
Entity Resolution for BIG Data

Blocking-based Entity Resolution
in Highly Heterogeneous Information Spaces

George Papadakis Themis Palpanas

L3S Research Center University of Trento

2

Acknowledgements

Ekaterini Ioannou
Claudia Niederee
Wolfgang Nejdl
Peter Fankhauser

Themis Palpanas - INRIA - Dec 2012

3

Data Evolution

structured
precise
static (almost)

Themis Palpanas - INRIA - Dec 2012

4

Data Evolution

non-structured
uncertain
streaming

Themis Palpanas - INRIA - Dec 2012

5

Things to Come

large scale data
}  very large collections (i.e., terabytes to exabytes)
}  scientific, business, user generated

Themis Palpanas - INRIA - Dec 2012

6

Things to Come

large scale data
streaming data

}  sensors, feeds, continuous analytics
}  response times in seconds to nanoseconds

Themis Palpanas - INRIA - Dec 2012

7

Things to Come

large scale data
streaming data
heterogeneous data

}  structured, non-structured, text, multimedia
}  variety of sources, schemas, representations, models
}  computer-generated, human-generated

Themis Palpanas - INRIA - Dec 2012

8

Things to Come

large scale data
streaming data
heterogeneous data
private data

}  correlating data from multiple sources poses risks
}  credit card history, mobile phone usage, GPS tracking

}  privacy and accountability
}  access granted only to specific person, at specific time, for specific

purpose, only for necessary data

Themis Palpanas - INRIA - Dec 2012

9

Things to Come

large scale data
streaming data
heterogeneous data
private data
uncertain data

}  imprecision, inconsistencies, incompleteness, ambiguities, latency,
deception, approximations, privacy preserving transformations

}  process/data/model uncertainty

Themis Palpanas - INRIA - Dec 2012

10

Big Data

large scale data
streaming data
heterogeneous data
private data
uncertain data

 confluence of all the above!

Themis Palpanas - INRIA - Dec 2012

11

Work in dbTrento

large scale data
streaming data
heterogeneous data
private data
uncertain data

Themis Palpanas - INRIA - Dec 2012

12

This Talk

large scale data
streaming data
heterogeneous data
private data
uncertain data

Themis Palpanas - INRIA - Dec 2012

13

This Talk

large scale data (web data sources)
streaming data
heterogeneous data (no hope for standard schema)
private data
uncertain data (imprecisions, errors, typos)

Themis Palpanas - INRIA - Dec 2012

14

Outline

Introduction
}  Background

}  Standard Blocking for Databases
}  Advanced Blocking Methods

}  Q-grams Blocking

}  Suffix Array Blocking

}  The Sorted Neighborhood Approach

}  Canopy Clustering

}  Blocking over Dataspaces

Approach

Evaluation

15

Entities: an invaluable asset

“Entities” is what a large part of our knowledge is about:

Persons

Organizations

Projects

Locations

Products
Events

16

However …

How many names, descriptions or IDs (URIs) are used for
the same “entity”?

London 런던 ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏܘ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏܘ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏ ल"डन ल"दन લ"ડન ለንደን ロンドン
ল"ন ลอนดอน இலண்டன் ლონდონი Llundain Londain
Londe Londen Londen Londen Londinium London
Londona Londonas Londoni Londono Londra Londres
Londrez Londyn Lontoo Loundres Luân Đôn Lunden
Lundúnir Lunnainn Lunnon للننددنن للننددنن للننددنن للووننددوونن

 Λονδίνο Лёндан Лондан Лондон Лондон ל
Лондон Լոնդոն 伦敦 …

http://sws.geonames.org/2643743/
http://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/Category:London
…

capital of UK, host city of the IV Olympic Games,
host city of the XIV Olympic Games, future host of
the XXX Olympic Games, city of the Westminster
Abbey, city of the London Eye, the city described by
Charles Dickens in his novels, …

17

◦  London, KY
◦  London, Laurel, KY
◦  London, OH
◦  London, Madison, OH
◦  London, AR
◦  London, Pope, AR
◦  London, TX
◦  London, Kimble, TX
◦  London, MO
◦  London, MO
◦  London, London, MI
◦  London, London, Monroe, MI
◦  London, Uninc Conecuh County, AL
◦  London, Uninc Conecuh County, Conecuh, AL
◦  London, Uninc Shelby County, IN
◦  London, Uninc Shelby County, Shelby, IN
◦  London, Deerfield, WI
◦  London, Deerfield, Dane, WI
◦  London, Uninc Freeborn County, MN
◦  ...

◦  London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

◦  London, Jack R
2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

◦  London, Jack
1222 Whitetail Trl
Van Buren, AR 72956-7368
(479) 474-4136

◦  London, Jack
7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

◦  ...

How many “entities” have the same name?

… or …

18

… or …

How many content types / applications provide valuable
information about each of these “entities”?

News about London
reviews on hotels in London

Pictures and tags about London

Videos and tags for London

Social networks in London

Wiki pages about the London

19

Preliminaries

Entity Resolution:

 identifies and aggregates the different entity profiles/records that
actually describe the same real-world object.

