
Wondering why data are missing from query results?
Ask Conseil Why-Not

Melanie Herschel
Université Paris Sud 11 / INRIA Saclay Ile-de-France

91405 Orsay Cedex
melanie.herschel@lri.fr

ABSTRACT
In analyzing and debugging data transformations, or more specif-
ically relational queries, a subproblem is to understand why some
data are not part of the query result. This problem has recently
been addressed from different perspectives for various fragments
of relational queries. The different perspectives yield different, yet
complementary explanations of such missing-answers.

This paper first aims at unifying the different approaches by defin-
ing a new type of explanation, called hybrid explanation, that en-
compasses the variety of previously defined types of explanations.
This solution goes beyond simply forming the union of explana-
tions produced by different algorithms and is shown to be able to
explain a larger set of missing-answers. Second, we present Con-
seil, an algorithm to generate hybrid explanations. Conseil is also
the first algorithm to handle non-monotonous queries. Experiments
on efficiency and explanation quality show that Conseil is compa-
rable and even outperforms previous algorithms.

1. INTRODUCTION
In designing data transformations, e.g., for data integration tasks,

developers often face the problem that they cannot properly inspect
or debug the individual steps of their transformation specification,
which is commonly specified declaratively. Instead, when observ-
ing result data that do not match their expectation, developers man-
ually search for the reason for the unexpected behavior.

The problem of simplifying the understanding, analysis, and de-
bugging of complex data transformations, and in particular SQL
and relational queries, has led to the development of a variety of
techniques [5, 7, 9, 12]. One important sub-problem in this con-
text is the explanation of missing-answers, i.e., data missing from
the query result (although the developer expected it). Further use-
cases of finding missing-answers include what-if analysis for query
behavior or the generation of queries for benchmarking purposes,
where generated queries ideally do not return a non-empty result.

Recently, approaches to explain missing-answers of relational
and SQL queries have been proposed. Essentially, these approaches
generate either instance-based explanations [13, 14], query-based
explanations [4], or modification-based explanations [19]. The fol-

.

lowing example, used and extended throughout the paper, illus-
trates the different types of explanations.

EXAMPLE 1. Figure 1 shows an SQL query and sample input
data. The query determines which products obtained low ratings in
the US, a query useful for instance to decide which products should
be discontinued. We assume ProdID is a primary key in Products.

SELECT P.ProdID, Name, MAX(Rating)
FROM Ratings R, Products P
WHERE R.ProdID = P.ProdID
AND P.Loc = ‘US’
GROUP BY P.ProdID, P.Name
HAVING MAX(R.Rating) <= 2

Products
ProdID Name Loc

P1 Car US
P2 Truck US
P3 Bus CH

Ratings
ProdID Rating

P1 5
P2 2
P2 1

Figure 1: Sample query and input data

Assume the tuple 〈P1, Car, v1〉 is not in the query result, al-
though the developer or an analyst expected it to be. Here, v1 is
a variable standing for “could be any value”. An instance-based
explanation for this missing-answer may indicate that the maxi-
mum rating of the product with ProdID = P1 exceeds 2, i.e., Ratings
“wrongly” includes one or more tuples of the form 〈P1, v2〉, where
v2 is a variable value that is required to be above 2 (in denot-
ing such conditional tuples in the future, we will add the condi-
tion as last attribute, e.g., 〈P1, v2, v2 > 2〉). A query-based ex-
planation may identify that, although the product exists in Prod-
ucts together with corresponding ratings in Ratings, the selection
predicate MAX(R.Rating) ≤ 2 is responsible for filtering the missing-
answer. Finally, a modification-based explanation modifies the query
such that the tuple appears in the result, e.g., it may raise the selec-
tivity of the selection by changing it to MAX(R.Rating) <= 5.

Unfortunately, it is not guaranteed that, given a missing-answer,
an algorithm finds an explanation. As the next example shows, it is
even possible that no explanation of any type is returned.

EXAMPLE 2. Continuing our example, no explanation can be
computed for the missing-answer 〈P3, Bus, 0〉. Indeed, an instance-
based explanation would have to insert tuple 〈P3, Bus, US〉 into
Products (in addition to inserting the missing rating), which is how-
ever not possible due to the constraint on ProdID [13, 14]1. Due to
the lack of a rating of 0 in Ratings, neither a query-based expla-
nation nor a modification-based explanation will be computed by
state-of-the-art algorithms [4, 19] that assume the existence of data
necessary to produce the missing-answer in the source tables.

Ideally, an explanation pointing out both the problem of miss-
ing source data and the problem of problematic query operators
1[14] also considers updating attribute values of existing tuples in
instance-based explanations. However, it is easy to construct a sce-
nario where even this approach fails in delivering a result, e.g., if
we set the attribute as not updatable, an option suggested in [14].

would help a developer in analyzing the query in the above exam-
ple. Therefore, we introduce a novel type of explanation that com-
bines existing types of explanations and produces an explanation
even in cases where no other individual approach produces a result.
We refer to this new type of explanation as hybrid explanation.

EXAMPLE 3. In the scenario of Example 2, a possible hybrid
explanation inserts a tuple 〈P3, 0〉 into Ratings so as to fulfill the
join with the existing tuple in Products. In addition, it points out
that this combination of source data does not make it to the result
because of the selection predicate on location.

To generate hybrid explanations, we present the Conseil algorithm.
More specifically, we provide a formal definition of hybrid ex-
planations and extend definitions of other types of explanations to
also support non-monotonous queries. We further define relation-
ships between all different types of explanations. We also present
the Conseil algorithm that computes hybrid explanations. An ad-
ditional and substantial novelty compared to other algorithms is its
support of non-monotonous queries. We experimentally com-
pare Conseil to existing algorithms, focusing both on runtime
and on the quality of explanations returned.

In the rest of this paper, we first analyze related work in Sec-
tion 2. Next, we formalize our framework to compute hybrid ex-
planations in Section 3. Section 4 focuses on the Conseil algorithm,
which is evaluated in Section 5 before we conclude in Section 6.

2. RELATED WORK
As mentioned previously, the problem of simplifying the anal-

ysis of the behavior of data transformations to more easily under-
stand and verify transformation behavior and semantics has been
addressed by a variety of techniques, including data lineage [6]
and more generally data provenance [5], sub-query result inspec-
tion [9], visualization [7], or transformation specification simplifi-
cation [11, 12, 16, 18]. The work presented in this paper falls in the
category of data provenance research, focusing on a specific sub-
problem referred to as why-not provenance [4, 17]. Due to the lack
of space, we focus the remainder of the discussion of related work
to existing approaches addressing the why-not provenance issue by
generating different kinds of explanations to missing-answers.

The Missing-Answers (MA) algorithm [14] computes instance-
based explanations given a single missing tuple and a single select-
project-join (SPJ) query. Essentially, it rewrites the SPJ query such
that the result of the rewritten query corresponds to all possible
instance-based explanation for the specified missing-answer. Instance-
based explanations either insert or update the source data, and their
number can be reduced by trusting tables (attributes), which pre-
vents inserts (updates) on these.

Artemis [13] extends the MA algorithm in the sense that it ap-
plies to a set of non-nested SQL queries that involve selection, pro-
jection, join, union, and aggregation (SPJUA queries). Further-
more, more than one missing-answer can be specified. The com-
puted instance-based explanations describe all possible explana-
tions that insert source data such that the simultaneous lack of the
set of specified missing-answers can be explained. Artemis also
considers so called explanation side-effects for pruning explana-
tions. A side-effect is any tuple that, upon changing the source data
according to an instance-based explanation, appears in the result of
any considered query in addition to the specified missing-answer.

Why-Not [4] computes query-based explanations. First, given a
missing-answer, it identifies tuples in the source database that con-
tain the constant values or that satisfy the conditions of the missing-
answer and that are not part of the lineage [6] of any tuple in the
query result. The values in those tuples are traced over the query

operators to identify which operators have them as input but not as
output. In [4] the algorithm is shown to work for one query involv-
ing selection, projection, join, and union (SPJU query).

ConQueR [19], outputs modification-based explanations. Given
a set of missing-answers, an SPJUA query, and a source database, it
first determines if the necessary source data to produce the missing-
answers are available. This is similar to Why-Not. The SQL query
is then changed such that all missing-answers become part of the
output, while side-effects are minimized (i.e., upon query modifi-
cation, tuples existing in the original query result must remain and
only a minimal number of additional tuples are admissible).

Another algorithm that computes modification-based explana-
tions while considering side-effects specializes on answering why-
not questions on top-k queries [10]. Here, the focus lies on chang-
ing k or preference weights to make the missing-answer appear in
the query result.

Compared to previous work, Conseil is the first to consider non-
monotonous queries and hybrid explanations. However, it does not
consider side-effects (part of future work) nor top-k queries.

