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Data Evolution 

 
structured 
precise 
static (almost) 
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Data Evolution 
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streaming 
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Things to Come 

large scale data 
}  very large collections (i.e., terabytes to exabytes) 
}  scientific, business, user generated 
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Things to Come 

large scale data 
streaming data 

}  sensors, feeds, continuous analytics 
}  response times in seconds to nanoseconds 
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Things to Come 

large scale data 
streaming data 
heterogeneous data 

}  structured, non-structured, text, multimedia 
}  variety of sources, schemas, representations, models 
}  computer-generated, human-generated 
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Things to Come 

large scale data 
streaming data 
heterogeneous data 
private data 

}  correlating data from multiple sources poses risks 
}  credit card history, mobile phone usage, GPS tracking 

}  privacy and accountability 
}  access granted only to specific person, at specific time, for specific 

purpose, only for necessary data 
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Things to Come 

large scale data 
streaming data 
heterogeneous data 
private data 
uncertain data 

}  imprecision, inconsistencies, incompleteness, ambiguities, latency, 
deception, approximations, privacy preserving transformations 

}  process/data/model uncertainty 
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Big Data 

large scale data 
streaming data 
heterogeneous data 
private data 
uncertain data 
 

  confluence of all the above! 
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Work in dbTrento 

large scale data 
streaming data 
heterogeneous data 
private data 
uncertain data 

Themis Palpanas - INRIA - Dec 2012 



12 

This Talk 

large scale data 
streaming data 
heterogeneous data 
private data 
uncertain data 
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This Talk 

large scale data (web data sources) 
streaming data 
heterogeneous data (no hope for standard schema) 
private data 
uncertain data (imprecisions, errors, typos) 
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Entities: an invaluable asset 

“Entities” is what a large part of our knowledge is about: 

Persons 

Organizations 

Projects 

Locations 

Products 
Events 
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However … 

How many names, descriptions or IDs (URIs) are used for 
the same “entity”? 

London 런던 ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏܘ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏܘ܀܁܂܃܄܅܆܇܈܉܊܋܌܍ܐܑܒܓܔܕܖܗܘܙܚܛܜܝܞܟܠܡܢܣܤܥܦܧܨܩܪܫܬܭܮܯܱܴܷܸܹܻܼܾ݂݄݆݈ܰܲܳܵܶܺܽܿ݀݁݃݅݇݉݊ݍݎݏ ल"डन ल"दन લ"ડન ለንደን ロンドン 
ল"ন ลอนดอน இலண்டன் ლონდონი Llundain Londain 
Londe Londen Londen Londen Londinium London 
Londona Londonas Londoni Londono Londra Londres 
Londrez Londyn Lontoo Loundres Luân Đôn Lunden 
Lundúnir Lunnainn Lunnon للننددنن للننددنن للننددنن للووننددوونن 

 Λονδίνο Лёндан Лондан Лондон Лондон ל
Лондон Լոնդոն 伦敦 … 

http://sws.geonames.org/2643743/ 
http://en.wikipedia.org/wiki/London 
http://dbpedia.org/resource/Category:London 
… 

capital of UK, host city of the IV Olympic Games, 
host city of the XIV Olympic Games, future host of 
the XXX Olympic Games, city of the Westminster 
Abbey, city of the London Eye, the city described by 
Charles Dickens in his novels, … 
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◦  London, KY 
◦  London, Laurel, KY 
◦  London, OH 
◦  London, Madison, OH 
◦  London, AR 
◦  London, Pope, AR 
◦  London, TX 
◦  London, Kimble, TX 
◦  London, MO 
◦  London, MO 
◦  London, London, MI 
◦  London, London, Monroe, MI 
◦  London, Uninc Conecuh County, AL 
◦  London, Uninc Conecuh County, Conecuh, AL 
◦  London, Uninc Shelby County, IN 
◦  London, Uninc Shelby County, Shelby, IN 
◦  London, Deerfield, WI 
◦  London, Deerfield, Dane, WI 
◦  London, Uninc Freeborn County, MN 
◦  ... 

◦  London, Jack 
2612 Almes Dr 
Montgomery, AL 
(334) 272-7005 
 

◦  London, Jack R 
2511 Winchester Rd 
Montgomery, AL 36106-3327 
(334) 272-7005 
 

◦  London, Jack 
1222 Whitetail Trl 
Van Buren, AR 72956-7368 
(479) 474-4136 
 

◦  London, Jack 
7400 Vista Del Mar Ave 
La Jolla, CA 92037-4954 
(858) 456-1850 
 

◦  ... 

How many “entities” have the same name? 

… or … 
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… or … 

How many content types / applications provide valuable 
information about each of these “entities”? 

