
TLM - Transformation Lifecycle Management

Melanie Herschel
Universität Tübingen
Germany

LRI & INRIA Saclay, France
March 28, 2011

1

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

What is Transformation Lifecycle Management?

• Transformation is developed

• Potentially requires debugging,
transformation changes, and
testing until it works as expected.

• Transformation management

• Transformation needs to be changed

• Again, analyze, fix, and test.

• Change cycles occur over time.

• Transformation retired.

2

Transformation LifecycleTransformation Management

• Transformation exists over period of
time.

• Makes transformation a first-class
entity to be managed.

• Insert, update, and delete
transformations over their lifecycle.

Nautilus

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Why Transformation Lifecycle Management?

• Manage, share, or document a transformation throughout its entire
lifecycle.

• Tool-supported help for developing and evolving transformations.

• Faster development or reaction to requirement changes.

• Makes transformation development easier for non experts (e.g., Web
2.0 content contributors)

3

 September 14. 2010 | VLDB Conference | Melanie Herschel | University of Tübingen

Agenda

Ongoing workArtemis AlgorithmNautilus

4

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Manual vs. Semi-Automatic Process

Semi-automatic
support for development

process

Analyze

FixTest

Explain existing and missing data
(data provenance)

Determination & execution
of transformation repairs

Computation and verification of
impact of transformation change

5

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Sample Workflow

Stuttgart ?

σinhabitants >= 1,000,000

Stuttgart ∈ DB,
#inhabitants < 1 Mio

Q1 Q3

Q2 Q4

City

Berlin

Hamburg

München

ZIP

10179

20095

80331

DB

Analyze

Fix

Test

6

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Sample Workflow

Q1 Q3

Q2 Q4

City

Berlin

Hamburg

München

ZIP

10179

20095

80331

Stuttgart ?

Stuttgart ∈ DB,
#inhabitants < 1 Mio

DB

Q2’

Analyze

Fix

Test

7

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Analyze

Fix

Test

Sample Workflow

Q1 Q3

Q2 Q4

City

Berlin

Hamburg

München

ZIP

10179

20095

80331

DB

Q2’

Stuttgart

Frankfurt

...

70567

...

Side-effects in Q3, Q4
caused by Q2 → Q2’

8

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Nautilus Architecture

GUI

DB
Metadata
repository

Eclipse Views & Editors

Explanation manager

Development cycle manager

Query modification
manager

Explanation generator

Explanation annotator

Explanation
annotation analyzer

Modification generator

Modification annotator

Modification
annotation analyzer

AFT-inference
engine

Modification
impact analyzer

Explanation ranker Modification ranker

Modification
impact annotator

Debugging scenario
manager

9

 September 14. 2010 | VLDB Conference | Melanie Herschel | University of Tübingen

Agenda

Ongoing workArtemis AlgorithmNautilus

10

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Query-based explanations
Why-Not [Chapman09],

ConQuer [Tran10]

Instance-based explanations
Missing-Answers [Huang08],

Artemis [Herschel10]

Data Provenance of Missing Data

Why is some data not in the result of a query Q?

A B

a b

a‘ b

B C

b c

b‘ c‘

S T
A C

a c

a‘ c

a‘ c‘

!AC(S !B T)

Q

a‘ b‘

b c‘

a‘ $x $x c‘

11

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Artemis Algorithm

• Explains a set of missing tuples over a set of queries.

• Queries may involve selection, projection, join, union, aggregation,
and grouping (SPJUA).

• Considers side-effects.

• Guarantees on completeness and correctness using a constraint
solver.

12

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

1) Source database D
2) A set of SPJU queries Q
3) A set of missing tuples E

4) Further constraints

Set of explanations X

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

7

13

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic wittness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Generic Witness:
R(a’, $x), S($x, c’)

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

(1) Compute generic witness8

14

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

Generic Witness:
R(a’, $x), S($x, c’)

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

SC TC

A B

a b

a‘ b

B C

b c

b‘ c‘

con

TRUE

TRUE

a’ $x1 $x1 ! b

con

TRUE

TRUE

$x2 c’ $x2 ! b’
(2) Create conditional tables

(c-tables) for D

9

15

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

SC TC

A B

a b

a‘ b

B C

b c

b‘ c‘

con

TRUE

TRUE

a’ $x1 $x1 ! b

con

TRUE

TRUE

$x2 c’ $x2 ! b’

(3) Compute c-tables of Q

!AC(S !B T) !