3. FRAMEWORK AND DEFINITIONS
To set the theoretical foundation of Conseil, we first extend the

definitions of the different explanation types to fit the most general
scenario. Similarly to [13], we call these debugging scenarios. We
then define hybrid explanations and show interesting relationships
between different types of explanations.

3.1 Framework
We define a debugging scenario for the general case where mul-

tiple missing-answers and multiple queries are considered. These
definitions capture all previous definitions and offer enough free-
dom to allow for further algorithms.

To define a debugging scenario, we first have to define condi-
tional tuples [15] as well as matching conditional tuples.

DEFINITION 1 (CONDITIONAL TUPLE (C-TUPLE)). A condi-
tional tuple t = 〈a1, . . ., an, cond〉 is a tuple with attributes a1 to
an having constant or variable values, and cond being a boolean
expression. The semantics are that tuple t represents all possible
tuples that contain the same constants and that satisfy cond.

To indicate the relation R a c-tuple belongs to, we use R〈a1, . . .,
an, cond〉. Also, we refer to an attribute a within a c-tuple t using
the notation t.a, e.g., t.cond refers to the condition of the c-tuple.

We now define a debugging scenario, which represents the input
of an algorithm explaining missing-answers.

DEFINITION 2 (DEBUGGING SCENARIO). A debugging sce-
nario is a 5-tuple (E,Q,Q(D), D, C), whereQ is a set of queries,
Q(D) is the result of these queries over some source instanceD,E
is a set of missing-answers to be explained, specified as a set of c-
tuples missing fromQ(D), and C being a set of constraints defined
over the remaining four components of the debugging scenario.

Let us illustrate how the algorithms surveyed in Section 2 con-
form to this framework. We can describe the debugging scenario of
MA as ({e}, {Q}, {Q(D)}, D, C). More specifically, MA is de-
signed to explain one missing tuple e from the result of one query
Q. The constraints are the trust constraints. Artemis defines a de-
bugging scenario S = {E,Q,Q(D), D,Qm,Qim} where Qm

andQim describe constraints that minimize or prohibit side-effects
on designated query results, respectively. As a consequence, these
can be seen as constraints, i.e., to conform to our framework, we
can set C = {Qm,Qim}. As for Why-Not, it takes a predicate

in disjunctive normal form as input that can be interpreted as a set
of c-tuples describing missing-answers to a single query Q. No
further constraints apply, so the debugging scenario for Why-Not
corresponds to {E, {Q}, {Q(D)}, D, ∅}. Finally, ConQueR ex-
plains multiple missing-answers from one query Q and allows to
specify constraints spanning multiple missing-answers, which can
be modeled by C. That is, we have (E, {Q}, {Q(D)}, D, C) as
debugging scenario for ConQueR.

A debugging scenario defines the input provided to an algorithm
that computes explanations for missing-answer. Let us now turn to
the definition of its output. As mentioned previously, different al-
gorithms return different types of explanations. We define these for
the case whereQ consists of queries involving operators from rela-
tional algebra plus aggregation. Thus, below definitions extend pre-
vious definitions of query-based, instance-based, and modification-
based explanations, that so far have been defined for a fragment of
relational queries (with aggregation).

An instance-based explanation generally consists of labeled c-
tuples. The definition of these relies on the concept of compatible
c-tuples, defined first.

DEFINITION 3 (COMPATIBLE C-TUPLES). A c-tuple t1 is com-
patible with a c-tuple t2 if (i) Πa1,...,an(t1) is equal, subsumes, or
complements Πa1,...an(t2) and (ii) t1 or the complement of t1 and
t2 satisfies t1.cond ∧ t2.cond.

We reuse existing definitions for subsumption and complementa-
tion [2, 8], except that unlike these, we consider value NULL as part
of the constant domain (and NULL equals NULL!), and unknown se-
mantics are attributed to the variables of a c-tuple.

EXAMPLE 4. Consider c-tuples t1 = 〈P1, Car, v1, v1 6= ‘UK’〉,
t2 = 〈P1, v2, US, v2 LIKE ‘C%’〉, and t3 = 〈P1, Car, US, true〉.
Here, t3 subsumes t1 because t3 matches all constants of t1 and
has less unknown values and t3 satisfies the condition of t1.cond∧
t3.cond. Thus, t3 is compatible with t1 (but not vice versa). Fo-
cusing on t1 and t2, we see that these complement each other.
The complement of t1 and t2 (without conditions) is 〈P1, Car, US〉
for which it is easy to verify that both t1.cond and t2.cond hold.
Hence, t1 is compatible with t2 (and vice versa).

DEFINITION 4 (LABELED C-TUPLE). A labeled c-tuple t =
L〈a1, . . ., an, cond〉 w.r.t. some data set D is a c-tuple associated
with a label L ∈ {+,−, ◦} that indicates whether a c-tuple com-
patible with t is known to exist in D (L = ◦), needs to exist in D
(L = +), or must not exist in D (L = −).

When associated with label ◦, the c-tuple describes an existing
tuple and hence its condition is always true. For brevity, we omit
the condition true for tuples in D in the remainder of this paper.

DEFINITION 5 (INSTANCE-BASED EXPLANATION). An instance-
based explanation φIB for a debugging scenario describes modifi-
cations to the database D that would yield the missing-answers of
E inQ(D) while satisfying constraints C. The syntax of φIB is:

φIB := {[T1, . . . Tn]}A T := C|φIB
C := L〈a1, . . ., an, cond〉 A := group|agg|group ∧ agg|∅
group := group|acopv agg := agg|aggF (a)aCond

where L〈a1, . . ., an, cond〉 refers to Definition 4, a is an attribute,
v a value (constant or variable), cop ∈ {=, <,>,≤, geq}, aggF
is an aggregation function over attribute a, and aCond a condition
on the aggregated value of a. The semantics of φIB describe the
sequence of operations [T1, . . . , Tn] needed to yield the missing
tuples, the result being grouped and aggregated following A.

Intuitively, an instance-based explanation returns a set of modi-
fications to the database, on which a grouping or aggregation con-
straint of A may apply. A modification T either corresponds to a
labeled c-tuple C or again φIB , necessary for nested queries.

EXAMPLE 5. The instance-based explanation of Example 1 is
defined as follows, assuming that all ratings for P1 are above 2.

φIB = {[◦Product〈P1, Car, US〉,−Ratings〈P1, v1, v1 > 2〉,
+Ratings〈P1, v2, v2 <= 2〉]}P.ProdID = P1, P.Name = Car

In the rest of this paper, we will simplify the notation when pos-
sible, i.e., we will omit the subscript ∅when no aggregation applies.

Let us now shift our attention to query-based explanations, re-
turned for instance by Why-Not [4].

DEFINITION 6 (QUERY-BASED EXPLANATION). A query-based
explanation φQB for a debugging scenario is a set of query opera-
tors. Each operator opi ∈ φQB is responsible for pruning missing-
answers of E from Q(D) and satisfies C. An operator opi is re-
sponsible for pruning a missing answer e ∈ E if data relevant to
produce e is in the input of opi but not in its output.

The definition leaves open the choice of one or more operators in
φQB as this depends on the properties and optimizations an algo-
rithm implements. For instance, Why-Not returns a set of operators
closest to the root in the canonical query plan of Q (the canonical
representation being defined in [6]) that prune any missing-answer.
This definition also leaves open the choice of data relevant to pro-
duce e, as this is also algorithm-dependent. Why-Not for instance
chooses to select tuples in the source database containing attributes
compatible with at least one attribute in the c-tuple defining e and
that are not in the lineage of any result tuple in Q(D).

EXAMPLE 6. Given the query of Example 1 and the missing-
answer e = 〈P1, Car, v1〉, data relevant to produce e includes the
tuple 〈P1, Car, US〉 ∈ Products and all tuples in Ratings. Join-
ing both tables on PID, a tuple consisting of “successors” of rel-
evant tuples, i.e., 〈P1, Car, US, P1, 5〉 occurs in the output of the
join. This result tuple satisfies σP.loc=US and thus finds a succes-
sor in the selection’s output. The same is true for the aggrega-
tion operator, retuning 〈P1, Car, 5〉. However, this tuple does not
pass the subsequent selection σMax(R.Rating)≤2. Consequently,
this selection operator is identified as culprit operator for e and
φQB = {σMax(R.Rating)≤2}.

The final type of explanations to define before we define hybrid
explanations are modification-based explanations.

DEFINITION 7 (MODIFICATION-BASED EXPLANATION). A
modification-based explanation φMB for a debugging scenario is a
rewriting ofQ into a set of queriesQ′ such that all missing tuples in
E occur inQ′(D) for a given source instance D and C is satisfied.

EXAMPLE 7. A modification-based explanation for our running
example may rewrite the original SQL query as follows:

SELECT P.ProdID, P.ProdName
FROM . . . WHERE . . . GROUP BY . . .
HAVING MAX(R.Rating) <= 5

As illustrated in Example 2, the above explanation types may fail
in returning explanations in some scenarios. In some cases, one
explanation type may compensate for the empty result of another
explanation type, but we have seen that it is possible that no expla-
nation type can generate explanations on its own. To extend the set
of debugging scenarios for which explanations can be returned, we
define a new type of explanation, namely hybrid explanation.