News about London 
reviews on hotels in London 

Pictures and tags about London 

Videos and tags for London 

Social networks in London 

Wiki pages about the London 
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Preliminaries 

 
Entity Resolution: 

 identifies and aggregates the different entity profiles/records that 
actually describe the same real-world object. 

 
 

Application areas: 
  Social Networks, census data, price comparison portals, Linked Data 

 

Useful because: 
•  improves data quality and integrity  
•  fosters re-use of existing data sources 
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Types of input 

 
The entity collections given as input to ER can be of two types: 

•  clean, which are duplicate-free 
   e.g., DBLP, ACM Digital Library, Wikipedia, Freebase,  

•  dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 
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Types of Entity Resolution 

  
 An ER task that receives as input two entity collections can be of 
the following types: 

1.  Clean-Clean ER 
  

2.  Dirty-Clean ER 

3.  Dirty-Dirty ER 
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Types of Entity Resolution 

  
 An ER task that receives as input two entity collections can be of 
the following types: 

1.  Clean-Clean ER (a.k.a. Record Linkage in databases) 
 Given two clean, but overlapping entity collections, identify the 
entity profiles they have in common. 
 e.g., merge DBLP with ACM Digital Library 

 

2.  Dirty-Clean ER 

3.  Dirty-Dirty ER 
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Types of Entity Resolution 

  
 An ER task that receives as input two entity collections can be of 
the following types: 

1.  Clean-Clean ER 
  

2.  Dirty-Clean ER 
3.  Dirty-Dirty ER 

  Identify unique entity profiles contained in union of the input 
 entity collections.  

  For simplicity, we treat them as equivalent to Dirty ER (a.k.a. 
 Deduplication in databases), which receives a single dirty entity 
 collection as input. 
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Computational cost 

 
ER is an inherently quadratic problem (i.e., O(N2)): 
every entity has to be compared with all others  
  
Does not scale to large entity collections (e.g., Big Data) 
 
Solution: Blocking 

•  similar entities are grouped into blocks 
•  comparisons are only executed inside blocks 
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Assumptions for Blocking in Databases 

 
Assumptions: 

1.  Each entity profile corresponds to a single real-world object. 

2.  Every entity profile consists of a uniquely identified set of name-
value pairs. 

3.  A-priori known schema 

4.  For each attribute we know some metadata: 
}  level of noise (e.g., spelling mistakes, false or missing values) 
}  distinctiveness of values 

5.  Two matching profiles are detected if they have at least one 
block in common. 
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Standard Blocking for Databases 

Simplest form of blocking.  
 
Works as a hash function. 
 
Algorithm: 
1.  Select the most appropriate attribute names w.r.t. noise and 

distinctiveness. 
2.  Extract a summary from their values in order to form a set of 

Blocking Key Values (BKVs) 
3.  For each BKV, create one block that contains all entities having 

this BKV in their transformation. 
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Example of Standard Blocking 

 
 
 
 
 
 
 
 
 
 
 
Blocks on zip_code:             

                 

first name=Antony P.  

last name=Gray 

address=Los Angeles, California 

first name=Bill 

last name=Green 

address=Los Angeles, California 

DATASET 1 

first name=Antony 

last name=Gray 

address=L.A., California, USA 

name=William Nicholas 

last name=Green 

address=L.A., California, USA 

DATASET 2 

91456 94520 

zip_code= 91456 zip_code= 91456 

zip_code=94520 zip_code=94520 
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Advanced Blocking Methods 

 Most blocking methods for databases rely on the same signature-
based functionality (review in [Christen, TKDE 2011]). 

 

 Main difference (to standard blocking): 
  redundancy → overlapping blocks 

 

 Drawbacks: 
1.  Schema-dependent  
2.  Too many parameters to be configured (e.g., which attributes to 

select, how to combine them in BKVs) 
 
    Partial solution:  

automatic configuration through machine learning techniques 
[Bilenko et. al., ICDM 2006]  [Michelson et. al., AAAI 2006]  
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Q-grams Blocking  
[Baxter et. al., KDD 2003] [Gravano et. al., VLDB 2001] 

Converts every BKV into a list of q-grams  
(i.e., substrings of length q). 
For q=2, the keys 91456 and 94520 yield the following blocks: 
 
 
 
 
 

 
Advantage: 

 robust to noisy BKVs 
 

Drawback: 
 larger blocks → higher computational cost 

91 94 

14 45 

56 20 

45 
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Suffix Array Blocking  
 [Aizawa et. al., WIRI 2005][de Vries et. al., CIKM 2009] 

Converts every BKV to its list of suffixes that are longer than a  
predetermined minimum length lmin. 
For lmin =3, the keys 91456 and 94520 yield the blocks: 
 
 
 
 
 

 
Advantage: 

 robust to noisy BKVs 
 

Drawback: 
 larger blocks → higher computational cost 

91456 94520 

456 520 

1456 4520 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

1.  Entities are sorted in  
 alphabetic order of BKVs. 

2.  A window of fixed size  
 slides over the sorted list. 

 

91456 

94520 

1st step 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

1.  Entities are sorted in  
 alphabetic order of BKVs. 

2.  A window of fixed size  
 slides over the sorted list. 

 

91456 

94520 

2nd step 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

1.  Entities are sorted in  
 alphabetic order of BKVs. 

2.  A window of fixed size  
 slides over the sorted list. 

 
Drawback: the fixed window may be 
•  too narrow in some cases, leaving out matches,  
•  too wide in other cases, including many irrelevant entities. 
 

