
Viewing a World of Annotations through AnnoVIP
Konstantinos Karanasos, Spyros Zoupanos

INRIA Saclay–Île-de-France

4 rue Jacques Monod, 91893 Orsay Cedex, France

firstname.lastname@inria.fr

Abstract— The proliferation of electronic content has notably

lead to the apparition of large corpora of interrelated struc-

tured documents (such as HTML and XML Web pages) and

semantic annotations (typically expressed in RDF), which further

complement these documents. Documents and annotations may

be authored independently by different users or programs. We

present AnnoVIP, a peer-to-peer platform, capable of efficiently

exploiting a multitude of annotated documents, based on inno-

vative materialized views.

I. OUTLINE

In recent years, more and more software tools, including the
most user-friendly ones, such as text editors, have started to
export their contents into some structured document format,
such as HTML or XML. Moreover, annotations have become
very popular as a means to add information to a given
document. HTML Meta tags, Dublin Core [1] and social
networks’ tagging are among the most common methods to
express annotations. Here, we designate by annotation any
simple statement in the style of the RDF standard [2], attaching
to a given subject (or resource, such as a document, or a small
portion of text) a named property, with a certain value.

Using documents and annotations provides the flexibility to
handle a variety of application scenarios in which documents
or RDF alone would not be suitable. As an example, think of
a Web page containing a news item, annotated by a human
reader or a text analysis tool to point out the person names
appearing in the page, her positions within various institutions
etc. or to express subjective opinions regarding the document.
One could suggest modifying the Web page to incorporate
the additional information of the annotations. However, this is
not always feasible, since the author of the annotations may
be distinct from, and have no control over, the author of the
original document; furthermore, the original document should
be readable also to those that are not interested in the extra
information. Using only RDF to model all the content, on the
other hand, is not appropriate since end users are familiar with,
and expect to use structured documents.

Documents and annotations are at the center of the Web-
Content [3] project, in which we are involved. The project is
focused on building and maintaining warehouses of enhanced
Web documents on specific topics, e.g., market survey for the
EADS european company (with offices in several countries) or
an intelligence survey/warehouse concerning news from online
media, bloggers etc. concerning a specific area of the world.

Content publication in WebContent applications is inher-
ently distributed. Documents coming from the Web are fetched

by crawlers running at different sites, possibly re-formatted,
translated from one language to another, and published by
the respective sites. Similarly, documents and annotations
authored by domain experts are published from their sites.
WebContent applications require that all sites be able to
exploit all the published contents. One could have considered
uploading all published content to a single site. However, this
raises some scalability problems, which may require acquiring
dedicated hardware, and introduces a single point of failure.

To address such applications, we have built AnnoVIP, a
symmetrical, peer-to-peer platform, based on a distributed hash
table (or DHT, in short [4]), which guarantees upper bounds on
the number of hops needed in order to route a given message
in the peer network. At the core of content sharing in AnnoVIP
stand materialized views over the whole network content. Each
peer may locally store some XML and RDF content, and
may also define views, describing patterns of interconnected
documents and annotations, that the peer is interested in. These
views are stored in a local repository at the peer. Once a view is
established, its definition will be indexed in the DHT network.
When documents or annotations are published, by looking up
in the DHT, the publishing peer learns if its new content may
contribute to some view, and if yes, it sends the respective
data to the view. After publication, this lookup is repeated
periodically to identify contributions to views defined later
on. Thus, views are updated over time, in the manner of long-
running, de-centralized subscriptions.

A further step in content sharing in AnnoVIP is materialized

view-based query rewriting. Here, we consider the situation
when a peer issues an ad-hoc query, which it has not declared
as a local view. The peer then looks up in the DHT the existing
view definitions, and may rewrite its query based on the views.
From a rewriting, a distributed query plan is derived and
evaluated. When available, pre-computed materialized views
may lead to efficient query evaluation.