A C con

a c TRUE

a‘ c TRUE

a c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x1 = b‘∧ $x1 ! b

a‘ c‘ $x1 = $x2 ∧ $x2 ! b‘ ∧ $x1 ! b

10

16

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

!AC(S !B T) !

A C con

a c TRUE

a‘ c TRUE

a c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x1 = b‘∧ $x1 ! b

a‘ c‘ $x1 = $x2 ∧ $x2 ! b‘ ∧ $x1 ! b

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

(4) Generate explanations

matches of
(a’,c’)

side-effect

11

17

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

!AC(S !B T) !

A C con

a c TRUE

a‘ c TRUE

a c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x1 = b‘∧ $x1 ! b

a‘ c‘ $x1 = $x2 ∧ $x2 ! b‘ ∧ $x1 ! b

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘ Constraint Satisfaction Problem

tuple (a’,c’) exists

AND

minimum number
of side-effects

$x2 = b ∧ $x2 ! b‘

$x1 = b‘∧ $x1 ! b

$x1 = $x2 ∧ $x2 ! b‘ ∧ $x1 ! b

$x2 = b ∧ $x2 ! b‘

(4) Generate explanations

matches of
(a’,c’)

side-effect

11

17

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

!AC(S !B T) !

A C con

a c TRUE

a‘ c TRUE

a c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x2 = b ∧ $x2 ! b‘

a‘ c‘ $x1 = b‘∧ $x1 ! b

a‘ c‘ $x1 = $x2 ∧ $x2 ! b‘ ∧ $x1 ! b

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘ Constraint Satisfaction Problem

tuple (a’,c’) exists

AND

minimum number
of side-effects

$x2 = b ∧ $x2 ! b‘
$x1 = b‘∧ $x1 ! b

$x1 = $x2 ∧ $x2 ! b‘ ∧ $x1 ! b

$x2 = b ∧ $x2 ! b‘

(4) Generate explanations

matches of
(a’,c’)

side-effect

11

17

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

SC

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T

b’ c’a‘ b‘

Explanation 2
Insert (a’,$x1) into S and

($x2, c’) into T s.t. $x1 = $x2
and new tuples are no duplicates

S T
a‘ $x1 $x2 c’

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

Output of constraint solver for...

1st match: $x2 = b,
 1 side-effect

2nd match: $x1 = b’,
 0 side-effects

3rd match: $x1 = $x2, $x1 ! b, $x2 ! b’,
 0 side-effects

Too many
side-effects

(4) Generate explanations

12

18

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T

b’ c’a‘ b‘

Explanation 2
Insert (a’,$x1) into S and

($x2, c’) into T s.t. $x1 = $x2
and new tuples are no duplicates

S T
a‘ $x1 $x2 c’

Output of constraint solver for...

1st match: $x2 = b,
 1 side-effect

2nd match: $x1 = b’,
 0 side-effects

3rd match: $x1 = $x2, $x1 ! b, $x2 ! b’,
 0 side-effects

Too many
side-effects

13

19

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Artemis Algorithm
For SPJU Queries

A B

a b

a‘ b

S T

!AC(S !B T)
!

A C

a c

a‘ c

a‘ c‘

Minimum #side-effects,

Max 1 insert per explanation

B C

b c

b‘ c‘

(1) Compute generic witness

(2) Create conditional tables
(c-tables) for D

(3) Compute c-tables of Q

(4) Generate explanations

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T
b’ c’a‘ b‘

(5) Filter and sort explanations

Explanation 1
Insert (a‘, b‘) into S s.t. it joins
with existing tuple (b‘, c‘) in T

S T

b’ c’a‘ b‘

13

19

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Experimental Setup

Implementation

• Eclipse Plugin [Herschel09].

• Artemis and Missing-Answers [Huang08]

• Minion used as constraint solver for Artemis.

• IBM DB2 9.5 used as RDBMS.

Datasets

• TPCH

• 10 MB of data

• 9 queries (adaptations of TPCH queries
limited to supported types of queries)

• No insertions on Nation and Region.

20

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Runtime to First Correct Explanation

Artemis takes less than a second to find first correct explanation in most cases.

Missing-Answers usually faster, but returned explanation can be wrong.