DEFINITION 8 (HYBRID EXPLANATION). A hybrid explana-
tion φH for a debugging scenario S is a 3-tuple (φIB , φQB , φMB)
s.t. the conjunction of all φi ∈ φH is a valid explanation, even
though any conjunction of a subset of φi’s is not necessarily an ex-
planation. A hybrid explanation is valid if, once data modifications
of φIB were applied, φQB (φMB) would become valid query-based
(modification-based) explanations w.r.t. S.

EXAMPLE 8. The hybrid explanation described in Example 3
is formally described as (φIB , φQB ,⊥) where

φIB = [◦Products〈P3, Bus, CH〉,+Ratings〈P3, 0〉]
φQB = {σP.Location=US}

3.2 Explanation Type Relationships
Having defined the different explanation types, we briefly pro-

vide interesting relationships that hold between these explanation
types. Proofs are trivial and are omitted due to space constraints.

THEOREM 1. Given an explanation φi, where i ∈ {IB,QB,MB}
it is true that φi also qualifies as hybrid explanation. The converse,
however, is not true. We write φi → φH , i ∈ {IB,QB,MB}.

THEOREM 2. Let Φi be the set of all possible explanations of
type i ∈ {IB,QB,MB,H}. Then, ΦIB ∪ ΦQB ∪ ΦMB ⊆ ΦH .

THEOREM 3. If there exists a query-based explanation, there
also exists an equivalent modification-based explanation. The con-
verse is also true. Thus, the set of all query-based explanations
covers the same cases as the set of all modification-based explana-
tions, i.e., ΦQB ≡ ΦMB .

THEOREM 4. We can simplify the definition of a hybrid expla-
nation to one of the two following definitions without information
loss: φH1 = {φIB , φQB} and φH2 = {φIB , φMB}.

Note that the above theorems cover the general theoretical case.
As different algorithms target different subsets of the general prob-
lem defined by our framework, these may not hold. For instance,
there is no equivalence between the query-based explanations Why-
Not returns and the modification-based explanations ConQueR com-
putes. For instance, ConQueR solely deals with numerical data,
whereas Why-Not also considers string data.

4. THE Conseil ALGORITHM
Having described the general framework for explaining missing-

answers, we now describe Conseil, an algorithm implementing our
framework by computing hybrid explanations and that, consequently,
also covers all other types of explanations.

Conseil computes hybrid explanations for relational queries (i.e.,
queries involving selection σ, projection Π, join 1, Cartesian prod-
uct×, union ∪, and set difference \) with the restriction that it only
supports one set difference operator. It also supports aggregation α.
The rationale behind the restriction to one set difference operator
per query is twofold. First, as we shall see, having set difference
operators in our query will bring us to solving a specific type of
view deletion problem, and by restricting ourselves to one set dif-
ference operator, we can leverage existing approaches to solving
this problem. Second, generating hybrid explanations for queries
with more than one difference is not very practical as the result-
ing explanation (if it can be computed at all) easily becomes too
difficult for the developer to interpret. Despite this restriction, we
believe that Conseil is still widely applicable in practice.

In its current version, Conseil does not consider side-effects and
we so far focus on explaining one missing-answer e to the result

Algorithm 1: Conseil Algorithm
Input: a debugging scenario ({e}, {Q}, {Q(D)}, D, C)
Output: set of hybrid explanations φH

1 Φ← computeGenericWitness(e,Q);
2 TA ← annotatePassingProperties(Q,D,Φ);
3 D ← computeDerivations(Φ, TA);
4 φH ← ∅;
5 foreach derivation d ∈ D do
6 φH ← φH ∪ computeExplanations(d,D);

7 return φH ;

Q(D) of a queryQ over a relational instanceD. However, Conseil
exploits both referential constraints and unique constraints defined
over D, which are formalized in C.

The above assumptions yield the following debugging scenario
for Conseil: SConseil = ({e}, {Q}, {Q(D)}, D, C).

Algorithm 1 highlights the four main steps of Conseil. First, it
computes a generic witness Φ that is then annotated with passing
properties. Based on the annotated generic witness TA, it computes
a set of derivationsD. Finally, Conseil computes a hybrid explana-
tion for each derivation, and returns these. We discuss each step in
detail in the following. For illustration, we will use a more complex
example than previously to cover more details.

EXAMPLE 9. Figure 2 shows the canonical query tree of a query
Q over data in relations R, S, T , U , and V . Please ignore the rest
of the figure for now. We define SConseil as follows2:

e = 〈a’, c’, d’〉
Q,D = see Figure 2
Q(D) = {〈a’, c, d〉}
C = {R.A, S.B, T.B, U.A,R.B → S,R.B → T, T.A→ U}

4.1 Step 1: Generic Witness Computation
First, Conseil compute a generic witness. Intuitively, a generic

witness describes a pattern each explanation conforms to. Sim-
ilarly to a hybrid explanation, a generic witness Φ comprises an
instance-based component, denoted ΦI , and a query-based compo-
nent, denoted ΦQ. Essentially, we use this generic witness to limit
the search space explored in subsequent steps. The generic wit-
ness can be computed efficiently based on e and Q (the complexity
depending on the size of Q).

The instance-based component ΦI describes in the form of us-
ing c-tuples what data has to be present in the sources in order to
produce e. ΦQ, on the other hand, includes all operators that may
be responsible for pruning e from the query result, i.e., σ,1, and \.

To compute the generic witness, we extend the definition of a
generic witness for instance-based explanations [13], defined for
a query that, in terms of [6] corresponds to a single α-∪-Π-σ-1-
segment (i.e., an SPJUA query). Our extension allows to have a
query with an arbitrary number of these segments, either connected
directly to each other or, in just one instance, connected through
one additional set difference operator (i.e., a single \-segment).

To define the generic witness Φ, we first need to distinguish be-
tween missing-tuple constraints, subsequently called mt-constraints,
and query-constraints, or q-constraints for short.

DEFINITION 9 (MT-CONSTRAINT). An mt-constraint is a con-
straint that, given e and Q, can be identified as being imposed on
the lineage [6]3 D∗ of e w.r.t. Q by the missing-tuple e.
2R.X identifies attribute X as key attribute in R and R.X → T
describes a foreign key X in relation R referencing relation T .
3In [6], this actually corresponds to their definition of derivation,
however, we use the term lineage here as we use the term derivation
in a different context.

P© \

P©πR.A,S.C,T.D

B© σS.C=c

P© σU.B=u

A© 1U.A=T.A

P© 1R.B=T.B

A© 1R.B=S.B

P© R
A B
a b
a′ b

〈a’, b〉

P© S
B C
b′ c′

b c

〈b’, c’〉

〈a’, vB , c’〉 B© T
A B C D
a b c d
a′ b′ c′ d
a b′′ c′ d

〈vA, vB , vC , d’〉*

〈a’, vB , c’, vA, vC , d’〉*
P© U

A B
a u

〈a, u〉

〈a’, vB , c’, a, vC , d’, u〉

〈a’, vB , c’, a, vC , d’, u〉

〈a’, vB , c’, a, vC , d’, u〉*

〈a’, c’, d’〉

B© ΠV.A,V.C,V.D

P© σV.A=a

B© V
A B C D
a b c d
a′ b′ c′ d′

〈a’, b’, c’, d’〉

〈a’, vB , c’, d’〉*

〈a’, c’, d’〉

Figure 2: Sample query tree for scenario of Example 9

DEFINITION 10 (Q-CONSTRAINT). A q-constraint is a con-
straint that, given e and Q, can be identified as being imposed on
the lineage D∗ of e w.r.t Q by the query Q.

EXAMPLE 10. For Example 9, one mt-constraint is R.A = a′

whereas U.B = u illustrates a q-constraint.

The only operators that introduce q-constraints are σ and 1. In-
deed, Π, α, and ∪ cannot be held responsible for pruning input
tuples and \ does not impose a constraint on the lineage of e, as
lineage is defined solely by the tuples that need to be present.

We now define the generic witness for SPJD-queries, i.e., queries
involving selection, projection, join, and set difference. Note that
whenever the detailed discussion of Conseil focuses on this query
fragment, we make comments on how to include union and aggre-
gation.