The novelty of AnnoVIP stems from its built-in dual sup-
port for documents and annotations at arbitrary granularity
(one can annotate a document, an element, or even a text
fragment). Maintaining and exploiting materialized views for
efficient query processing, over such interconnected corpora
of documents and annotations requires new algorithms, further
complicated by the distribution on the DHT.

In the sequel, Section II discusses content publishing in
AnnoVIP, whereas Section III describes querying. We outline
the target demo scenarios in Section IV and relate AnnoVIP
to existing works in Section V.

978-1-4244-5444-0/10/$26.00 2010 IEEE ICDE Conference 20101133

Fig. 1. Architecture overview.

<article>
<publishInfo>

<author>Alice</author> <year>2009</year>
<country>. . . </country> </publishInfo>

<headline>Financial Crisis</headline>
<topic>economy</topic> <body> . . . </body>

</article>

Fig. 2. Sample published document xmlarticle.

II. CONTENT PUBLICATION IN ANNOVIP

In this section, we discuss publication of documents, an-
notations and views in our system. Section II-A describes the
contents which one may publish, whereas Section II-B outlines
the publication process. To illustrate our explanation, a simple
AnnoVIP instance over six peers is depicted in Fig. 1. Next
to each peer, the Figure shows its published XML documents
(such as xml1, xml2 etc.), annotations (denoted rdf1, rdf2

etc.) and/or materialized views (v1, v2 etc.).

A. Content model

The first kind of content we consider consists of XML
documents. Each document d published by peer p has an URI
allowing to uniquely determine d inside p and in the whole
network. For example, Fig. 2 shows an article on the financial
crisis, published by user Alice. This could be the xmlarticle

document published by peer p4 in Fig. 1.
Annotations can target content at very different granularity

levels. Thus, one can annotate a document, an element, a text
node, or even a fragment of text, e.g., a phrase of particular
significance, or a person’s name inside a text. Therefore, we
consider that any fragment of a document d, whatever its
size, has an URI. Such URIs are implemented by (offset,
length) pairs identifying the fragment in the serialization of
d. Moreover, the URI of d can be easily obtained from the
URI of any fragment of d. This holds in many common URI
schemes, such as XPointer [5], where d.URI is a prefix of all
the URIs of elements in d.

Our model assumes that any XML element has a child
labeled URI, whose value is the actual URI of the element.

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999-rdf-syntax-ns#”
xmlns:anno=”http://gemo.inria.fr/annotate/”>

<rdf:Description rdf:about=“http://gemo.inria.fr/article.xml#body”>
<anno:authName>Bob</anno:authName>
<anno:authCountry>France</anno:authCountry>
<anno:date>26-6-2009</anno:date>
<anno:rating>interesting</anno:rating>
<anno:seeAlso>“http://gemo.inria.fr/article2.xml”</anno:seeAlso>

</rdf:Description>
</rdf:RDF>

Fig. 3. Sample annotation.

However, URI-labeled nodes are virtual, that is, they do not
actually appear in the elements (although as we will explain,
they are needed for querying documents and annotations).
In a similar manner, any fragment can be seen as a node,
endowed with an URI. Without loss of generality, as well as
for conciseness, we focus only on elements hereafter.

The second class of content we consider concerns annota-
tions, which may be either produced by human users, possibly
with the help of some tools, or by automated modules (e.g.
recognizing named entities within a document). For simplicity,
we consider that all annotations have been brought to an
RDF format. Thus, the basic unit of content here is a triple
t=(s, p, o), specifying the value o of property p for the
resource s. We assume triples are serialized following the
XML syntax for RDF [6]. As customary in RDF, s, p and
o range over the set of all URIs, plus the set of String values
in the case of o.

For instance, let us consider how user Bob at peer p1 in
Fig. 1 produces the new annotation rdfanno. Assume Bob
discovers the xmlarticle published by Alice at p4 and decides
to annotate the body of the article as being “interesting”. Bob
also suggests another article (article2.xml), which he finds
related. The corresponding RDF annotation appears in Fig. 3,
together with the author’s (i.e., Bob’s) profile.