Solution: 
 adaptable window size based on the similarity of BKVs (Adaptive 
Sorted Neighborhood [Yan et. Al., JCDL 2007]) 

91456 

94520 3rd step 
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Canopy Clustering [McCallum et. al., KDD 
2000] 

 
Not based on signatures.  
Instead, entity profiles are compared with a cheap string  
similarity metric m (e.g., TF-IDF, Jaccard similarity). 
 

Algorithm: 
1.  Select a random entity profile e1 

  from the pool of entities 

2.  Create a new block containing 
 all ei s.t. m(e1,ei) < t1 

3.  Remove from the pool of entities 
 all ej s.t. m(e1,ej) < t2 (t2 < t1) 

4.  Repeat until the pool is empty 
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 Characteristics of Big Data 

They include Web 2.0 data, Semantic Web, Dataspaces. 
  

Voluminous, (semi-)structured datasets.  

}  DBPedia 3.4: 36.5 million triples and 2.1 million entities 
}  BTC09:  1.15 billion triples, 182 million entities. 

 

Users are free to insert not only attribute values but also 
attribute names à high levels of heterogeneity.  

}  DBPedia 3.4: 50,000 attribute names 
}  Google Base:100,000 schemata and10,000 entity types 
}  BTC09:  136K attribute names 

 

Large portion of data originating from automatic information 
extraction techniques à noise, tag-style values 
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Blocking over Big Data 

 
Existing blocking techniques are inapplicable, due to: 
•  Loose schema binding. 
•  High levels of heterogeneity. 
•  Noise and missing attribute names or values. 
 
These settings call for blocking methods that: 
•  Are robust to noise. 
•  Are decoupled from schema information. 
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Exemplary Challenges of Big Data 

 
 
 
 
 
 
 
 
 
 
 

            

name=United Nations Children’s Fund 

acronym=unicef 

headquarters=California 

name=Ann Veneman 

position=unicef 

address=California 

DATASET 1 

organization=unicef 

California 

status=active 

firstName=Ann 

lastName=Veneman 

residence=California 

DATASET 2 

address=Los Angeles,  91335 

ZipCode=90210 

Los Angeles, 91335 

zip_code=90201 

Noise 

Attribute 
Heterogeneity 

Loose Schema 
Binding 

Split 
values 
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Problem Definition 

Metrics for assessing block quality: 
}  Pair Completeness:        (recall) 

  
}  Reduction Ratio:         (savings in # of 

             comparisons) 

Problem Definition: 
 Given two duplicate-free entity collections (Clean-Clean ER),  
 cluster their entities into blocks and process them so that both PC  
 and RR are maximized. 

The same applies to Dirty ER. 
 
disclaimer:   

 Precision of entity matching is dependent on the entity similarity measures, and is 
orthogonal to the above problem. 

atchesexisting_m
atchesdetected_mPC =

omparisonsbaseline_c
parisonsmethod_com-1RR =
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Outline 

•  Introduction 

•  Approach 
}  Core Ideas 
}  Effectiveness Layer 
}  Type of pair-wise comparisons 

}  Metric Space for Blocking Methods 
}  Meta-blocking Layer 
}  Efficiency Layer 

•  Evaluation 
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Framework Outline 

Three-layered approach*: 
1.  Effectiveness Layer 

 Build blocks in a way that involves: 
}  Attribute-agnostic functionality 
}  Redundancy for robustness and high effectiveness 

2.  Meta-blocking 
   Restructure a block collection into a new one with fewer comparisons, but 

equally high effectiveness. 

2.  Efficiency Layer 
 Process blocks s.t. entire blocks or individual comparisons that do not 
contribute to effectiveness are discarded (thus increasing efficiency). 
  

*Code and data are fully available at: sourceforge.net/projects/erframework/. 
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Effectiveness Layer 

Goal: 
 place every pair of matching entities in at least one common block. 

Solution: 
•  redundancy to reduce the likelihood of missed matches, 
•  attribute-agnostic functionality to be able to handle Big Data. 
Drawbacks: 
•  the blocks are overlapping (i.e., repeated comparisons),  
•  high number of comparisons between irrelevant entities. 
 