Application areas:
 Social Networks, census data, price comparison portals, Linked Data

Useful because:
•  improves data quality and integrity
•  fosters re-use of existing data sources

20

Types of input

The entity collections given as input to ER can be of two types:

•  clean, which are duplicate-free
 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase,

•  dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

21

Types of Entity Resolution

 An ER task that receives as input two entity collections can be of
the following types:

1.  Clean-Clean ER

2.  Dirty-Clean ER

3.  Dirty-Dirty ER

22

Types of Entity Resolution

 An ER task that receives as input two entity collections can be of
the following types:

1.  Clean-Clean ER (a.k.a. Record Linkage in databases)
 Given two clean, but overlapping entity collections, identify the
entity profiles they have in common.
 e.g., merge DBLP with ACM Digital Library

2.  Dirty-Clean ER

3.  Dirty-Dirty ER

23

Types of Entity Resolution

 An ER task that receives as input two entity collections can be of
the following types:

1.  Clean-Clean ER

2.  Dirty-Clean ER
3.  Dirty-Dirty ER

 Identify unique entity profiles contained in union of the input
 entity collections.

 For simplicity, we treat them as equivalent to Dirty ER (a.k.a.
 Deduplication in databases), which receives a single dirty entity
 collection as input.

24

Computational cost

ER is an inherently quadratic problem (i.e., O(N2)):
every entity has to be compared with all others

Does not scale to large entity collections (e.g., Big Data)

Solution: Blocking

•  similar entities are grouped into blocks
•  comparisons are only executed inside blocks

25

Assumptions for Blocking in Databases

Assumptions:

1.  Each entity profile corresponds to a single real-world object.

2.  Every entity profile consists of a uniquely identified set of name-
value pairs.

3.  A-priori known schema

4.  For each attribute we know some metadata:
}  level of noise (e.g., spelling mistakes, false or missing values)
}  distinctiveness of values

5.  Two matching profiles are detected if they have at least one
block in common.

26

Standard Blocking for Databases

Simplest form of blocking.

Works as a hash function.

Algorithm:
1.  Select the most appropriate attribute names w.r.t. noise and

distinctiveness.
2.  Extract a summary from their values in order to form a set of

Blocking Key Values (BKVs)
3.  For each BKV, create one block that contains all entities having

this BKV in their transformation.

27

Example of Standard Blocking

Blocks on zip_code:

first name=Antony P.

last name=Gray

address=Los Angeles, California

first name=Bill

last name=Green

address=Los Angeles, California

DATASET 1

first name=Antony

last name=Gray

address=L.A., California, USA

name=William Nicholas

last name=Green

address=L.A., California, USA

DATASET 2

91456 94520

zip_code= 91456 zip_code= 91456

zip_code=94520 zip_code=94520

28

Advanced Blocking Methods

 Most blocking methods for databases rely on the same signature-
based functionality (review in [Christen, TKDE 2011]).

 Main difference (to standard blocking):
 redundancy → overlapping blocks

 Drawbacks:
1.  Schema-dependent
2.  Too many parameters to be configured (e.g., which attributes to

select, how to combine them in BKVs)

 Partial solution:

automatic configuration through machine learning techniques
[Bilenko et. al., ICDM 2006] [Michelson et. al., AAAI 2006]

29

Q-grams Blocking
[Baxter et. al., KDD 2003] [Gravano et. al., VLDB 2001]

Converts every BKV into a list of q-grams
(i.e., substrings of length q).
For q=2, the keys 91456 and 94520 yield the following blocks:

Advantage:

 robust to noisy BKVs

Drawback:
 larger blocks → higher computational cost

91 94

14 45

56 20

45

30

Suffix Array Blocking
 [Aizawa et. al., WIRI 2005][de Vries et. al., CIKM 2009]

Converts every BKV to its list of suffixes that are longer than a
predetermined minimum length lmin.
For lmin =3, the keys 91456 and 94520 yield the blocks:

Advantage:

 robust to noisy BKVs

Drawback:
 larger blocks → higher computational cost

91456 94520

456 520

1456 4520

31

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1.  Entities are sorted in
 alphabetic order of BKVs.

2.  A window of fixed size
 slides over the sorted list.

91456

94520

1st step

32

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1.  Entities are sorted in
 alphabetic order of BKVs.

2.  A window of fixed size
 slides over the sorted list.

91456

94520

2nd step

33

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1.  Entities are sorted in
 alphabetic order of BKVs.

2.  A window of fixed size
 slides over the sorted list.

Drawback: the fixed window may be
•  too narrow in some cases, leaving out matches,
•  too wide in other cases, including many irrelevant entities.

Solution:
 adaptable window size based on the similarity of BKVs (Adaptive
Sorted Neighborhood [Yan et. Al., JCDL 2007])

91456

94520 3rd step

34

Canopy Clustering [McCallum et. al., KDD
2000]

Not based on signatures.
Instead, entity profiles are compared with a cheap string
similarity metric m (e.g., TF-IDF, Jaccard similarity).