DEFINITION 11 (GENERIC WITNESS Φ FOR SPJD-QUERIES).
A generic witness Φ = (ΦI ,ΦQ) for a SPJD-query is a 2-tuple of
sets ΦI and ΦQ, where ΦI is the instance-based component of Φ
and ΦQ is its query-based component. ΦI includes a c-tuple for
each relation in the lineage of e w.r.t. Q, c-tuple conditions corre-
sponding to mt-constraints on the respective tables. More formally,

ΦI = {ti|relation(ti) ∈ lineage(e,Q)∧ti.cond the mt-constraint on ti}
ΦQ contains all query operators ofQ that result in a q-constraint

plus the set-difference operator (if present), i.e.,

ΦQ = {opi|opi ∈ Q ∧ opi ∈ {σ,1, \}}
EXAMPLE 11. The generic witness for the debugging scenario

of Example 9 has ΦI = {R〈a’, ?〉, S〈?,c’〉, T 〈?,?,?,d’〉, U〈?,?〉}4

4For conciseness, we use a syntax similar to the nota-
tion used in the body of Datalog rules to denote con-
ditions, e.g., R〈r1, r2 | r2 = s1 ∧ r1 = a〉, S〈s1, s2|s1 = r2〉 ≡
R〈a, r2〉, S〈r2, ?〉

Algorithm 2: annotatePassingProperties(Q,D,Φ)

Input: queryQ, source dataD, generic witness Φ
Output: TA, the canonical query tree annotated with passing properties

1 T ← canonicalize(Q);
2 T ′A ← T ;
3 V ← right subtree of single set difference operator in T ;
4 if V 6= null then
5 TA,V ←

annotate(V,D, genericWitness(getCtuple(\,Φ), V));
6 foreach node n ∈ TA,V do
7 if n.pp = P© then
8 n.pp← B©;

9 else if n.pp = B© then
10 n.pp← P© ;

11 V.root.output = V (D);
12 T ′A ← T after replacing subtree V by TA,V ;

13 TA ← annotate(T ′A, D,Φ);
14 Φ← getAnnotationsFromTree(TA,Φ) ;
15 return TA;

and ΦQ = {1R.B=S.B ,1R.B=T.B ,1U.A=T.A, σU.B=u, σS.C=c, \}.
This generic witness describes the fact that in order for e to become
part of Q(D), we need some tuple in R that contributes the value
a’, a tuple in S to satisfy S.c = c’, a tuple in T with a value d’ and a
tuple in U. The query-based component includes all join, selection,
and set difference operators of the sample query.

In case a query involves union operators, we create one generic
witness for each alternative. For instance,Q = (R 1 S)∪T results
in two generic witnesses, whose instance-based components have
the form {R(. . .), S(. . .)} and {T (. . .)}, respectively.

When aggregation (together with grouping) is present, the c-
tuples of the instance-based part of the generic witness are grouped
accordingly, yielding a syntax for the generic witness similar to
the syntax of the instance-based explanation, the main difference
being that the c-tuples are not labeled and are sets instead of se-
quences. For example, given a missing tuple 〈b,3,c〉 and a query
Q = ΠB,A,C(αB,COUNT (A)ASA(R) 1 S), we obtain ΦI =
{{R〈va, b〉}B,COUNT (A)=3, S〈b, c〉}.

4.2 Step 2: Generic Witness Annotation
Having the generic witness in hand, the next step is to annotate it

with passing properties. We define three passing properties, named
passing, blocking, and ambiguous. An operator is passing if we are
certain that it is not responsible for pruning e from the result. If, on
the contrary, we know that this operator is a culprit, we assign it the
blocking annotation. In all other cases, we declare it as ambiguous.

DEFINITION 12 (ANNOTATED GENERIC WITNESS). An anno-
tated generic witness is a generic witness Φ where each c-tuple in
ΦI and each operator in ΦQ is assigned an annotation. The set of
possible annotations is the set { A©, B©, P©}, standing for ambigu-
ous, blocking, and passing, respectively.

The annotation step allows us to refine the explanation pattern
given by the generic witness. Indeed, after determining the passing
properties of query operators (notably those included in ΦQ), we
will “discard” passing operators (as they cannot be held responsible
for making the missing-answer disappear) and “fix” blocking oper-
ators, meaning that these will be part of the query-based component
of any hybrid explanation. Consequently, Conseil subsequently fo-
cuses on “resolving” the ambiguity of the remaining operators.

Algorithm 2 shows the annotation procedure for any possible in-
put query to Conseil. It first canonicalizes its input query Q into

Instance-based part Query-based part
Annotated generic witness

{R〈a’,?〉 P©, S〈?,c’〉 P©, T 〈?, ?, ?,d’〉 B©, U〈?, ?〉 P©} {1R.B=S.B A©,1R.B=T.B P©,1U.A=T.A A©, σU.B=u P©, σS.C=c B©, \ P©}
Derivations

{R〈a’,vB〉A©, S〈?,c’〉 P©, T 〈?,vB ,?,d’〉 B©, U〈?,u〉A©, 6 ∃v〈a’,c’,d’〉 P©} {1R.B=S.B A©,1U.A=T.A A©, σS.C=c B©}
{R〈a’,vB〉A©, S〈vB ,c’〉A©, T 〈?,vB ,?,d’〉 B©, U〈?,u〉A©, 6 ∃v〈a’,c’,d’〉 P©} {1U.A=T.A A©, σS.C=c B©}
{R〈a’,vB〉A©, S〈?,c’〉 P©, T 〈vA,vB ,?,d’〉 B©, U〈vA,u〉A©, 6 ∃v〈a’,c’,d’〉 P©} {1R.B=S.B A©, σS.C=c B©}
{R〈a’,vB〉A©, S〈vB ,c’〉A©, T 〈vA,vB ,?,d’〉 B©, U〈vA,u〉A©, 6 ∃v〈a’,c’,d’〉 P©}{σS.C=c B©}

Explanations
{[◦R〈a’b〉, ◦S〈?, c’〉,+T 〈?, b, ?, d’〉, ◦U〈a, u〉]} {1R.B=S.B ,1U.A=T.A, σS.C=c}
{[◦R〈a’b〉,+S〈b, c’〉,+T 〈?, b, ?, d’〉, ◦U〈a, u〉]} {1U.A=T.A, σS.C=c}
{[◦R〈a’b〉, ◦S〈?, c’〉,+T 〈a, b, ?, d’〉, ◦U〈a, u〉]} {1R.B=S.B , σS.C=c}
{[◦R〈a’b〉,+S〈b, c’〉,+T 〈a, b, ?, d’〉, ◦U〈a, u〉]} {σS.C=c}

Table 1: Generic witness, derivations, and explanations for scenario of Example 12

Algorithm 3: annotate(T,D,Φ)

Input: canonical query tree T , source dataD, generic witness Φ
Output: TA, the canonical query tree annotated with passing properties

1 Q← serialize(T) ;
2 foreach relation type r ∈ Q do
3 if r contains tuples compatible with getCTuple(r,Φ) then
4 r.pp← P©;
5 r.output← all tuples from r inD;

6 else
7 r.pp← B©;
8 r.output← getCTuple(r,Φ) ;

9 foreach op ∈ Q do
10 foreach c ∈ op.children do
11 op.input← op.input ∪ {(c, c.output} ;

12 op.output← op.run();
13 if op.output contains a “relevant successor” then
14 op.pp← P©;

15 else if op.cond is not compatible with at least one mt-constraint in Φ then
16 op.pp← B©;
17 op.output← getCTuple(op,Φ);

18 else
19 op.pp← A©;
20 op.output← getCTuple(op,Φ) ;

21 TA ← buildTree(Q);
22 return TA;

its canonical tree representation T 5. If query Q contains a set dif-
ference, we split the query into the left and the right subtree of
the set difference. On the right subtree V , we call the function
annotate (discussed below) and, since we are in the negative part
of the set difference, we revert passing annotations to blocking and
vice versa. To correctly determine passing properties, we regis-
ter the output of the subquery V over D (denoted V (D)) to V ’s
topmost operator. We then process the left subtree, again calling
annotate and return the final result TA.

Algorithm 3 describes the annotation assignment procedure that
applies on any sequence of α-∪-Π-σ-1-segments. It first serial-
izes the canonical tree T into a queue Q. This serialization makes
sure that all children nodes precede their parent node. We then tra-
verse the first elements of the queue that are relation types in lines
2 through 8, before we traverse query operators in lines 9 through
20. Due to the lack of space, we do not further discuss the internals
of the algorithm. To provide a general understanding, we illus-
trate its functionality on our complex example. We assume that
getCTuple(r,Φ) extracts the c-tuple in the generic witness Φ that
imposes constraints on relation r.

EXAMPLE 12. The query of Figure 2 includes a set difference,
hence, its right subtree will be annotated first. The c-tuple returned
by getCTuple(\,Φ) is 〈a’,c’,d’〉. The generic witness on this sub-

5We determine a canonical tree representation as defined in [6].

tree includes the instance-based component{V 〈a’,vB , c’, d’〉}, for
which we find the underlined compatible tuple in V . Hence, the an-
notation as determined by Algorithm 3 is P©, which is then changed
into B© by Algorithm 2. We register the compatible source tuple
of V to the output of relation schema V and proceed to σV.A=a.
This operator is identified as blocking (later converted to passing)
as its condition contradicts the mt-constraint on V that requires
V.a = a′. As a consequence, we streamline an “invented” tuple
〈a’,vB , c’, d’〉 to the projection, a generally passing (and in the right
sub-tree of a set difference thus blocking) operator. Next, we pass
on the result of the subquery as right input to the set difference.