B. Peer-to-peer views in AnnoVIP

Views and queries are defined in the same language, which
can be seen as joins over a specific flavor of tree patterns.
Fig. 4 shows some examples.

Each tree pattern node carries a name label, corresponding
to an element or attribute name or a word appearing in a text
node in some document or annotation (we will use w to denote
the word w). Pattern edges correspond either to the child (/)
or the descendant (//) relationships between nodes; we assume
that a text word is a child of its closest enclosing element or
ancestor node. Due to the special role we attach to URIs, we

impose that an URI-labeled view node always appears as a

child (not descendant) of another node in the view. Each node
may be decorated with zero or more among the following
labels: id, standing for structural identifier

1; cont, standing
for the full XML subtree rooted at the node; and val, standing
for the concatenation of all text descendants of the node, in
document order. An id, cont or val label attached to a node
denotes the fact that the structural ID, the content or the value,

1By comparing the structural identifiers of nodes n1 and n2, one can decide
n1 is an ancestor of n2 or not. Many popular examples exist, e.g. [7], [8].

1134

Fig. 4. Sample queries and views.

respectively, of the node belong to the pattern result. Finally,
each node may be labeled with a predicate of the form [val=c]
where c is some constant.

In Fig. 4, pattern tp1 stores the structural ID and the content
of all publishInfo elements. Pattern tp2 stores the author’s
name, as well as the suggested documents for all annotations,
while tp3 keeps the date, country and rating of annotations.
Pattern tp4 stores the URIs of all articles containing the word
“banks”. Observe that although element URIs are not stored in
the original document, they must be actually stored in a view
such as tp4. Finally, tp5 stores the URI, the headline and the
country of the publisher of all articles about the economy.

More complex views can be obtained by joining tree pat-
terns based on some value equality predicates. For instance, a
view may require the name of each author having annotated
an article which mentions “banks”, by connecting tp2 and
tp4 using a value join (rdf :about.val=uri.val). Observe that
the presence of value joins in the language is crucial for
capturing the connections between content and annotations on
that content, via such equality predicates.

Let us consider how published views are filled with data.
In the simple case of tree pattern views, the tree pattern

defining the view is indexed in the DHT by the labels of
all its nodes. Assume peer p publishes some new content.
Then, p will perform lookups on all the element names and
words appearing in this content, to find (possibly a superset
of) views to which the new content may contribute. p then
evaluates these views against its content. The evaluation leads
to a set of tuples, which p sends to the peer which published
v. Thus, the extent (tuples) of a view accumulates, and is
stored, at the view publishing peer. Given that documents and
annotations may also be published after a view to which they
may contribute, periodic view lookup is performed to see if
some new views have been declared since the last lookup, and
possibly contribute to them.

For example, Fig. 1 shows the events taking place when
user Bob publishes rdfanno at p1. Firstly, he performs a look
up to determine (a possible superset of) the view definitions
to which the new annotation may add some tuples (step 1).

In our Figure, p6 holds a view definition index entry referring
to such a view. Upon receiving the view definition, say that
of v2 which p3 holds, p1 extracts the tuples corresponding to
v2(rdfanno) and sends them to p3 (step 2), which appends
them to the view extent. Observe that the contribution of
rdfanno to the view could be evaluated locally at p1, assuming
the view is a tree pattern.

This resource publication process needs to be extended to
accommodate views with joins. Indeed, in such cases, a peer
publishing some new content needs to know if and where, in
the whole network, some other content may satisfy a value
join with its own. One way to implement this is to maintain,
in fact, instead of a tree pattern join view, one view per
each tree pattern, and compute view tuples incrementally as
new tuples are added to each tree pattern, in the style of
incremental maintenance for join views [9]. However, this
may lead to accumulating an unbound amount of data, if,
for instance, many documents matching one view tree pattern
are published, which do not join with any other document or
annotation. To deal with this shortcoming, we devised more
efficient techniques both for the cases when join predicates do
and do not involve URI attributes [10]. We notice that joins
over (possibly virtual) URI attributes are present whenever a
view queries documents with annotations.

