ← H{u}+ 1
7: end for
8: Emit(Term w, Stripe H)
9: end for

10: end method
11: end class

1: class Reducer
2: method Reduce(term w, stripes [H1,H2,H3, . . .])
3: Hf ← new AssociativeArray
4: for all stripe H ∈ stripes [H1,H2,H3, . . .] do
5: Sum(Hf ,H)
6: end for
7: Emit(term w, stripe Hf)
8: end method
9: end class

MapReduce Big Data Processing

A given application may have:
• A chain of map functions

• (input processing, filtering, extraction. . .)
• A sequence of several map-reduce jobs
• No reduce task when everything can be expressed in the map

(zero reducers, or the identity reducer function)
Prefer:
• Simple map and reduce functions
• Mapper tasks processing large data chunks (at least the size of

distributed filesystem blocks)

	Motivation MapReduce
	MapReduce
	Apache Hadoop
	MapReduce Algorithms