Algorithm:
1.  Select a random entity profile e1

 from the pool of entities

2.  Create a new block containing
 all ei s.t. m(e1,ei) < t1

3.  Remove from the pool of entities
 all ej s.t. m(e1,ej) < t2 (t2 < t1)

4.  Repeat until the pool is empty

35

 Characteristics of Big Data

They include Web 2.0 data, Semantic Web, Dataspaces.

Voluminous, (semi-)structured datasets.

}  DBPedia 3.4: 36.5 million triples and 2.1 million entities
}  BTC09: 1.15 billion triples, 182 million entities.

Users are free to insert not only attribute values but also
attribute names à high levels of heterogeneity.

}  DBPedia 3.4: 50,000 attribute names
}  Google Base:100,000 schemata and10,000 entity types
}  BTC09: 136K attribute names

Large portion of data originating from automatic information
extraction techniques à noise, tag-style values

36

Blocking over Big Data

Existing blocking techniques are inapplicable, due to:
•  Loose schema binding.
•  High levels of heterogeneity.
•  Noise and missing attribute names or values.

These settings call for blocking methods that:
•  Are robust to noise.
•  Are decoupled from schema information.

37

Exemplary Challenges of Big Data

name=United Nations Children’s Fund

acronym=unicef

headquarters=California

name=Ann Veneman

position=unicef

address=California

DATASET 1

organization=unicef

California

status=active

firstName=Ann

lastName=Veneman

residence=California

DATASET 2

address=Los Angeles, 91335

ZipCode=90210

Los Angeles, 91335

zip_code=90201

Noise

Attribute
Heterogeneity

Loose Schema
Binding

Split
values

38

Problem Definition

Metrics for assessing block quality:
}  Pair Completeness: (recall)

}  Reduction Ratio: (savings in # of

 comparisons)

Problem Definition:
 Given two duplicate-free entity collections (Clean-Clean ER),
 cluster their entities into blocks and process them so that both PC
 and RR are maximized.

The same applies to Dirty ER.

disclaimer:

 Precision of entity matching is dependent on the entity similarity measures, and is
orthogonal to the above problem.

atchesexisting_m
atchesdetected_mPC =

omparisonsbaseline_c
parisonsmethod_com-1RR =

39

Outline

•  Introduction

•  Approach
}  Core Ideas
}  Effectiveness Layer
}  Type of pair-wise comparisons

}  Metric Space for Blocking Methods
}  Meta-blocking Layer
}  Efficiency Layer

•  Evaluation

40

Framework Outline

Three-layered approach*:
1.  Effectiveness Layer

 Build blocks in a way that involves:
}  Attribute-agnostic functionality
}  Redundancy for robustness and high effectiveness

2.  Meta-blocking
 Restructure a block collection into a new one with fewer comparisons, but

equally high effectiveness.

2.  Efficiency Layer
 Process blocks s.t. entire blocks or individual comparisons that do not
contribute to effectiveness are discarded (thus increasing efficiency).

*Code and data are fully available at: sourceforge.net/projects/erframework/.

41

Effectiveness Layer

Goal:
 place every pair of matching entities in at least one common block.

Solution:
•  redundancy to reduce the likelihood of missed matches,
•  attribute-agnostic functionality to be able to handle Big Data.
Drawbacks:
•  the blocks are overlapping (i.e., repeated comparisons),
•  high number of comparisons between irrelevant entities.

Three families of approaches:
1.  Token Blocking
2.  Attribute Clustering (Clean-Clean ER)
3.  URI Semantics Blocking (Dirty ER)

42

Token Blocking [Papadakis et al., WSDM2011]

Attribute-agnostic blocking scheme:
•  completely ignores attribute names.
•  considers all attribute values.

Functionality:

1.  given an entity profile, it transforms it into the set of tokens
contained in its values.

2.  creates one block for each distinct token → each block
contains all entities with the corresponding token*.

Redundancy is inherent!

 *Each block should contain at least two entities.

43

Token Blocking Example

name=United Nations Children’s Fund

acronym=unicef

headquarters=California

name=Ann Veneman

position=unicef

address=California

DATASET 1

organization=unicef

California

status=active

firstName=Ann

lastName=Veneman

residence=California

DATASET 2

Veneman

unicef

Ann

California

44

Attribute-Clustering Blocking
[Papadakis et. al., TKDE2013]

Goal
 group attribute names into clusters s.t. we can apply Token Blocking
independently in each cluster, yielding more efficient but equally effective
blocks

Algorithm
 Input data: N1, N2
 Parameters: a string similarity metric m, a representation model r
 Procedure:
 for every attribute name ni in N1

 find the most similar nj in N2 s.t. m(r(ni), r(nj))> 0
 connect them with an edge
 do the same for every attribute name ni in N2
 get transitive closure
 get connected components
 merge together singleton clusters

45

Attribute-Clustering Blocking – Part B

Versatile settings:
1.  character n-grams with Jaccard similarity

2.  token n-grams with TF-IDF

3.  n-gram graphs with value similarity (graph metric)

The last one performs better, but computationally expensive.