Focusing on the left subtree of the set difference, we find compat-
ible source data in both R and S, which are thus marked passing
and that pass on their compatible output to their parent. Because
T does not contain any tuple where D = d’, it is blocking and passes
on a c-tuple 〈vA, vB , vC , d’〉. The join between tables R and S is
ambiguous because no tuple in its result combines the values a’ and
c’. Consequently, a c-tuple encoding the join condition as a com-
mon unknown value vB is registered to the subsequent join. This
join, i.e., 1R.B=T.B is passing because, given its input, which con-
sists of c-tuples, its output contains a tuple that is compatible with
the desired missing-answer. This compatible output c-tuple is reg-
istered as input to the final join 1U.A=T.A. This join results in no
compatible result c-tuple, so it is ambiguous and we invent a com-
patible tuple for the subsequent operators. For these, it is easy to
verify that the c-tuple 〈a’, vB , vC , d’, a’, vU 〉 has compatible succes-
sors for both selections and the projection, so all these operators
are passing. Finally, we observe that the set difference is passing,
because no compatible left input is eliminated by its right input.

Table 1 summarizes the annotated generic witness, whose anno-
tations are simply equal to the annotations of corresponding nodes
of TA, as assigned in line 14 of Algorithm 2.

4.3 Step 3: Derivation Computation
As mentioned before, we annotate the generic witness to refine

the hybrid explanation pattern given by the generic witness. More
specifically, we determine a set of patterns, called derivations.

Given a generic witness Φ = ({t1, . . . tn}, {op1, · · · , opm})
for an SPJD-query, where ti = Ri(a1, . . . , ani , cond) and op ∈
{σ,1, \}, we determine a derivation Φ′ = (Φ′I ,Φ

′
Q) by applying

the derivation rules summarized in Table 2. In general, derivation
is an iterative process that transfers one q-constraint of opi ∈ ΦQ

into an mt-constraint in ΦI .
Algorithm 4 describes the derivation procedure, It first applies

the derivation rules to translate all passing operators of TA into
mt-constraints and corresponding c-tuples to be added to ΦI . The
intuition behind this is that a passing operator will never contribute
to a query-based explanation (or the query-based part of a hybrid
explanation). However, the conditions making it passing need to be
satisfied by any instance-based explanation (or instance-based part
of a hybrid explanation). We apply the same idea to ambiguous

Rule (1): opi = σRj.a cop c,
where Rj is a table reference,
a an attribute of table Rj , cop
a comparison operator, and c an
constant.

Φ′I =(Φi \ {Rj(. . . , a, . . . |condj)})
∪Rj(. . . , a, . . . |condj ∧ (a cop c))

Φ′Q=ΦQ \ {opi}

Rule (2): opi =1Rj.a cop Rk.b

where a and b are attributes of ta-
blesRj andRk respectively and
cop is a comparison operator.

Φ′I =(Φi \ {Rj (. . . , a, . . . |condj) ,
Rk (. . . , b, . . . |condk)})
∪Rj (. . . , a, . . . |condj ∧ (a copRk.b))
∪Tk (. . . , b, . . . |condk ∧ (Tj .a cop b))

Φ′Q = ΦQ \ {opi}
Rule (3): Q = Q1 \ R2, where
Q1 is a subquery without dif-
ference and R2 is a base rela-
tion. Furthermore, Q only con-
tains one difference.

Φ′I =ΦI∪
{6 ∃R2(getCTuple(\,Φ).a1,
. . . ,
getCTuple(\,Φ).an,
getCTuple(\,Φ).cond)}

Φ′Q=ΦQ \ {opi}
Rule (4):Q1 \ Q2, where Q1

and Q2 are both queries without
difference. Furthermore, Q only
contains one difference.

let v = Q2(D), i.e., let v be the view defined by
Q2 over D. Then, we apply the same derivation
rule as in the previous case (i.e., Rule (3)), with
the difference that we have v instead ofR2.

Table 2: Derivation rules

operators next. However, as these operators stand for the possibility
that the operator can be either passing or blocking, we create a
derivation corresponding to each case (see Algorithm 5).

Essentially, we obtain a derivation by applying a sequence of
derivation rules to the generic witness Φ. We denote 〈a, b〉 the
derivation sequence that first applies derivation rule a and then
derivation rule b. The resulting witness is denoted as Φ〈a,b〉. It is
easy to show that Φ〈a,b〉 ≡ Φ〈b,a〉, a fact we exploit to reduce the
number of derivation sequences to explore. In general, assuming k
is the number of ambiguous operators in TA, there exist 2k deriva-
tions. These derivations can be computed inductively, meaning that
these 2k derivations can be computed in 2k steps.

We can conceptually extend our derivation procedure to general
relational queries involving more than one set difference operator.
However, for Conseil, we exclude this case, because for generat-
ing actual explanations in the next step of the algorithm, we have
to solve the view-update problem [1], restricting to the case where
the update is a deletion. For this view-deletion problem, we ulti-
mately plan to leverage previous results [3] obtained for conjunc-
tive queries to be efficient and to minimize side-effects. In our cur-
rent implementation, we however produce explanations that delete
the lineage of any tuple in vmatching the c-tuple getCTuple(\,Φ).

When dealing with queries involving union operators, we have
seen that these will result in multiple generic witnesses, i.e., one
for each subquery. In this case, we perform derivation for each pro-
duced generic witness. As for aggregation, we push conditions that
apply to an aggregated result (e.g., σMAX(R.Rating≤2)) either into
the c-tuples belonging to the grouped and aggregated sub-query
(for MIN and MAX) or to agg itself (for COUNT, SUM, AVG). The rea-
son for this differentiation lies in the fact that we do not actually
want to update the source, and an explanation inserting or delet-

Algorithm 4: computeDerivations(Φ, TA)

Input: generic witness Φ, annotated canonical query tree TA

Output: D, the set of derivations of Φ w.r.t. TA

1 D ← ∅ set of derivations, initially empty;
2 Φ′ ← {Φ′I ,Φ′Q}, a derivation with initially empty Φ′I and Φ′Q;
3 A← set of ambiguous operators, initially empty;
4 foreach op ∈ ΦQ do
5 if op.pp = P© then
6 Φ′ = applyDerivationRules(op,Φ);

7 else if op.pp = A© then
8 A← A ∪ {op};

9 D ← findDerivationsForAmbiguous(A,Φ′);
10 returnD;

ing a possibly large number of tuples just to match a certain count,
sum, or average score is more difficult to interpret than just telling
“there is a count, but it does not match your expectation”.

So far, we have discussed the derivation without considering
passing properties. However, just like a generic witness, each deriva-
tion has passing properties, determined as follows.
• If op ∈ {σ,1} has only passing descendants, and op is passing,

then the annotation of the modified c-tuples is P©.
• A blocking c-tuple remains blocking after derivation.
• The passing property of the existential c-tuple in Φ′I (the c-tuple

preceded by 6 ∃ in Rule (3)) introduced by the set difference op-
erator inherits the operator’s annotation in ΦQ.
• In all other cases, the passing property is set to A©.
• Φ′Q retains the passing properties of ΦQ.

EXAMPLE 13. The derivations shown in Table 1 correspond to
the derivation of all passing operators (line 1), 1R.B=S.B (line 2),
1R.B=T.B (line 3), and finally both joins (line 4).

4.4 Step 4: Explanation Computation
In its final step, Conseil computes, for each derivation, the corre-

sponding set of hybrid explanations. At this stage of the algorithm,
the query-based component of an explanation is given by the set
of operators in the query-based component of a derivation. As a
consequence, this step focuses on exploring the possible label as-
signments in the instance-based component of each derivation.

In principle, Conseil could use any algorithm to compute instance-
based explanations (and limiting the output to those conforming to
the derivation’s “pattern”). However, existing algorithms [13, 14]
compute all instance-based explanations, their number increasing
exponentially with the data. This is both time consuming and the
result may be too overwhelming for the developer to be of any use.
Hence, Conseil limits to the computation of the “cheapest” hybrid
explanation for each derivation, based on a cost model.
Efficiently computing hybrid explanations. Algorithm 6 describes
the general explanation generation procedure. Given a derivation
d, we preprocess it such that all unambiguous label assignments
are determined beforehand. More specifically, the preprocess(d)
assigns the label ◦ to all non-existential c-tuples that are passing.
On the other hand, if they are blocking, they are assigned the +-
label. For the existential c-tuple (if any), we can remove it from
the derivation’s instance-based part if it is passing. If it is either
ambiguous or blocking, we compute its lineage w.r.t. the view v.
If the lineage is empty, it can be removed as well, otherwise, we
assign it the −-label.