Three families of approaches: 
1.  Token Blocking 
2.  Attribute Clustering (Clean-Clean ER) 
3.  URI Semantics Blocking (Dirty ER) 
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Token Blocking [Papadakis et al., WSDM2011] 

Attribute-agnostic blocking scheme: 
•  completely ignores attribute names. 
•  considers all attribute values. 

 
Functionality: 

1.  given an entity profile, it transforms it into the set of tokens 
contained in its values. 

2.  creates one block for each distinct token → each block 
contains all entities with the corresponding token*. 

 

Redundancy is inherent! 
 

  *Each block should contain at least two entities. 



43 

Token Blocking Example 

 
 
 
 
 
 
 
 

name=United Nations Children’s Fund 

acronym=unicef 

headquarters=California 

name=Ann Veneman 

position=unicef 

address=California 

DATASET 1 

organization=unicef 

California 

status=active 

firstName=Ann 

lastName=Veneman 

residence=California 

DATASET 2 

Veneman 

unicef 

Ann 

California 
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Attribute-Clustering Blocking  
[Papadakis et. al., TKDE2013] 

Goal 
 group attribute names into clusters s.t. we can apply Token Blocking 
independently in each cluster, yielding more efficient but equally effective 
blocks 

Algorithm 
 Input data: N1, N2 
 Parameters: a string similarity metric m, a representation model r 
 Procedure: 
  for every attribute name ni in N1 

   find the most similar nj in N2 s.t. m(r(ni), r(nj))> 0 
   connect them with an edge 
  do the same for every attribute name ni in N2 
  get transitive closure 
  get connected components 
  merge together singleton clusters 
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Attribute-Clustering Blocking – Part B 

 
Versatile settings: 
1.  character n-grams with Jaccard similarity 

2.  token n-grams with TF-IDF 

3.  n-gram graphs with value similarity (graph metric) 

The last one performs better, but computationally expensive. 
 
Similar to Schema Matching, but fundamentally different: 
1.  Associated attribute names do not have to be semantically equivalent.  

 They only have to produce good blocks. 

2.  All singleton attributes are associated with each other. 

3.  Schema matching approaches do not scale to the highly heterogeneous big 
data. 
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Attribute-agnostic blocking leads to high levels of redundancy. For Semantic Web 
data, three sources of evidence create blocks of lower redundancy: 

1.  Semantics in entity URIs (i.e., Infix) [Papadakis et al., iiWAS 2010]  
Infixes may consist of several concatenated tokens. 

2.  Relations between entities (i.e., Infix Profile) 
The URIs of attribute values can be represented by their Infixes. 

3.  Literal values (i.e., Literal Profile) 
Values that do not correspond to blank nodes or URIs can be represented by their tokens. 

Evidence for URI Semantics Blocking 
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The above sources of evidence lead to 3 blocking methods: 
1.  Infix Blocking 

every block contains all entities whose URI has a specific Infix 

2.  Infix Profile Blocking 
every block corresponds to a specific Infix (of an attribute value) and 
contains all entities having it in their Infix Profile 

3. Literal Profile Blocking 
every block corresponds to a specific token and contains all entities having it 
in their Literal Profile 

 
Individually, these methods may not cover all entities  
(e.g., Infix Blocking does not cover blank nodes).  
However, they are complementary and can be combined  
into composite blocking methods for higher effectiveness. 

URI Semantics Blocking  
[Papadakis et al., WSDM2012]  
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Outline 

•  Introduction 

•  Approach 
}  Core Ideas 
}  Effectiveness Layer 
}  Type of pair-wise comparisons 

}  Metric Space for Blocking Methods 
}  Meta-blocking Layer 
}  Efficiency Layer 

•  Evaluation 



49 

Meta-blocking Layer [Papadakis et. al., TKDE] 

Main idea 
 block assignments provide valuable evidence for the similarity of 
entities: the more blocks two entities share, the more similar and 
more likely they are to be matching 

Goal: 
 restructure a given block collection into a new one that contains 
substantially lower number of comparisons (RR»0), while being 
equally effective (same PC). 
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Type of pair-wise comparisons 

Every comparison between entity profiles pi and pj belongs to one of 
the following types: 

 

1.  Matching comparison if pi ≡ pj. 
2.  Redundant comparison if pi and pj have been compared in a 

previously examined block. 
3.  Superfluous comparison if pi or pj or both of them have been 

matched to some other entity (Clean-Clean ER). 
4.  Non-matching comparison if pi ≠ pj. 
 

 

To enhance efficiency without any impact on effectiveness,  we should 
discard the last three types of comparisons.  
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Meta-blocking Layer [Papadakis et. al., TKDE] 

Main idea 
 block assignments provide valuable evidence for the similarity of 
entities: the more blocks two entities share, the more similar and 
more likely they are to be matching 

Goal: 
 restructure a given block collection into a new one that contains 
substantially lower number of redundant and non-matching 
comparisons (RR»0), while being equally effective (same PC). 