Similar to Schema Matching, but fundamentally different:
1.  Associated attribute names do not have to be semantically equivalent.

 They only have to produce good blocks.

2.  All singleton attributes are associated with each other.

3.  Schema matching approaches do not scale to the highly heterogeneous big
data.

46

Attribute-agnostic blocking leads to high levels of redundancy. For Semantic Web
data, three sources of evidence create blocks of lower redundancy:

1.  Semantics in entity URIs (i.e., Infix) [Papadakis et al., iiWAS 2010]
Infixes may consist of several concatenated tokens.

2.  Relations between entities (i.e., Infix Profile)
The URIs of attribute values can be represented by their Infixes.

3.  Literal values (i.e., Literal Profile)
Values that do not correspond to blank nodes or URIs can be represented by their tokens.

Evidence for URI Semantics Blocking

47

The above sources of evidence lead to 3 blocking methods:
1.  Infix Blocking

every block contains all entities whose URI has a specific Infix

2.  Infix Profile Blocking
every block corresponds to a specific Infix (of an attribute value) and
contains all entities having it in their Infix Profile

3. Literal Profile Blocking
every block corresponds to a specific token and contains all entities having it
in their Literal Profile

Individually, these methods may not cover all entities
(e.g., Infix Blocking does not cover blank nodes).
However, they are complementary and can be combined
into composite blocking methods for higher effectiveness.

URI Semantics Blocking
[Papadakis et al., WSDM2012]

48

Outline

•  Introduction

•  Approach
}  Core Ideas
}  Effectiveness Layer
}  Type of pair-wise comparisons

}  Metric Space for Blocking Methods
}  Meta-blocking Layer
}  Efficiency Layer

•  Evaluation

49

Meta-blocking Layer [Papadakis et. al., TKDE]

Main idea
 block assignments provide valuable evidence for the similarity of
entities: the more blocks two entities share, the more similar and
more likely they are to be matching

Goal:
 restructure a given block collection into a new one that contains
substantially lower number of comparisons (RR»0), while being
equally effective (same PC).

50

Type of pair-wise comparisons

Every comparison between entity profiles pi and pj belongs to one of
the following types:

1.  Matching comparison if pi ≡ pj.
2.  Redundant comparison if pi and pj have been compared in a

previously examined block.
3.  Superfluous comparison if pi or pj or both of them have been

matched to some other entity (Clean-Clean ER).
4.  Non-matching comparison if pi ≠ pj.

To enhance efficiency without any impact on effectiveness, we should
discard the last three types of comparisons.

51

Meta-blocking Layer [Papadakis et. al., TKDE]

Main idea
 block assignments provide valuable evidence for the similarity of
entities: the more blocks two entities share, the more similar and
more likely they are to be matching

Goal:
 restructure a given block collection into a new one that contains
substantially lower number of redundant and non-matching
comparisons (RR»0), while being equally effective (same PC).

Solution: Blocking graph

 Nodes → entities
 Edges → between entities co-occurring in at least one block
 Weights → how similar are the adjacent entities

52

Outline of Meta-blocking

n1 n3

n2 n4

n1 n3

n2 n4

n1 n3

n2 n4

3

3

2 2
2

1

53

Metric Space for Blocking Methods

The graph pruning algorithms requires setting a threshold.
Ideally, we could set pruning thresholds using PC and RR.

However, PC and RR can only be measured a-posteriori:

 have to first construct and examine all blocks

Instead, we need an a-priori estimation of the PC and RR values:
 in order to guide the block restructuring process
 without executing any comparisons

54

Metric Space for Blocking Methods

BC-CC metric space:

Blocking Cardinality (BC)
•  average block assignments per entity: highly correlated with PC
Comparisons Cardinality (CC)
•  average block assignments per comparison: highly correlated with RR

55

Block Enhancement on BC-CC Space

Enhancing Effectiveness
•  combining complementary atomic methods into composite ones

56

Block Enhancement on BC-CC Space

Enhancing Effectiveness (e.g., Method1, Method2 →	 Method3)
•  combining complementary atomic methods into composite ones

57

Block Enhancement on BC-CC Space

Enhancing Effectiveness (e.g., Method1, Method2 →	 Method3)
•  combining complementary atomic methods into composite ones

Enhancing Efficiency
•  Meta-blocking
•  Block Processing

58

Block Enhancement on BC-CC Space

Enhancing Effectiveness (e.g., Method1, Method2 →	 Method3)
•  combining complementary atomic methods into composite ones

Enhancing Efficiency (e.g., Method3 → Method4)
•  Meta-blocking
•  Block Processing

59

Meta-blocking: Block Collecting

Transforming the pruned blocking graph into a block collection.