As a result of pre-processing, only ambiguous non-existential c-
tuples remain to be further processed. The first step of this process-
ing is to form clusters of relations for a given derivation d, where
each cluster corresponds to the non-labeled relations of a connected
component of the join graph of the instance-based component.

Algorithm 5: findDerivationsForAmbiguous(A,Φ)

Input: set of ambiguous operatorsA, a derivation Φ
Output: D, a set of derivations based on Φ

1 D ← ∅;
2 op← A[0];
3 Φ′1 ← applyDerivationRules(op,Φ);
4 Φ′2 ← (ΦI , A);
5 D ← {Φ′1,Φ′2};
6 D ← D ∪ findDerivationsForAmbiguous(A \ {op},Φ′1) ∪
findDerivationsForAmbiguous(A \ {op},Φ′2);

7 returnD;

EXAMPLE 14. For the last derivation in Table 1, preprocessing
results in the partial c-tuple label assignment {R〈,a’,vB〉, S〈vB , c’〉,
+T 〈vA, vB , ?, d’〉, U〈vA, u〉} and the clusters {R,S} and {U}.

When clusters contain only one relation X, we can easily con-
clude that generated explanations with minimal cost will reuse ex-
isting tuples from X that satisfy the conditions on X, if any exist. For
instance, for cluster {U} in Example 14, we find 〈a, u〉 ∈ U that
satisfies the constraints of the c-tuple U〈vA, u〉. As we can reuse
existing data for U , we assign the ◦-label to its associated c-tuple.

Processing clusters containing more than one relation is more
challenging. Based on a cost model (described below), we first
establish a partial order of relations in a cluster. More specifically,
each relation X has one associatedmaxCost(X) andminCost(X).
MaxCost(X) quantifies the estimated worst case cost of modify-
ing D in order to satisfy the constraints described by the c-tuple
on X whereas minCost(X) quantifies the cost of reusing exist-
ing data in D (that already satisfies the constraints).We then call
descendExplanationTree, which spans a binary search tree as
discussed below. Due to space constraints, we omit the pseudo-
code for descendExplanationTree and limit here to a detailed
discussion of descendExplanationTree. Note that this algo-
rithm computes the instance-based component of an explanation.
The query-based component retains all query operators of the deriva-
tion’s query-based component whose q-constraints are not satisfied
by the determined instance-based component (line 9). The final
minimal-cost hybrid explanations for our running example are sum-
marized in Table 1.

EXAMPLE 15. To illustrate all steps of the algorithm, assume
that the c-tuple over T is ambiguous, e.g., because 〈a, b, c’, d’〉
∈ T . Hence, for the fourth derivation, we obtain one cluster C =
{R,S, T, U}. Let us assume the following partial order relation:

maxCost(R) ≥ maxCost(S) ≥ maxCost(T) ≥ maxCost(U)
minCost(R) = minCost(S) = minCost(T) = minCost(U)

(1)

Based on this partial order, we span a binary search tree where a
node N represents a relation and whose two edges to children have
labels ◦ and +, respectively, standing for the two possible label-
assignments for the c-tuple of the relation N represents. The root
node corresponds to the relation with maximum maxCost and its
child nodes correspond to the next relation as determined by our
order relation. The same applies for all subsequent levels. Using
a branch-and-bound algorithm, we traverse this search-space and
prune sub-trees if possible to eventually determine a hybrid expla-
nation with minimal cost.

EXAMPLE 16. Figure 3 illustrates the tree describing all possi-
ble combinations of assigning labels for the cluster of Example 15.
Dotted edges represent the paths pruned by our algorithm. The

Algorithm 6: computeExplanations(d,D)

Input: derivation d, source data D
Output: set of hybrid explanations for derivation d, denoted φd

H

1 φd
H ← {φd

IB , φ
d
QB}, with φd

IB and φd
QB initially empty;

2 d← preprocess(d);
3 C ← identifyClusters(d);
4 foreach cluster C ∈ C do
5 CO ← sortRelationsByCost(C);
6 r ← CO[0];
7 CO ← CO \ {r};
8 φd

IB ← φd
IB ∪ descendExplanationTree(r, CO, D, ∅);

9 φd
QB ← getQueryBasedPart(d);

10 return φd
H ;

Algorithm 7: descendExplanationTree(r, C, D, I)

Input: root relation r, sequence of relations C, instance D,
sequence of labeled c-tuples I

Output: set of labeled c-tuple sequences G
1 G ; //set of labeled c-tuple sequences;

/* if C is empty, we have reached the end and return
I */

2 if C == ; then
3 if D contains tuples matching r then
4 I I [{�r};

5 else
6 I I [{+r};

7 G G.add(I);

8 // Otherwise, we first check if label � applies;
9 else if D contains tuples matching r then

10 //we check if label + can be pruned
worstLeft minCost(r) + maxCost(C);

11 bestRight maxCost(r) + minCost(C);
12 if worstLeft  bestRight then
13 //we only continue along left path;
14 r C[0];
15 C C \ {r}; G

G.add(descendExplanationTree(r, C, D, I [{�r}));

16 else
17 //we explore both subtrees;
18 r C[0];
19 C C \ {r};
20 G

G.add(descendExplanationTree(r, C, D, I [{+r}));
21 G

G.add(descendExplanationTree(r, C, D, I [{�r}));

22 else
23 // label + is the only option;
24 r C[0];
25 C C \ {r};

G G.add(descendExplanationTree(r, C, D, I[{+r}));

26 return G;

Example 16. For the first derivation in Table 2,
preprocessing results in the partial c-tuple label as-
signment {R(a0, vB), �S(?, c0), +T (?, vB , ?, d0), U(?, u)}
and the identified clusters correspond to {R} and
{U}. Opposed to that, for the last derivation de-
scribed in Table 2, we obtain label assignment
{R(, a0, vB), S(vB , c0), +T (vA, vB , ?, d0), U(vA, u)} and
the clusters {R, S} and {U}.

When clusters contain only a single relation X, we can
easily conclude that generated explanations with minimal
cost will reuse existing tuples from X that satisfy the condi-
tions on X, if any exist. For instance, for the first derivation
with clusters {R} and {U}, we find ha’,bi 2 R that can po-
tentially join with the inserted tuple in T , and we find ha,
ui 2 U that satisfy the constraints of the c-tuple U(?, u).
As we can reuse existing data for both relations, they are
both assigned the �-label.Hence, for the first derivation, the
minimum-cost explanation has the instance-based compo-
nent

�R(a0b), �S(?, c0), +T (?, b, ?, d0), �U(a, u)

Note that the instance that would result from the appli-
cation of the described source modifications will not satisfy
any further q-constraint, hence, the final hybrid explanation
retains all query operators of the derivation’s query-based

component. The final hybrid explanation is summarized in
Table 2, which shows the minimal-cost explanation for each
derivation. [[[link the discussion to the algorithm]]]=)

Processing clusters containing more than one relation
more challenging. To this end, based on a cost model, we
first establish a partial order of relations in a cluster. More
specifically, each relation X has one associated maxCost(X)
and minCost(X). MaxCost(X) quantifies the estimated
worst case cost of modifying D in order to satisfy the con-
straints described by the c-tuple on X whereas minCost(X)
quantifies the cost of reusing existing data in D (that al-
ready satisfies the constraints). In our current cost model,
these costs are based on key and foreign key constraints, and
investigating other cost-models is part of future work.

Example 17. To illustrate all the steps of our algorithm,
let us assume in the sequel that the c-tuple over T is am-
biguous, e.g., due to the presence of tuple ha, b, c’, d’i
2 T . Hence, for the fourth derivation, we obtain one cluster
C = {R, S, T, U}. Let us assume the following partial order
relation:

maxCost(R) � maxCost(S) � maxCost(T) � maxCost(U)
minCost(R) = minCost(S) = minCost(T) = minCost(U)

(1)

Figure 4 illustrates the tree encompassing all possible
combinations of assigning labels to c-tuples for cluster C of
the fourth derivation. Each level of the tree corresponds to
one relation of C, and the order of the relations (from root
to leaves) corresponds to the order given by the decreasing
cost of the order relation, e.g., Equation 1. Dotted edges
represent the paths pruned by our search space reduction
algorithm. The intermediate pruning steps are shown in
Figure 5 and we refer to these as steps (1) through (6) in
the subsequent discussion that illustrates an example run of
our algorithm.