 

 
Solution: Blocking graph 

 Nodes → entities 
 Edges → between entities co-occurring in at least one block 
 Weights → how similar are the adjacent entities 
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Outline of Meta-blocking 

n1 n3 

n2 n4 

n1 n3 

n2 n4 

n1 n3 

n2 n4 

3 

3 

2 2 
2 

1 
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Metric Space for Blocking Methods 

 
The graph pruning algorithms requires setting a threshold.  
Ideally, we could set pruning thresholds using PC and RR.  
 
However, PC and RR can only be measured a-posteriori: 

 have to first construct and examine all blocks 
 
Instead, we need an a-priori estimation of the PC and RR values: 
   in order to guide the block restructuring process 
   without executing any comparisons 
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Metric Space for Blocking Methods 

BC-CC metric space: 
 
 
 
 
 
 
 
 
Blocking Cardinality (BC)  
•  average block assignments per entity: highly correlated with PC 
Comparisons Cardinality (CC)  
•  average block assignments per comparison: highly correlated with RR 
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Block Enhancement on BC-CC Space 

Enhancing Effectiveness 
•  combining complementary atomic methods into composite ones  
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Block Enhancement on BC-CC Space 

Enhancing Effectiveness (e.g., Method1, Method2 →	  Method3) 
•  combining complementary atomic methods into composite ones  
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Block Enhancement on BC-CC Space 

Enhancing Effectiveness (e.g., Method1, Method2 →	  Method3) 
•  combining complementary atomic methods into composite ones  

Enhancing Efficiency  
•  Meta-blocking 
•  Block Processing 
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Block Enhancement on BC-CC Space 

Enhancing Effectiveness (e.g., Method1, Method2 →	  Method3) 
•  combining complementary atomic methods into composite ones  

Enhancing Efficiency (e.g., Method3 → Method4) 
•  Meta-blocking 
•  Block Processing 
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Meta-blocking: Block Collecting 

 
Transforming the pruned blocking graph into a block collection. 
 
For undirected blocking graphs: 

 every retained edge creates a block of minimum size 
 
For directed blocking graphs: 

 for every node (with retained outgoing edges), we create a new 
block containing the corresponding entities 
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Outline 

•  Introduction 

•  Approach 
}  Core Ideas 
}  Effectiveness Layer 
}  Type of pair-wise comparisons 

}  Metric Space for Blocking Methods 
}  Meta-Blocking Layer 
}  Efficiency Layer 

•  Evaluation 



61 

Efficiency Layer 
 

Goals: 
1.  eliminate repeated comparisons,  
2.  discard superfluous comparisons,  
3.  avoid non-matching comparisons. 
without affecting effectiveness. 
Techniques: 
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Block Purging  
[Papadakis et al., WSDM2011] & [Papadakis et al., WSDM2012] 

 
 
Oversized blocks: large number of 
comparisons, the vast majority of which is 
redundant, non-matching and superfluous. 
 
Block Purging: discards oversized blocks by 
setting an upper limit  

 on size of each block [Papadakis et al., 
WSDM 2011], or  

 on number of comparisons it contains 
[Papadakis et al., WSDM 2012] 
 

Purged Set of Blocks 

Veneman 

unicef 

Ann 

California 
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Duplicate Propagation  
[Papadakis et al., WSDM2011] 

In Clean-Clean ER, matched Entities do not need to be compared again. 
They can be propagated through a central data structure that contains 
the matched duplicates from each dataset. 

Veneman 

unicef 

Ann 

After processing 1st block 

Total Comparisons: 0 
Duplicates Dataset 1: {null} 
Duplicates Dataset 2: {null} 

Total Comparisons: 2 
Duplicates Dataset 1: {Entity 1} 
Duplicates Dataset 2: {Entity 3} 

After processing 2nd Block 
Total Comparisons: 3 
Duplicates Dataset 1: {Entity 1, Entity 2} 
Duplicates Dataset 2: {Entity 3, Entity 4} 

Before processing  

After processing 3rd Block 
Total Comparisons: 3! 
Duplicates Dataset 1: {Entity 1, Entity 2} 
Duplicates Dataset 2: {Entity 3, Entity 4} 
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Enhance effect of Duplicate Propagation, by detecting duplicates as 
early as possible: 

 order blocks so as to examine first those blocks that are highly 
 likely to contain duplicates 

 
This likelihood is expressed through the utility measure that is assigned 
to each block: 
 

 

where |bi,1| and |bi,2| are number of entities from dataset 1 and 2, that 
are contained in block bi 

Block Scheduling [Papadakis et al., WSDM2011] 

|)||,(|
2,1,

max
1

cost bb
gainU

iii

i
i ==
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Block Scheduling Example 