For undirected blocking graphs:

 every retained edge creates a block of minimum size

For directed blocking graphs:

 for every node (with retained outgoing edges), we create a new
block containing the corresponding entities

60

Outline

•  Introduction

•  Approach
}  Core Ideas
}  Effectiveness Layer
}  Type of pair-wise comparisons

}  Metric Space for Blocking Methods
}  Meta-Blocking Layer
}  Efficiency Layer

•  Evaluation

61

Efficiency Layer

Goals:
1.  eliminate repeated comparisons,
2.  discard superfluous comparisons,
3.  avoid non-matching comparisons.
without affecting effectiveness.
Techniques:

62

Block Purging
[Papadakis et al., WSDM2011] & [Papadakis et al., WSDM2012]

Oversized blocks: large number of
comparisons, the vast majority of which is
redundant, non-matching and superfluous.

Block Purging: discards oversized blocks by
setting an upper limit

 on size of each block [Papadakis et al.,
WSDM 2011], or

 on number of comparisons it contains
[Papadakis et al., WSDM 2012]

Purged Set of Blocks

Veneman

unicef

Ann

California

63

Duplicate Propagation
[Papadakis et al., WSDM2011]

In Clean-Clean ER, matched Entities do not need to be compared again.
They can be propagated through a central data structure that contains
the matched duplicates from each dataset.

Veneman

unicef

Ann

After processing 1st block

Total Comparisons: 0
Duplicates Dataset 1: {null}
Duplicates Dataset 2: {null}

Total Comparisons: 2
Duplicates Dataset 1: {Entity 1}
Duplicates Dataset 2: {Entity 3}

After processing 2nd Block
Total Comparisons: 3
Duplicates Dataset 1: {Entity 1, Entity 2}
Duplicates Dataset 2: {Entity 3, Entity 4}

Before processing

After processing 3rd Block
Total Comparisons: 3!
Duplicates Dataset 1: {Entity 1, Entity 2}
Duplicates Dataset 2: {Entity 3, Entity 4}

64

Enhance effect of Duplicate Propagation, by detecting duplicates as
early as possible:

 order blocks so as to examine first those blocks that are highly
 likely to contain duplicates

This likelihood is expressed through the utility measure that is assigned
to each block:

where |bi,1| and |bi,2| are number of entities from dataset 1 and 2, that
are contained in block bi

Block Scheduling [Papadakis et al., WSDM2011]

|)||,(|
2,1,

max
1

cost bb
gainU

iii

i
i ==

65

Block Scheduling Example

Veneman

unicef

Ann

Initial Set of Blocks

UAnn=1

Uunicef=0.5

UVeneman=1 Ann

unicef

Veneman

Ordered Set of Blocks

UAnn=1

UVeneman=1

Uunicef=0.5

Total Comparisons: 0
Duplicates Dataset 1: {null}
Duplicates Dataset 2: {null}

Total Comparisons: 1
Duplicates Dataset 1: {E2}
Duplicates Dataset 2: {E4}

Total Comparisons: 1
Duplicates Dataset 1: {E2}
Duplicates Dataset 2: {E4}

Total Comparisons: 2
Duplicates Dataset 1: {E1, E2}
Duplicates Dataset 2: {E3, E4}

Total Comparisons: 3
(see slide 15)

66

Effect of Block Scheduling

Ann

unicef

Veneman

After
1st block

dh1=1/1

After
4th Block dh2=(1+1)/1=2

duplicates
scomparison

dh
k

k
k =

X

cost of identifying new duplicates is called
duplicate overhead (dh):

comparisonsk: # of comparisons executed
after examining the (k-1)-th block
containing new duplicates

duplicatesk: # of matched pairs of entities in
the k-th block containing new duplicates.

dh increases as we move from first block to
next ones:
due to Block Scheduling, the lower the
execution order of a block is, the more
comparisons and the less unique duplicates
it entails

67

Block Pruning [Papadakis et al., WSDM 2011]

dh provides a good estimation of the duplicates that remain to be
detected →	 the higher its value is, the more unlikely it is to identify
new duplicates in the remaining blocks at a reasonable cost (i.e.,
#comparisons).

Therefore, the ER process can be terminated prematurely, when dh
gets high.

Block Pruning sets an upper limit on duplicate overhead, called dhmax,
based on the total number of comparisons n contained in the original
set of blocks:

As soon as dh exceeds dhmax, the entire process is terminated.

2/log
max 10 ndh =

68

Comparison Propagation
[Papadakis et al., JCDL2011]

Goal : eliminate all redundant comparisons.
Naïve solution: store all executed comparisons in a hash table → not scalable

Our approach: indirect propagation of all executed comparisons in three steps
1.  Block Enumeration: assign to each block an index denoting its position

on the block processing list.
2.  Inverted Index: Data structure associating entities with block indices.

3.  Two entities are compared iff they satisfy the Least Common Block
Index Condition: the index of the current block is their minimum
common block index. E.g., p1 and p3 are compared in b1, but the condition
does not hold in b5.

69

Goal: discard non-matching comparisons.
How can we infer that two entities are non-matching without
actually comparing them?