R

S

T

U

� +

�

U

� +

+

�

T

U

� +

�

U

� +

+

+

�

S

T

U

� +

�

U

� +

+

�

T

U

� +

�

U

� +

+

+

+

Figure 4: Alternatives c-tuple label assignments for
Cluster1 of third derivation in Table 2

In deciding whether to assign label � or + to the c-tuple in
R, we first observe that we have ha’, bi 2 R. At that point
of the algorithm, we however continue to consider both op-
tions, because we cannot verify that any label assignment
for the remaining relations (including the worst-case assign-
ment) in combination with �R will yield a lower global cost
than using +R combined with any possible label assign-
ments for the remaining relations (including the best-case
assignment). More formally, we cannot prune the right sub-
tree of R (the one assigning + as label for R) because we

(1) (6) (3) (4) (5) (2)

Figure 3: Determining c-tuple labels

figure also shows which subtrees were pruned during intermediate
pruning steps, labelled steps (1) through (6).

The remainder of the discussion focuses on how our algorithm
proceeds, based on the above example.

First, in deciding whether to assign label ◦ or + to the c-tuple in
R, we first observe that we have 〈a’, b〉 ∈ R. At that point of the
algorithm, we however continue to consider both options, because
we cannot verify that any label assignment for the remaining re-
lations (including the worst-case assignment) in combination with
◦R will yield a lower global cost than using +R combined with
any possible label assignments for the remaining relations (includ-
ing the best-case assignment). More formally, we cannot prune the
right subtree of R (the one assigning + as label for R) because we
cannot verify that

minCost(R) +maxCost(S) +maxCost(T) +maxCost(U)
≤ maxCost(R) +minCost(S) +minCost(T) +minCost(U)

(2)
As a consequence, we further process both subtrees. Let us denote
the left and right subtrees of R as LTR and RTR, respectively.

In LTR, we do not have any tuple in S that would join with
〈a’,b〉 ∈ R while having S.C = c’, hence, the left subtree of LTR

can be pruned due to the lack of necessary source data (Step (1)).
InRTR, it is true that 〈b’,c’〉 ∈ S (and the tuple inserted toR can

be made such that it joins with this tuple), so both ◦ and + need to
be considered. To verify if we can prune the right side, we verify if

minCost(S) +maxCost(T) +maxCost(U)
≤ maxCost(S) +minCost(T) +minCost(U)

Let us assume this holds. As a consequence, we prune the right
subtree of RTR, denoted RTRTR (Step (2)).

We now move to the level of T , where we further investigate the
subtrees RTLTR and LTRTR . For RTLTR , we find 〈a, b, c’, d’〉 ∈
T so we have two candidate branches, of which we can prune the
right one if minCost(T) + maxCost(U) ≤ maxCost(T) +
minCost(U). This holds according to Equation 1, hence, we
prune the right subtree in Step (3).

By this last pruning, the worst case we have considered so far
(Equation 2) is excluded and the worst case becomesminCost(R)+
maxCost(S) +minCost(T) +maxCost(U). We compare this
new worst case to the unchanged best case, which does not allow
us further pruning.

In processing LTRTR , we check if T contains a tuple that joins
with +R(a′, b’), ◦S(b’, c’). No such tuple exists in T , so the
left subtree can be pruned (Step (4)). As a consequence, the best
case of Equation 2 updates to maxCost(R) + minCost(S) +
maxCost(T) +minCost(U) We now verify hat

minCost(R) +maxCost(S) +minCost(T) +maxCost(U)
≤ maxCost(R) +minCost(S) +maxCost(T) +minCost(U)

so we prune the remainder of RTLTR (Step (5)).

Name Expression
CRIME1 Πp.name,c.type(p 1p.hair=sp.hair∧p.clothes=sp.clothes sp

1sp.witness=w.name w 1w.sector=c.sector sector)
CRIME 2 Πp.name(σc.sector>97(c) 1c.sector=w.sector w

1w.name=sp.witness sp 1sp.hair=p.hair∧sp.clothes=p.clothes p)
MOV1 Πl.title((σl.year<2009(l) 1l.title=r.title σr.rating>9(r))

\(Πt.title(σt.rank<10(t))))
MOV2 Πloc.loc1(σl.year>1994(l) 1l.mid=rel.mid rel 1rel.lid=loc.lid loc

1l.title=r.title σr.rating≥9(r))
MOV 3 αloc.loc1,AV G(r.rating)(σl.year>1994(l) 1l.mid=rel.mid rel

1rel.lid=loc.lid loc 1l.title=r.title σr.rating≥9(r))
GOV1 Πe.agency,e.bureau,e.title,e.desc,e.totalamount,es.substage(e

1e.eid=es.eid es 1es.sid=s.sid (σs.ln=‘Pelosi′ (s) ∪ σs.ln=X(s))
GOV2 αs.competed,avg(s.obligated)(

σs.obligated>10000(σs.competed=‘yes′ (s) ∪ σs.competed=‘no′ (s)))
GOV3 Πc.ln,c.fn,s.competed,s.name,s.state(σs.dollarsOblicated>10000(s)

1s.state=a.state. a 1a.id=c.id c)

Table 3: Queries used for evaluation

Our final verification (Step (7)) identifies that 〈a,u〉 ∈ U satisfies
all necessary conditions and it trivially holds that minCost(U) ≤
maxCost(U) so our final c-tuple label assignment is ◦R,+S, ◦T, ◦U .

In the sample algorithm run discussed above, we have seen that it
is possible to prune a potentially large fraction of the search space.
In the worst case, we would have to make

∑n−1
i=0 2i cost compar-

isons, e.g, 15 in the example. Instead, we only performed 6 such
comparisons to obtain the optimal solution.

In our current implementation, the above seach-space reduction
algorithm is the only efficiency optimization when determining ex-
planations. There is, however, potential to further improve the over-
all efficiency of our algorithm that we will explore in the future.
Cost model. We very briefly describe the cost model we use in
our implementation. The goal of the work we present here is not to
define “the best” cost model and we leave it to future work to in-
vestigate further reasonable cost models. In general, we postulate
that the cost maxCost(X) for a relation X should be higher the
more difficult it becomes in practice to modify the source database
D such that the constraints of the c-tuple on X are satisfied. Op-
posed to that, minCost(X) should be lower the more trusted the
reused data in D that satisfies the c-tuple’s constraints is.

In our implementation, we consider all source tables are equally
trusted, hence minCost(X) = 0 for any relation X ∈ D. In
determiningmaxCost(X), we take into account both key and for-
eign key constraints pertinent to X as follows:

DEFINITION 13 (maxCost(X)). The maximum cost of a re-
lation X computes as maxCost(X) = 1 + |K|+ |FK|+ #cond,
whereK is the set of key attributes of X on which the corresponding
c-tuple tC applies a constraint, FK is the set of foreign-keys of X,
and #cond is the number of conditions defined in tC .cond.

EXAMPLE 17. For the constraints of Example 9 and the cluster
of Example 15,maxCost(R) = 5,maxCost(S) = maxCost(T) =
4, maxCost(U) = 3, thus satisfying Equation 1.

5. EVALUATION
We implemented Conseil, Artemis [13], and Why-Not [4] in Java

1.6.. We chose these algorithms for comparison as they represent
the state-of-the-art for producing instance-based explanations and
query-based explanations, respectively. We ran all experiments on
a Windows 7 installation running on a 1.7 GHz Intel Core i5 Mac-
Book Air with 2 MB of main memory. We used a local installation
of Postgres 9.2 as database system. As described in [4], lineage
tracing relies on the Trio system(http://infolab.stanford.edu/trio/),
which we also use in our implementation. For Artemis, we addi-
tionally use Minion (http://minion.sourceforge.net), as done in the
original implementation of Artemis.

Runs Generic Witness Passing
Properties

Derivation Explanation
Generaion

CRIME1
CRIME2
MOV1
MOV2
MOV3
GOV1
GOV2
GOV3

49.2 1381.7 0 55 1485.9
68 1671.6 1.1 161.9 1902.6
30 213.9 0 15 258.9

73.2 1887.5 2 146 2108.7
73.1 2123.6 3 154 2353.7

128.2 827.4 0 65.9 1021.5
176.2 9931.5 0 30.1 10137.8
178.1 6880.2 0 30 7088.3

0%
20%
40%
60%
80%

100%

CR
IM

E1
CR

IM
E2

M
OV

1
M

OV
2

M
OV

3
GO

V1
GO

V2
GO

V3

Ru
nt

im
e

(%
)

Query

Generic Witness Passing Properties
Derivation Explanation Generaion

Figure 4: Phase-wise runtime

Artemis Why-Not Conseil
CRIME1
CRIME2
MOV2
GOV1
GOV3

6.944 2.535 1.459
11.321 0.366 1.613

5.152 0.662 1.309
3.738 1.753 1.112

17.434 0.581 5.086

0

5

10

15

20

CR
IM

E1
CR

IM
E2

M
OV

2

GO
V1

GO
V3

Ru
nt

im
e

(s
)