Veneman 

unicef 

Ann 

Initial Set of Blocks 

UAnn=1 

Uunicef=0.5 

UVeneman=1 Ann 

unicef 

Veneman 

Ordered Set of Blocks 

UAnn=1 

UVeneman=1 

Uunicef=0.5 

Total Comparisons: 0 
Duplicates Dataset 1: {null} 
Duplicates Dataset 2: {null} 

Total Comparisons: 1 
Duplicates Dataset 1: {E2} 
Duplicates Dataset 2: {E4} 

Total Comparisons: 1 
Duplicates Dataset 1: {E2} 
Duplicates Dataset 2: {E4} 

Total Comparisons: 2 
Duplicates Dataset 1: {E1, E2} 
Duplicates Dataset 2: {E3, E4} 

Total Comparisons: 3 
(see slide 15) 
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Effect of Block Scheduling 

Ann 

unicef 

Veneman 

After  
1st block 

 
dh1=1/1 

After 
4th Block dh2=(1+1)/1=2 

duplicates
scomparison

dh
k

k
k =

X 

cost of identifying new duplicates is called 
duplicate overhead (dh): 
 

comparisonsk: # of comparisons executed 
after examining the (k-1)-th block 
containing new duplicates 
 

duplicatesk:  # of matched pairs of entities in 
the k-th block containing new duplicates. 
 

dh increases as we move from first block to 
next ones:  
due to Block Scheduling, the lower the 
execution order of a block is, the more 
comparisons and the less unique duplicates 
it entails 
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Block Pruning [Papadakis et al., WSDM 2011] 

dh provides a good estimation of the duplicates that remain to be 
detected →	  the higher its value is, the more unlikely it is to identify 
new duplicates in the remaining blocks at a reasonable cost (i.e., 
#comparisons). 
 
Therefore, the ER process can be terminated prematurely, when dh 
gets high. 
 
Block Pruning sets an upper limit on duplicate overhead, called  dhmax, 
based on the total number of comparisons n contained in the original 
set of blocks: 
 
As soon as dh exceeds dhmax, the entire process is terminated. 

2/log
max 10 ndh =
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Comparison Propagation  
[Papadakis et al., JCDL2011] 

Goal : eliminate all redundant comparisons.  
Naïve solution: store all executed comparisons in a hash table → not scalable  

Our approach: indirect propagation of all executed comparisons in three steps 
1.  Block Enumeration: assign to each block an index denoting its position 

on the block processing list. 
2.  Inverted Index: Data structure associating entities with block indices. 

 

3.  Two entities are compared iff they satisfy the Least Common Block 
Index Condition: the index of the current block is their minimum 
common block index. E.g., p1 and p3 are compared in b1, but the condition 
does not hold in b5. 
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Goal: discard non-matching comparisons. 
How can we infer that two entities are non-matching without 
actually comparing them? 
 
Examine number of blocks they have in common! 
Comparison Pruning discards a comparison between pi and pj if it does 
not satisfy the following condition: 

JSmin ≤ ES(pi, pj) 
where: 
JS(pi, pj) is the Jaccard coefficient of their block lists, and 

Comparison Pruning [Papadakis et al., SWIM 2011] 
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Comparison Scheduling 
[Papadakis et. al., TKDE1] 

Enhances the effect of Duplicate Propagation: it schedules  
the execution of individual comparisons so that those  
involving real matches are executed first. 
 
The utility of every comparison between pi and pj is: 

u(pi,pj) = JS(pi, pj) · ICF(pi) · ICF(pj) 
where JS(pi, pj) is the Jaccard coefficient of the block lists, 
and ICF(pk) is the inverse comparison frequency of pk. 
 
To reduce its high computational cost, it is usually applied  
after Comparison Propagation and Comparison Pruning. 
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Composing ER workflows 
[Papadakis et. al., TKDE2013] 

 
 
 
 
 
 
 
 
 
Actual selection depends on the application requirements and  
the available resources.  
In general, comparison-refinement methods are more accurate,  
but more time- and resource-consuming than block-refinement.  
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Outline 

•  Introduction 

•  Approach 
•  Evaluation 

}  Experimental Settings 
}  Block Building Performance 
}  Scalability of Token Blocking 
}  Block Purging Performance 
}  Meta-blocking Performance 
}  Block Processing Performance 
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BTC09 
(Dirty ER) 

Dbpedia 
(Clean-Clean ER) 

  30RC 3.4 
Entities 182 million 1,190,734 2,164,058 

Name-Value Pairs 1.15 billion 17,453,516 36,653,387 

Duplicates 11,591  
(IFP) 

5,988,554 
(Same-As) 892,586 

Experimental Settings 

Metrics 
}  Pair Completeness:        (recall) 

  
}  Reduction Ratio:         (savings in # of 

             comparisons) 

 

Datasets 
 
 
 
 
 
 

Note 1: out of 43,75 million distinct triples of DDBPedia, only 10,36 million (<25%) are common. 