Examine number of blocks they have in common!
Comparison Pruning discards a comparison between pi and pj if it does
not satisfy the following condition:

JSmin ≤ ES(pi, pj)
where:
JS(pi, pj) is the Jaccard coefficient of their block lists, and

Comparison Pruning [Papadakis et al., SWIM 2011]

70

Comparison Scheduling
[Papadakis et. al., TKDE1]

Enhances the effect of Duplicate Propagation: it schedules
the execution of individual comparisons so that those
involving real matches are executed first.

The utility of every comparison between pi and pj is:

u(pi,pj) = JS(pi, pj) · ICF(pi) · ICF(pj)
where JS(pi, pj) is the Jaccard coefficient of the block lists,
and ICF(pk) is the inverse comparison frequency of pk.

To reduce its high computational cost, it is usually applied
after Comparison Propagation and Comparison Pruning.

71

Composing ER workflows
[Papadakis et. al., TKDE2013]

Actual selection depends on the application requirements and
the available resources.
In general, comparison-refinement methods are more accurate,
but more time- and resource-consuming than block-refinement.

72

Outline

•  Introduction

•  Approach
•  Evaluation

}  Experimental Settings
}  Block Building Performance
}  Scalability of Token Blocking
}  Block Purging Performance
}  Meta-blocking Performance
}  Block Processing Performance

73

BTC09
(Dirty ER)

Dbpedia
(Clean-Clean ER)

 30RC 3.4
Entities 182 million 1,190,734 2,164,058

Name-Value Pairs 1.15 billion 17,453,516 36,653,387

Duplicates 11,591
(IFP)

5,988,554
(Same-As) 892,586

Experimental Settings

Metrics
}  Pair Completeness: (recall)

}  Reduction Ratio: (savings in # of

 comparisons)

Datasets

Note 1: out of 43,75 million distinct triples of DDBPedia, only 10,36 million (<25%) are common.

Note 2: IFP corresponds to pairs of matching entities that are implicitly denoted via their common values for some
Inverse Functional Properties. Same-As corresponds to pairs of matching entities that are explicitly denoted through
same-as statements.

atchesexisting_m
atchesdetected_mPC =

omparisonsbaseline_c
parisonsmethod_com-1RR =

74

Scalability of Token Blocking

We considered subsets of DDBpedia.
For each subset we estimated the following metric:

 3-4.5 orders of magnitude less comparisons (efficiency)
 PC always above 95% (recall)

|DBPedia||DBPedia|
mparisonsaverage_co tys_per_enticomparison

3.43.0rc +
=

75

Block Building Performance

DBPedia	 Comparisons	 Duplicates	 PC	 RR	
Token	 Blocking	 6.18	 ·∙	 1012	 892,560	 99.99%	 -‐	
Term	 Vector	 EM	 6.38	 ·∙	 1012	 891,546	 99.99%	 -‐	
Term	 Vector	 AC	 6.18	 ·∙	 1012	 891,560	 99.99%	 0.01%	
Trigrams	 AC	 1.05	 ·∙	 1012	 892,425	 99.98%	 83.04%	
Trigram	 Graphs	 AC	 1.03	 ·∙	 1012	 892,516	 99.99%	 83.39%	

BTC09	 Comparisons	 PC	 IFP	 PC	 SameAs	 RR	

Token	 Blocking	 2.59	 ·∙	 1016	 99.32%	 92.26%	 -‐	
Infix	 Blocking	 6.24	 ·∙	 1012	 59.31%	 49.60%	 99.98%	
Infix	 Profile	 Blocking	 1.07	 	 ·∙	 1015	 84.19%	 99,99%	 95.86%	
Literal	 Profile	 Blocking	 2.67	 ·∙	 1015	 94.49%	 24.51%	 89.68%	
Infix+Infix	 Profile	 1.10	 ·∙	 1015	 85.16%	 87.14%	 95.77%	
Infix+Literal	 Profile	 3.25	 ·∙	 1015	 96.43%	 65.67%	 87.46%	
Infix	 Profile+Literal	 Profile	 3.81	 ·∙	 1015	 96.64%	 52.09%	 85.30%	
All	 (Combined)	 3.90	 ·∙	 1015	 97.98%	 91.13%	 84.96%	

76

Block Purging Performance

DBPedia	 Comparisons	 Duplicates	 PC	 RR	
Token	 Blocking	 5.68	 ·∙	 1010	 891,767	 99.91%	 99.08%	
Term	 Vector	 EM	 4.34	 ·∙	 1010	 891,709	 99.90%	 99.32%	
Term	 Vector	 AC	 5.68	 ·∙	 1010	 891,767	 99.91%	 99.08%	
Trigrams	 AC	 3.06·∙	 	 1010	 892,402	 99.98%	 97.08%	
Trigram	 Graphs	 AC	 2.42	 ·∙	 1010	 892,463	 99.99%	 97.64%	