III. QUERY REWRITING USING VIEWS

We now consider the processing of a query, such as q in
Fig. 1, posed at a peer p2 which has not declared q as a local
materialized view. First, p needs to find out which views in
the network could possibly be used to answer q. This relies on
the same view definition indexing used for view maintenance.
Then, p runs a view-based rewriting algorithm to find complete
rewritings of q using the existing materialized views. Finally,
one rewriting is picked and evaluated over the distributed
peers.

For instance, in Fig. 1, query q is posed by user Carole at
peer p2. To find view definitions relevant to q, p2 performs a
DHT look-up (step 1�). Assume that peers p1 and p4 return
relevant view definitions. p2 then tries to rewrite q based on
these views (step 2�). The outcome of the algorithm is a logical
algebraic plan based on some views, in our example v3 and v4,
which are stored in peers p5 and p6 respectively. Subsequently,
p2 transforms the rewriting to a distributed physical plan,
which is executed in a distributed fashion in the network (step
3�). For instance, v3 is sent from p5 to p6, where it is joined
with the local v4 and the result is sent back to p2.

AnnoVIP’s rewriting algorithm restricted to tree pattern
queries is provided in [11], and extended to the general
language in [10]; for space reasons, we do not detail it further
here. We illustrate it via examples (recall again the sample
queries in Fig. 4).

Query q1 asks for the headlines of articles mentioning
banks. A possible rewriting could just use tp4 to navigate
through the content of element article and then project the
headline. Now consider a more complex query q2, demanding
the headlines of all articles published in 2009 that were

1135

annotated as interesting today in France. Query q2 can be
rewritten using tp3 and tp5 in the obvious way, if these patterns
are available as materialized views. The drawback is that this
rewriting still requires evaluating one join. However, if view v1

were available, q2 could be answered more efficiently, without
evaluating any costly joins.

IV. PLATFORM AND DEMONSTRATION SCENARIO

We have implemented AnnoVIP on top of VIP2P [11], a
peer-to-peer platform for sharing XML documents using mate-
rialized views. The extension we brought concerns the support
for annotations, value joins in the query language, and specific
techniques for materializing join views and rewriting queries
including value joins. The system is completely developed
in Java, using the Pastry DHT and BerkeleyDB for storing
materialized views; the GUI is based on generic Semantic Web
visualization toolkits [12], [13]. VIP2P’s scalability has been
established in large-scale experiments involving up to 1000
peers in a country-wide WAN [14], thousands of documents
and hundreds of views.

During the demonstration, attendees will get a hands-on
experience on deploying and running AnnoVIP network. We
plan to reserve a few hundreds of machines in the Grid5000
network [14], on which will be deployed (from a single config-
uration package) a set of documents, views, and annotations to
start with. For demonstration purposes, one peer will play the
role of the coordinator, to which all others report their events
(publishing views, documents or annotations, adding data to
views etc.). Demo attendees will then get a chance to provide
their own content in the network either from sample files
which we will provide, or by importing various Web pages;
we will also use a few blogs, whose RSS stream of updates
we will wrap as content to be published in the network. At
that point, annotations at various granularities could be added
on top of the existing or newly published documents. Then,
the content of any view could be dynamically inspected via
the GUI to see how it changes as new contributions are added
to it. A visual representation of the network topology will also
be available, enabling demo attendees to trace the distributed
resource publication or query processing.