Note 2: IFP corresponds to pairs of matching entities that are implicitly denoted via their common values for some 
Inverse Functional Properties. Same-As corresponds to pairs of matching entities that are explicitly denoted through 
same-as statements. 

 

atchesexisting_m
atchesdetected_mPC =

omparisonsbaseline_c
parisonsmethod_com-1RR =
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Scalability of Token Blocking 

We considered subsets of DDBpedia. 
For each subset we estimated the following metric: 
 
 
 
 
 
 
 
 
 

 

 3-4.5 orders of magnitude less comparisons (efficiency) 
  PC always above 95% (recall) 

 
 

|DBPedia||DBPedia|
mparisonsaverage_co tys_per_enticomparison

3.43.0rc +
=
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Block Building Performance 

DBPedia	   Comparisons	   Duplicates	   PC	   RR	  
Token	  Blocking	   6.18	  ·∙	  1012	   892,560	   99.99%	   -‐	  
Term	  Vector	  EM	   6.38	  ·∙	  1012	   891,546	   99.99%	   -‐	  
Term	  Vector	  AC	   6.18	  ·∙	  1012	   891,560	   99.99%	   0.01%	  
Trigrams	  AC	   1.05	  ·∙	  1012	   892,425	   99.98%	   83.04%	  
Trigram	  Graphs	  AC	   1.03	  ·∙	  1012	   892,516	   99.99%	   83.39%	  

BTC09	   Comparisons	   PC	  IFP	   PC	  SameAs	   RR	  

Token	  Blocking	   2.59	  ·∙	  1016	   99.32%	   92.26%	   -‐	  
Infix	  Blocking	   6.24	  ·∙	  1012	   59.31%	   49.60%	   99.98%	  
Infix	  Profile	  Blocking	   1.07	  	  ·∙	  1015	   84.19%	   99,99%	   95.86%	  
Literal	  Profile	  Blocking	   2.67	  ·∙	  1015	   94.49%	   24.51%	   89.68%	  
Infix+Infix	  Profile	   1.10	  ·∙	  1015	   85.16%	   87.14%	   95.77%	  
Infix+Literal	  Profile	   3.25	  ·∙	  1015	   96.43%	   65.67%	   87.46%	  
Infix	  Profile+Literal	  Profile	   3.81	  ·∙	  1015	   96.64%	   52.09%	   85.30%	  
All	  (Combined)	   3.90	  ·∙	  1015	   97.98%	   91.13%	   84.96%	  
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Block Purging Performance 

DBPedia	   Comparisons	   Duplicates	   PC	   RR	  
Token	  Blocking	   5.68	  ·∙	  1010	   891,767	   99.91%	   99.08%	  
Term	  Vector	  EM	   4.34	  ·∙	  1010	   891,709	   99.90%	   99.32%	  
Term	  Vector	  AC	   5.68	  ·∙	  1010	   891,767	   99.91%	   99.08%	  
Trigrams	  AC	   3.06·∙	  	  1010	   892,402	   99.98%	   97.08%	  
Trigram	  Graphs	  AC	   2.42	  ·∙	  1010	   892,463	   99.99%	   97.64%	  

BTC09	   Comparisons	   PC	  IFP	   PC	  SameAs	   RR	  

Token	  Blocking	   15.49	  ·∙	  1011	   96.79%	   60.52%	   99.99%	  
Infix	  Blocking	   0.004	  ·∙	  1011	   58.85%	   49.54%	   99.99%	  
Infix	  Profile	  Blocking	   1.62	  ·∙	  1011	   76.53%	   41.36%	   99.99%	  
Literal	  Profile	  Blocking	   9.37	  ·∙	  1011	   94.34%	   18.29%	   99.99%	  
Infix+Infix	  Profile	   1.69	  ·∙	  1011	   72.64%	   86.60%	   99.99%	  
Infix+Literal	  Profile	   8.79	  ·∙	  1011	   94.48%	   63.75%	   99.99%	  
Infix	  Profile+Literal	  Profile	   12.00	  ·∙	  1011	   93.57%	   50.03%	   99.99%	  
All	  (Combined)	   11.64	  ·∙	  1011	   95.37%	   89.35%	   99.99%	  
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Block Processing Performance 

Comparisons	   RR	   Duplicates	   PC	   Time	  

Block	  Purging	   2.42	  ·∙	  1010	   -‐	   892,463	   99.99%	   0.05	  

WF1	  
Block	  Scheduling	   1.55	  ·∙	  1010	   93.58%	   892,463	   99.99%	   0.16	  
Block	  Pruning	   7.24	  ·∙	  107	   99.70%	   879,446	   98.53%	   0.01	  