BTC09	 Comparisons	 PC	 IFP	 PC	 SameAs	 RR	

Token	 Blocking	 15.49	 ·∙	 1011	 96.79%	 60.52%	 99.99%	
Infix	 Blocking	 0.004	 ·∙	 1011	 58.85%	 49.54%	 99.99%	
Infix	 Profile	 Blocking	 1.62	 ·∙	 1011	 76.53%	 41.36%	 99.99%	
Literal	 Profile	 Blocking	 9.37	 ·∙	 1011	 94.34%	 18.29%	 99.99%	
Infix+Infix	 Profile	 1.69	 ·∙	 1011	 72.64%	 86.60%	 99.99%	
Infix+Literal	 Profile	 8.79	 ·∙	 1011	 94.48%	 63.75%	 99.99%	
Infix	 Profile+Literal	 Profile	 12.00	 ·∙	 1011	 93.57%	 50.03%	 99.99%	
All	 (Combined)	 11.64	 ·∙	 1011	 95.37%	 89.35%	 99.99%	

77

Block Processing Performance

Comparisons	 RR	 Duplicates	 PC	 Time	

Block	 Purging	 2.42	 ·∙	 1010	 -‐	 892,463	 99.99%	 0.05	

WF1	
Block	 Scheduling	 1.55	 ·∙	 1010	 93.58%	 892,463	 99.99%	 0.16	
Block	 Pruning	 7.24	 ·∙	 107	 99.70%	 879,446	 98.53%	 0.01	

WF2	

Comparison	 PropagaWon	 1.24	 ·∙	 1010	 48.86%	 892,463	 99.99%	 5.75	
Block	 Scheduling	 9.20	 ·∙	 108	 96.20%	 892,463	 99.99%	 0.16	
Comparison	 Pruning	 4.98	 ·∙	 107	 99.79%	 837,286	 93.80%	 4.14	

WF3	

Comparison	 PropagaWon	 1.24	 ·∙	 1010	 48.86%	 892,463	 99.99%	 5.75	
Comparison	 Pruning	 4.32	 ·∙	 108	 98.21%	 837,286	 93.80%	 4.14	
Comparison	 Scheduling	 4.46	 ·∙	 107	 99.82%	 837,286	 93.80%	 0.51	

78

Meta-blocking Performance

Comp. RR PC
ARCS CBS ECBS JS EJS

WNP 0.26 · 108 99.94% 79.46% 51.71% 61.14% 82.09% 79.61%
CNP 0.50 · 108 99.88% 93.43% 92.35% 94.05% 95.57% 95.99%

Comparisons RR PC ΔPC

Token Blocking 3.98 · 1010 - 99.91% -

WEP

ARCS 2.85 · 108 99.28% 92.45% -7.45%
CBS 3.40 · 109 91.46% 95.47% -4.42%
ECBS 5.77 · 109 85.50% 99.66% -0.23%
JS 1.11 · 1010 71.80% 99.73% -0.16%
EJS 1.10 · 1010 72.32% 99.77% -0.11%

CEP

ARCS 1.85 · 109 95.34% 99.41% -0.48%
CBS 3.57 · 109 91.04% 99.35% -0.54%
ECBS 9.94 · 109 75.02% 99.75% -0.14%
JS 1.96 · 1010 50.76% 99.87% -0.02%
EJS 1.99 · 1010 49.74% 99.88% -0.01%

79

Meta-blocking Time Requirements
MT	 RT	 CT	 Total	

Token	 Bl.	 0	 0	 142.37	 142.37	

W
E
P	

ARCS	 7.48	 17.00	 25.13	 49.62	
CBS	 8.08	 8.53	 26.81	 43.42	
ECBS	 11.69	 9.40	 27.93	 49.03	
JS	 7.74	 6.75	 26.76	 41.26	
EJS	 6.87	 7.12	 32.46	 46.45	

C
E
P	

ARCS	 6.87	 16.08	 1.81	 24.76	
CBS	 7.12	 6.97	 4.64	 18.73	
ECBS	 7.26	 7.40	 2.84	 17.49	
JS	 6.81	 6.56	 0.28	 13.66	
EJS	 6.81	 7.45	 0.25	 14.51	

W
N
P	

ARCS	 6.81	 17.58	 13.05	 40.64	
CBS	 6.84	 6.87	 29.08	 49.99	
ECBS	 6.84	 7.08	 35.56	 56.84	
JS	 7.36	 9.07	 26.74	 42.24	
EJS	 6.81	 7.44	 36.85	 58.83	

C
N
P	

ARCS	 6.81	 17.58	 3.49	 27.89	
CBS	 6.84	 6.87	 5.35	 19.06	
ECBS	 6.84	 7.08	 2.05	 15.97	
JS	 7.36	 9.07	 0.78	 17.21	
EJS	 6.81	 7.44	 0.85	 15.10	

MaterializaLon	 Time	 (MT):	 Wme	 for	
Graph	 Building	 and	 Edge	 WeighWng.	
	
Restructure	 Time	 (RT):	 Wme	 for	
Graph	 Pruning	 and	 Block	 CollecWng.	
	
Comparisons	 Time	 (CT):	 Wme	 for	
execuWng	 the	 retained	 comparisons.	
	
	
Performance	 over	 DBPedia	 in	 hours,	 using	
Intel	 Xeon	 E5472	 3.0	 GHz	 and	 16GB	 of	 RAM.	
Profile	 comparison	 was	 done	 with	 Jaccard	
similarity.	