Query

Artemis
 Why-Not
 Conseil

Figure 5: Alg. comparison

The results reported here are based on eight queries, summarized
in Table 3. They are issued from three different scenarios, identi-
fied based on the query name prefix. The first scenario reuses the
crime scenario used to evaluate Why-Not in [4]. The two other sce-
narios are based on real-world data from the movie and government
domains.
Experiment 1: Phase-wise runtime of Conseil. Our first exper-
iment studies how much time Conseil spends on each of its four
phases. To this end, we randomly select ten missing-answers for
each query, and run Conseil once for each query. Figure 4 reports
the average percentage of overall runtime spent on each phase for
all queries. Obviously, determining passing properties is the most
time-consuming task. This is due to the fact that this phase traces
actual data from D through all operators of Q, which requires the
processing of several SQL queries in our implementation (one for
each subquery of Q rooted at a potentially blocking operator). The
complexity of witness generation depends on the size of Q, which
we also observe in our experimental evaluation (the “small” query
CRIME1 take 49 ms whereas the “large” query GOV2 takes 176
ms). Derivation time is negligible in all cases. Concerning hybrid
explanation generation, we observe significant differences in terms
of runtime, e.g., CRIME1 requires 55 ms whereas CRIME2 takes
162 ms. These differences are due to varying cluster sizes and sub-
sequent c-tuple label-assignment efficiency.
Experiment 2: Runtime comparison. Next, we compare the run-
time of Conseil with the runtime of Artemis and Why-Not. We
limit the evaluation to those queries supported by all three algo-
rithms, i.e., CRIME1, CRIME2, MOV2, GOV1, and GOV3. When
first running Artemis, we observed that it takes prohibitively long
for it to compute all instance-based explanations. The reason for
this is that Artemis will essentially form the cross-product of all
joined relations, in which each tuple is then further processed. For
instance, in CRIME1, 4,764,484 tuples need processing. To obtain
results in reasonable time, we thus decided to add constraints to the
debugging scenarios of Artemis, trusting all but one table in all sce-
narios where necessary (i.e., all but MOV2 and MOV3). Figure 5
shows the runtime results. When trust was needed for Artemis, we
report the best debugging scenario here.

Both Why-Not and Conseil outperform Artemis and allow for in-
teractive query debugging. The reason for this is that Artemis com-
putes all possible instance-based explanations and needs to con-
sider a large amount of alternatives, as mentioned above. Opposed
to that, both Why-Not and Conseil limit the result to the “best”
explanations, providing a substantial advantage when considering
runtime. Focusing on the relative performance of Why-Not and
Conseil, we see that Conseil is slower than Why-Not in CRIME2,
MOV2, and GOV3. Upon further analysis, we explain this based
on the fact that in these cases, Why-Not stops very early in the pro-
cess when the culprit operator is detected closely to the leaf nodes
of the query tree, whereas Conseil performs more computations,

Query Missing-answer ArtemisWhy-NotConseil
CRIME1 〈Roger, Laugh〉 0 1 2
CRIME2 〈Conedera〉 424 1 2
MOV2 〈Germany〉 27 1 2
GOV1 〈Edu, ?, ?, ?, v4, Enacted, v4 6= NULL〉 2 1 2
GOV3 〈Pelosi, Nancy, ?, CA〉 854 0 2

Table 4: Explanations returned by different algorithms

as it also checks for possible culprit operators at higher levels by
“inventing” c-tuples at the output of the first culprit operator. In
CRIME1 and GOV1, Conseil is faster than Why-Not, as the just
mentioned additional processing Conseil requires is compensated
by the time Why-Not spends on computing the lineage of data in
Q(D) that is excluded from the data traced through the query.

Qualitative discussion. To briefly address the question of expla-
nation quality in this paper, we report in Table 4 the number of
explanations each algorithm returns on the same set of queries as
Experiment 2, but for a specific missing-answer. We observe that
Artemis is not only slower than other algorithms, it also often pro-
duces too many instance-based explanations that may overwhelm
the user. For CRIME1, we observe that Artemis returns no results,
which is due to the fact that the crime to laugh is not present in the
database, but it cannot be inserted by an instance-based explana-
tion due to the trust condition on table c (the crime relation). This
would also cause zero query-based explanations for Why-Not, if
the first join of the canonical tree representation was a join involv-
ing this table. However, in our implementation, the join between
p and sp comes first, which happens to also be a culprit operator
(it filters the person named Roger). Opposed to that, Conseil re-
turns two explanations. The first adds label + to c-tuples on sp,
w, and c, describing that both the crime c of laughing and a wit-
ness w that observed c (as described in table sp) are missing. The
second explanation corresponds to a hybrid explanation that iden-
tifies both the missing crime being witnessed (i.e., +c and +w)
and the failing join between p and sp. Another interesting query
is GOV3, where Why-Not does not return any result as necessary
source data is missing, i.e., the state “CA” (which is “California”
in the database). In all other cases, Conseil covers the query-based
explanation of Why-Not as well as one (minimal-cost) instance-
based explanation of Artemis. Note that in general, Conseil can
return more than two explanations, which did however not occur in
the use cases described in this paper.

6. CONCLUSION AND OUTLOOK
We presented Conseil, an algorithm that explains why data are

missing from a query result using novel hybrid explanations. Op-
posed to previous work, Conseil also considers queries including
set difference, making it applicable to a wide range of practical
queries. We first set the theoretical foundation by providing a gen-
eral framework to address the problem of explaining missing-answers.
We then concentrated on defining Conseil to compute hybrid-explanations
in four phases, namely generic witness computation, passing prop-
erty annotation, derivation, and explanation generation. Experi-
ments demonstrated that Conseil combines fast runtime with an
explanation quality superior to explanations produced by other al-
gorithms.

In the future, we plan to also consider side-effects and more
general debugging scenarios (more than one query, more than one
missing-answer). We also plan to further study efficiency improve-
ments and cost models and to make a more thorough usability study.

Acknowledgements. Fundamental ideas of the Conseil algorithm
have been developed in collaboration with Tim Belhomme. I also
thank Hanno Eichelberger for his implementation work. Finally, I
thank the Baden-Württemberg Stiftung for the financial support of
this research project by the Eliteprogramme for Postdocs.

7. REFERENCES
[1] F. Bancilhon and N. Spyratos. Update semantics of relational views.

ACM Transactions on Database Systems (TODS), 6(4):557–575,
1981.

[2] J. Bleiholder, S. Szott, M. Herschel, F. Kaufer, and F. Naumann.
Subsumption and complementation as data fusion operators. In
International Conference on Extending Database Technology
(EDBT), pages 513–524, 2010.

[3] P. Buneman, S. Khanna, and W. C. Tan. On propagation of deletions
and annotations through views. In Symposium on Principles of
Database Systems (PODS), pages 150–158, 2002.

[4] A. Chapman and H. V. Jagadish. Why not? In International
Conference on the Management of Data (SIGMOD), pages 523–534,
2009.

[5] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases, 1(4),
2009.

[6] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data
in a warehousing environment. ACM Transactions on Database
Systems (TODS), 25(2):179 – 227, 2000.

[7] J. Danaparamita and W. Gatterbauer. QueryViz: helping users
understand SQL queries and their patterns. In International
Conference on Extending Database Technology (EDBT), pages
558–561, 2011.

[8] C. A. Galindo-Legaria. Outerjoins as disjunctions. In International
Conference on the Management of Data (SIGMOD), pages 348–358,
1994.

[9] T. Grust and J. Rittinger. Observing sql queries in their natural
habitat (preprint). ACM Transactions on Database Systems (TODS),
0(0), 2012.

[10] Z. He and E. Lo. Answering why-not questions on top-k queries. In
International Conference on Data Engineering (ICDE), pages
750–761, 2012.

[11] M. A. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa, and
R. Wisnesky. Hil: a high-level scripting language for entity
integration. In International Conference on Extending Database
Technology (EDBT), pages 549–560, 2013.

[12] M. Herschel and H. Eichelberger. The Nautilus Analyzer:
understanding and debugging data transformations. In International
Conference on Information and Knowledge Management (CIKM),
pages 2731–2733, 2012.

[13] M. Herschel and M. A. Hernández. Explaining missing answers to
SPJUA queries. Proceedings of the VLDB Endowment (PVLDB),
3(1):185–196, 2010.

[14] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance
of non-answers to queries over extracted data. Proceedings of the
VLDB Endowment (PVLDB), 1(1):736–747, 2008.

[15] T. Imieliński and J. Witold Lipski. Incomplete information in
relational databases. Journal of the ACM, 31(4):761–791, 1984.

[16] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-aware autocompletion for SQL. Proceedings
of the VLDB Endowment (PVLDB), 4(1):22–33, 2010.

[17] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers and
non-answers. Proceedings of the VLDB (PVLDB), 4(1):34 – 45,
2010.

[18] A. Nandi and H. V. Jagadish. Guided interaction: Rethinking the
query-result paradigm. Proceedings of the VLDB (PVLDB),
4(12):1466–1469, 2011.

[19] Q. T. Tran and C.-Y. Chan. How to ConQueR why-not questions. In
International Conference on the Management of Data (SIGMOD),
pages 15 – 26, 2010.