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q5 Q7 Q8 Q10 Q17 Q19

R
un

tim
e

(m
s)

First explanation Missing-Answers
First correct explanation Artemis

21

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Effectiveness

Number of unsatisfiable explanations can be
substantial when using Missing-Answers.

Constraint solver makes Artemis run slower,
but effectiveness significantly improved.

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q5 Q7 Q8 Q10 Q17 Q19

156

1

1,358
3,294

23,178

451

2
1

468

98

32,916
75,591

23,34319,254

162

2

R

et
ur

ne
d

 E
xp

la
na

tio
ns

#Explanations Missing-Answers #Explanations Artemis

0NA

Precision Missing-Answers

0%

25%

50%

75%

100%

Q1 Q2 Q3 Q5 Q7 Q8 Q10 Q17 Q19

33%

1%4%4%

99%

2%0%

100%

0%

P
re

ci
si

on
 (%

)

22

 September 14. 2010 | VLDB Conference | Melanie Herschel | University of Tübingen

Agenda

Ongoing workArtemis AlgorithmNautilus

23

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Conseil Algorithm
Instance-based + query-based = hybrid

• Hybrid explanations Combines advantages of instance-based
and query-based explanations.

• Hybrid explanations generated by Conseil algorithm for non-
monotonous queries.

24

A hybrid exp.
(with D available)

Insert Ratings(P1, 1)
σP.Location = ‘DE’ fails

(1) Compute generic witness

(2) On logical query tree for Q,
determine passing properties

(3) Find representative tuples in Q(D)

(4) Compute hybrid explanations

Theorem 2. Let Φi be the set of all possible explana-
tions of type i ∈ {IB, QB, MB, H}. Then, it is true that

ΦIB ∪ ΦQB ∪ ΦMB ⊆ ΦH

Theorem 3. If there exists a query-based explanation,
there also exists a modification-based explanation. The con-
verse is also true. Thus, the set of all query-based expla-
nations covers the same cases as the set of all modification
based explanations, and we write

ΦQB ≡ ΦMB

Considering instance-based explanations, no implication,
and hence no equivalence between the set of instance-based
explanations and the set of query- (modification-)based ex-
planations holds.

Theorem 4. We can simplify the definition of a hybrid
explanation to one of the two following definitions while still
covering all possible hybrid explanations.

φH1 = {φIB , φQB} and φH2 = {φIB , φMB}

4. THE CONSEIL ALGORITHM
After the theoretical foundations on hybrid explanations

and their relationship to other types of explanations, we

present the Conseil algorithm that computes hybrid expla-

nations. We restrict considered debugging scenarios to sce-

narios with a single missing-answer t ∈ E and a single query

Q ∈ Q. Thus, we use the simplified notation

(T, Q, Q(D), D)

Conseil is the first algorithm to also consider a non-

monotonous query Q and to make knowledge of the source

instance D optional. The hybrid explanations we generate

for a missing-answer t, using any-semantics, are of the sim-

plified form φH1. That is, they are composed of an instance-

based and a query-based part.

The Conseil algorithm mainly consists of five steps. We

first provide an overview of these steps before we discuss

details in the subsequent discussion.

Step 1: Determining the generic witness. Based

on Q and t, Conseil determines a generic witness

that basically encodes a condition that describes a

sufficient state of the database instance D to produce

the missing answer t. Our definition of a generic

witness, as well as its generation, trivially extends on

the generic witness definition and computation of [5].

Step 2: Annotating query tree. First, we create a

canonical logical tree representation of the query Q,

based on the methods proposed in [4]. Second, we

annotate the leaf nodes of the tree, which correspond

to source tables in D with conditions dictated by the

generic witness. Third, we annotate all nodes in this

tree with what we call passing properties. These prop-

erties describe whether a query operator in the tree is

guaranteed to, may, or cannot be responsible for loos-

ing the missing-answer t. This annotated query tree

will be matched and transformed to a second, passing,

query tree of an existing output tuple (determined in

Step 3) to compute hybrid explanations (Step 4).

Step 3: Partially matching tuples in Q(D) to t.
The goal of Conseil is to determine explanations by

following a positive example, i.e., by tracing a tuple

that exists in Q(D). To this end, we determine tuples

in Q(D) that partially match t. Obviously, because

Conseil uses any-semantics, no complete match can be

found. Therefore, we determine tuples that partially

match t in the sense that they have high similarity

to t. If we cannot determine a partial match to t

in Q(D), any tuple in Q(D) can be chosen. Should

Q(D) be empty, the generic witness is traced through

the query tree. The output of this step is a set of

passing query trees for (existing) tuples in Q(D).