80

Entity resolution (ER) is an increasingly important problem

 Becoming more relevant in the big data era

Proposed a framework for ER in big data

 Systematic study and organization of all proposed techniques
 effectiveness layer, meta-blocking, efficiency layer
 Novel techniques targeted to big data scenarios
 Lead (up) to more than 95% RR for more than 99% PC!

Several challenges ahead

 Scalability is always a goal
 Incremental methods are necessary

Conclusions

81

collaborations!

Themis Palpanas - INRIA - Dec 2012

82

Trento, Italy

Trento

Themis Palpanas - INRIA - Dec 2012

83

dbTrento: http://db.disi.unitn.eu

Themis Palpanas - INRIA - Dec 2012

84

dbTrento

activities described in invited paper:

SIGMOD Record, Sep 2012

Themis Palpanas - INRIA - Dec 2012

85

dbTrento: http://db.disi.unitn.eu

Themis Palpanas - INRIA - Dec 2012

86

thank you!

Themis Palpanas - INRIA - Dec 2012

87

References – Part A

[Aizawa et. al., WIRI 2005] Akiko N. Aizawa, Keizo Oyama, "A Fast Linkage Detection
Scheme for Multi-Source Information Integration" in WIRI, 2005.

[Baxter et. al., KDD 2003] R. Baxter, P. Christen, T. Churches, “A comparison of fast
blocking methods for record linkage”, in Workshop on Data Cleaning, Record Linkage and
Object Consolidation at KDD, 2003.

[Bilenko et. al., ICDM 2006] M. Bilenko, B. Kamath, R. Mooney, “Adaptive blocking:
Learning to scale up record linkage”, in ICDM, 2006.

[Christen, TKDE 2011] P. Christen, " A survey of indexing techniques for scalable
record linkage and deduplication.” in TKDE 2011.

[de Vries et. al., CIKM 2009] T. de Vries, H. Ke, S. Chawla, P. Christen, “Robust record
linkage blocking using sux arrays”, in CIKM, 2009.
[Gravano et. al., VLDB 2001] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S.
Muthukrishnan, D. Srivastava, “Approximate string joins in a database (almost) for free’, in
VLDB, 2001.

[Hernandez et. al., SIGMOD 1995] M. Hernandez, S. Stolfo, “The merge/purge
problem for large databases”, in SIGMOD, 1995.

88

References – Part B

[Jin et. al., DASFAA 2003] L. Jin, C. Li, S. Mehrotra, “Efficient record linkage in large
data sets”, in DASFAA, 2003.

[Kim et. al., EDBT 2010] H. Kim, D. Lee, “HARRA: fast iterative hashed record linkage
for large-scale data collections”, in EDBT, 2010.

[Madhavan et. al., CIDR 2007] J. Madhavan, S. Cohen, X. Dong, A. Halevy, S. Jeffery, D.
Ko, C. Yu, “Web-scale data integration: You can afford to pay as you go”, in CIDR, 2007

[McCallum et. al., KDD 2000] A. McCallum, K. Nigam, L. Ungar, “Efficient clustering of
high-dimensional data sets with application to reference matching”, in KDD, 2000.
[Michelson et. al., AAAI 2006] M. Michelson, C. Knoblock, “Learning blocking schemes
for record linkage”, in AAAI, 2006.

[Papadakis et al., iiWAS 2010] G. Papadakis, G. Demartini, P. Fankhauser, P. Karger,
"The missing links: discovering hidden same-as links among a billion of triples”, in iiWAS
2010.

[Papadakis et al., WSDM 2011] G. Papadakis, E. Ioannou, C. Niederee, P. Fankhauser,
“Efficient entity resolution for large heterogeneous information spaces”, in WSDM 2011.

89

References – Part C

[Papadakis et al., JCDL 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W.
Nejdl, “Eliminating the redundancy in blocking-based entity resolution methods”, in JCDL
2011.

[Papadakis et al., SWIM 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W.
Nejdl, “To Compare or Not to Compare: making Entity Resolution more Efficient”, in
SWIM workshop (collocated with SIGMOD), 2011.
[Papadakis et al., WSDM 2012] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W.
Nejdl, “Beyond 100 million entities: large-scale blocking-based resolution for
heterogeneous data”, in WSDM 2012.

[Papadakis et. al., TKDE2013] George Papadakis, Ekaterini Ioannou, Themis Palpanas,
Claudia Niederee, Wolfgang Nejdl, "A Blocking Framework for Entity Resolution in
Highly Heterogeneous Information Spaces", in IEEE TKDE (to appear).

[Papadakis et. al., TKDE] George Papadakis, Georgia Koutrika, Themis Palpanas,
Wolfgang Nejdl, "Meta-Blocking: Taking Entity Resolution to the Next Level", in IEEE
TKDE (currently under revision).

[Yan et. Al., JCDL 2007] Su Yan, Dongwon Lee, Min-Yen Kan, C. Lee Giles, "Adaptive
sorted neighborhood methods for efficient record linkage", in JCDL 2007.