WF2	  

Comparison	  PropagaWon	   1.24	  ·∙	  1010	   48.86%	   892,463	   99.99%	   5.75	  
Block	  Scheduling	   9.20	  ·∙	  108	   96.20%	   892,463	   99.99%	   0.16	  
Comparison	  Pruning	   4.98	  ·∙	  107	   99.79%	   837,286	   93.80%	   4.14	  

WF3	  

Comparison	  PropagaWon	   1.24	  ·∙	  1010	   48.86%	   892,463	   99.99%	   5.75	  
Comparison	  Pruning	   4.32	  ·∙	  108	   98.21%	   837,286	   93.80%	   4.14	  
Comparison	  Scheduling	   4.46	  ·∙	  107	   99.82%	   837,286	   93.80%	   0.51	  
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Meta-blocking Performance 

Comp. RR PC 
ARCS CBS ECBS JS EJS 

WNP 0.26 · 108 99.94% 79.46% 51.71% 61.14% 82.09% 79.61% 
CNP 0.50 · 108 99.88% 93.43% 92.35% 94.05% 95.57% 95.99% 

Comparisons RR PC ΔPC 

Token Blocking 3.98 · 1010 - 99.91% - 

WEP 

ARCS 2.85 · 108 99.28% 92.45% -7.45% 
CBS 3.40 · 109 91.46% 95.47% -4.42% 
ECBS 5.77 · 109 85.50% 99.66% -0.23% 
JS 1.11 · 1010 71.80% 99.73% -0.16% 
EJS 1.10 · 1010 72.32% 99.77% -0.11% 

CEP 

ARCS 1.85 · 109 95.34% 99.41% -0.48% 
CBS 3.57 · 109 91.04% 99.35% -0.54% 
ECBS 9.94 · 109 75.02% 99.75% -0.14% 
JS 1.96 · 1010 50.76% 99.87% -0.02% 
EJS 1.99 · 1010 49.74% 99.88% -0.01% 
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Meta-blocking Time Requirements 
MT	   RT	   CT	   Total	  

Token	  Bl.	   0	   0	   142.37	   142.37	  

W
E
P	  

ARCS	   7.48	   17.00	   25.13	   49.62	  
CBS	   8.08	   8.53	   26.81	   43.42	  
ECBS	   11.69	   9.40	   27.93	   49.03	  
JS	   7.74	   6.75	   26.76	   41.26	  
EJS	   6.87	   7.12	   32.46	   46.45	  

C
E
P	  

ARCS	   6.87	   16.08	   1.81	   24.76	  
CBS	   7.12	   6.97	   4.64	   18.73	  
ECBS	   7.26	   7.40	   2.84	   17.49	  
JS	   6.81	   6.56	   0.28	   13.66	  
EJS	   6.81	   7.45	   0.25	   14.51	  

W
N
P	  

ARCS	   6.81	   17.58	   13.05	   40.64	  
CBS	   6.84	   6.87	   29.08	   49.99	  
ECBS	   6.84	   7.08	   35.56	   56.84	  
JS	   7.36	   9.07	   26.74	   42.24	  
EJS	   6.81	   7.44	   36.85	   58.83	  

C
N
P	  

ARCS	   6.81	   17.58	   3.49	   27.89	  
CBS	   6.84	   6.87	   5.35	   19.06	  
ECBS	   6.84	   7.08	   2.05	   15.97	  
JS	   7.36	   9.07	   0.78	   17.21	  
EJS	   6.81	   7.44	   0.85	   15.10	  

MaterializaLon	  Time	  (MT):	  Wme	  for	  
Graph	  Building	  and	  Edge	  WeighWng.	  
	  
Restructure	  Time	  (RT):	  Wme	  for	  
Graph	  Pruning	  and	  Block	  CollecWng.	  
	  
Comparisons	  Time	  (CT):	  Wme	  for	  
execuWng	  the	  retained	  comparisons.	  
	  
	  
Performance	  over	  DBPedia	  in	  hours,	  using	  
Intel	  Xeon	  E5472	  3.0	  GHz	  and	  16GB	  of	  RAM.	  
Profile	  comparison	  was	  done	  with	  Jaccard	  
similarity.	  
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Entity resolution (ER) is an increasingly important problem 

 Becoming more relevant in the big data era 
 
Proposed a framework for ER in big data  

 Systematic study and organization of all proposed techniques 
  effectiveness layer, meta-blocking, efficiency layer 
 Novel techniques targeted to big data scenarios 
 Lead (up) to more than 95% RR for more than 99% PC!  

 
Several challenges ahead 

 Scalability is always a goal 
 Incremental methods are necessary 

Conclusions 
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SIGMOD Record, Sep 2012 
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