Step 4: Computing hybrid explanations. Given the

result of the previous step, Conseil now aims at

transforming the query tree of the missing-answer to

the query tree of a tuple existing in t. This transfor-

mation is associated with a cost, and transformations

with lowest cost should be chosen. To compute

explanations, we define a set of valid transformations

(derived from the explanation types included in our

hybrid explanation) and an associated cost. Based

on these definitions, we compute the minimal tree-

edit-distance. The corresponding edit-script is then

transformed to a hybrid explanation.

Let us now discuss the different steps in more detail. Due

to the lack of space, we limit the discussion to novelties

of Conseil, referring interested readers to relevant related

work when appropriate. To illustrate interesting concepts

of Conseil, we extend our example to consider the following

SQL query.

Example 9. Besides products with a low average rating,
we also consider products that have never been sold as candi-
dates for discontinuation. The resulting SQL query features
both grouping and aggregation (fist subquery of the union)
as well as a set difference. For ease of presentation, we will
use Q = Q1 ∪Q2 in our examples to refer to (parts of) this
sample query.

SELECT P.ProdID, P.ProdName
FROM Ratings R, Products P
WHERE R.ProdID = P.ProdID
AND P.Location = ‘DE’
GROUP BY P.ProdID, P.ProdName
HAVING MAX(R.Rating) <= 2
UNION
SELECT P.ProdID, P.ProdName
FROM Products P
WHERE P.ProdID NOT IN
(SELECT S.ProdID FROM Sales S)

We assume the same schemas for Ratings and Products

as previously. The schema of Sales is Sales(ProdID, Date,

Amount, Price).

4.1 Generic Witness Computation
The first step of Conseil consists in computing a generic

witness, defined as follows.

Definition 9 (Generic witness). Given a missing-
answer t and a query Q, a generic witness W describes a
condition that expresses a sufficient condition on the source

ProdID Name

P4 Yellow Submarine

P3 Green Bus

P1 Yellow Submarine

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

The Conseil Algorithm
Instance-based + query-based = hybrid

1.Generic witness computation: extension to non-
monotonous queries.

2.For each node in canonical query tree, determine if the nodes
is passing (data is guaranteed to “survive” operator),
blocking (the data is guaranteed not to make it through the
operator), and ambiguous (all other cases).

3.Find tuples in Q(D) similar to missing tuple t (used as positive
examples).

4.Create passing canonical tree of similar tuple and transform
blocking tree of t into representative passing tree (tree edit
distance based). An edit script yields a hybrid explanation.

25

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

From Hybrid Explanations to Fixes

• Reuse tree with passing properties for missing tuple t from
Conseil.

• Transform non-passing tree of t into a passing tree.

• Unlike for Conseil, we do not have a target tree, and tree
transformations and costs are defined differently.

• Search problem determining the cheapest tree transformation,
given a set of possible edit operations, that yields a passing
tree.

26

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Summary

Transformation Lifecycle Management with Nautilus

• Analyse query semantics using data provenance.

• Fix errors using automatically generated transformation modification
suggestions.

• Test the modified transformation using information on modification impact.

Explanation of missing-answers using Artemis

• Generates instance-based explanations for SPJUA queries

• Considers side-effects, correctness, and minimality of result

Explanation of missing-answers using Conseil

• Unifies instance- and query-based explanations into hybrid explanations.

• Applies on non-monotonous queries.

• Determines an explanation based on matching passing tree of missing-
answer with passing tree of a (similar) existing tuple.

27

 March 28. 2011 | LRI - INRIA | Melanie Herschel | University of Tübingen

Outlook

Explanation of missing-answers using Conseil

• Proper analysis of complexity.

• Definition of cost function used to match passing trees.

• Evaluation in terms of efficiency and effectiveness, compared to other
algorithms.

Extensions to Nautilus

• Development of an algorithm suggesting fixes, based on Conseil

• Support of debugging questions other than “Why-Not”

• Theoretical and practical aspects of the test phase.

• Build a real system and evaluate it.

Nautilus
http://nautilus-system.org28

Thank you for your attention.