We plan to use data sets derived from the target applications
of WebContent. Besides the EADS market survey, we also plan
to use an application related to food safety. In both cases, a
set of documents is available, and specific semantic indexers
analyzing the documents are able to produce annotations
which will be published in the network. Dynamically added
content during the demo will complement these sources to
illustrate how the system works.

V. RELATED WORKS

Our demonstration relates to many works on XML indexing
in DHT networks [15], [16], [17], over which it improves by
allowing to declare and exploit complex materialized views to
speed-up the processing of specific application queries. In [11],
we have provided algorithms which handle efficiently tree
pattern views in large networks (1000 peers). AnnoVIP is the

first to jointly consider documents and annotations, and as a
consequence, as explained in Section II, we add value joins
to the views and to the queries. Numerous recent works have
targeted efficient RDF querying in a centralized setting [18]
and based on DHTs [19]. The specificity of our work is to
first, combine documents and annotations and second, focus
on view maintenance and view-based rewriting.

Within the WebContent project [3], we have devised a
DHT-based platform integrating two types of DHT content
indices [20]. However, this still did not provide sufficient
leeway to establish efficient data access support structures.
Moreover, the biggest performance problems we encountered
while using the system [20] were due to the frequent joins
generated by document-and-annotations queries.

REFERENCES

[1] “Dublic core metadata initiative,” http://www.dublincore.org/.
[2] “RDF: Concepts and Abstract Syntax,” http://www.w3.org/TR/rdf-

concepts/, 2004.
[3] “The WebContent Semantic Web platform,” www.webcontent.fr.
[4] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards

a common API for structured P2P overlays,” in IPTPS, 2003.
[5] “XML Pointer Language,” http://www.w3.org/TR/WD-xptr, 2001.
[6] “RDF/XML Syntax Specification,” http://www.w3.org/TR/rdf-syntax-

grammar/, 2004.
[7] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and

D. Srivastava, “Structural joins: A primitive for efficient XML query
pattern matching,” in ICDE, 2002.

[8] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita,
and C. Zhang, “Storing and querying ordered XML using a relational
database system,” in SIGMOD Conference, 2002.

[9] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views
incrementally,” in SIGMOD Conference, 1993.

[10] K. Karanasos and I. Manolescu, “P2P Views over Annotated Doc-
uments,” http://vip2p.saclay.inria.fr/papers/report.pdf, 2009, Technical
report.

[11] I. Manolescu and S. Zoupanos, “Materialized views for P2P XML ware-
housing,” http://vip2p.saclay.inria.fr/papers/paper.pdf, 2009, submitted
for publication.

[12] E. Pietriga, “Semantic web data visualization with graph style sheets,”
in SoftVis, 2006.

[13] “The prefuse visualization toolkit,” http://www.prefuse.org/.
[14] “Grid’5000 network infrastructure,” https://www.grid5000.fr/.
[15] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun, “XML

processing in DHT networks,” in ICDE, 2008.
[16] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt, “Locating data sources

in large distributed systems,” in VLDB, 2003.
[17] P. Rao and B. Moon, “An internet-scale service for publishing and

locating XML documents (demo),” in ICDE, 2009.
[18] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple indexing for

semantic web data management,” PVLDB, vol. 1, no. 1, 2008.
[19] E. Liarou, S. Idreos, and M. Koubarakis, “Evaluating conjunctive triple

pattern queries over large structured overlay networks,” in ISWC, 2006.
[20] S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F. Goas-

doué, I. Manolescu, B. Nguyen, M. Ouazara, A. Somani, N. Travers,
G. Vasile, and S. Zoupanos, “Webcontent: efficient P2P warehousing of
web data (demo),” PVLDB, vol. 1, no. 2, 2008.

ACKNOWLEDGMENT

We are grateful to Ioana Manolescu for her substantial
guidance and support in this work. We are also thankful to
Alin Tilea for his contribution in developing the system. This
work has been partially funded by Agence Nationale de la

Recherche, decision ANR-08-DEFIS-004.

1136

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
