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Data Evolution
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Things to Come

large scale data
very large collections (i.e., terabytes to exabytes)

scientific, business, user generated
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Things to Come

large scale data

streaming data
sensors, feeds, continuous analytics

response times in seconds to nanoseconds
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large scale data

streaming data

heterogeneous data
structured, non-structured, text, multimedia
variety of sources, schemas, representations, models

computer-generated, human-generated
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Things to Come

large scale data
streaming data
heterogeneous data

private data
correlating data from multiple sources poses risks
credit card history, mobile phone usage, GPS tracking
privacy and accountability

access granted only to specific person, at specific time, for specific
purpose, only for necessary data

Themis Palpanas - INRIA - Dec 2012



{ Things to Come

g

large scale data
streaming data
heterogeneous data
private data

uncertain data

imprecision, inconsistencies, incompleteness, ambiguities, latency,
deception, approximations, privacy preserving transformations

process/data/model uncertainty
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Big Data

large scale data
streaming data
heterogeneous data
private data

uncertain data

confluence of all the above!

Themis Palpanas - INRIA - Dec 2012
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Work in dbTrento

large scale data
streaming data
heterogeneous data
private data

uncertain data
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large scale data

streaming data
heterogeneous data
private data

uncertain data
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@ This Talk

3
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large scale data (web data sources)

streaming data

heterogeneous data (no hope for standard schema)

private data

uncertain data (imprecisions, errors, typos)

Themis Palpanas - INRIA - Dec 2012
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Introduction
Background
Standard Blocking for Databases

Advanced Blocking Methods
Q-grams Blocking
Suffix Array Blocking
The Sorted Neighborhood Approach
Canopy Clustering

Blocking over Dataspaces
Approach

Evaluation
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“Entities” is what a large part of our knowledge is about:

Locations

Organizations

l Projects

Persons

Products

Events
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However ...

How many names, descriptions or IDs (URIs) are used for
the same “entity”?

London 31 ¥ [],FIELE] T e i< A18.71 OV kY
09 apuUADU @a)smm_aﬂ enmboombo Llundain Londain
Londe Londen Londen Londen Londinium London
Londona Londonas Londoni Londono Londra Londres
Londrez Londyn Lontoo Loundres Luan P6n Lunden
Lundunir Lunnainn Lunnon $s205d God Gaod aaod

5 Aovdivo JIéunan Jlonnan Jloanon JIonmoH
Jlongon Lnunnu 1B ...

capital of UK, host city of the IV Olympic Games,
host city of the XIV Olympic Games, future host of
the XXX Olympic Games, city of the Westminster
Abbey, city of the London Eye, the city described by
Charles Dickens in his novels, ...

nttp://sws.geonames.org/2643743/
- http://en.wikipedia.org/wiki/London

nttp://dbpedia.org/resource/Category:London
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How many “entities” have the same name?

London, KY

London, Laurel, KY

London, OH

| ondon, Madison, OH

_ondon, AR

_ondon, Pope, AR

| ondon, TX

London, Kimble, TX

London, MO

London, MO

London, London, Mi

London, London, Monroe, Ml

London, Uninc Conecuh County, AL
London, Uninc Conecuh County, Conecuh, AL
London, Uninc Shelby County, IN
London, Uninc Shelby County, Shelby, IN
London, Deerfield, WI

London, Deerfield, Dane, WI

. London, Uninc Freeborn County, MN

London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

London, Jack R

2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

London, Jack

1222 Whitetail Trl

Van Buren, AR 72956-7368
(479) 474-4136

London, Jack

7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

17



... O ...

How many content types / applications provide valuable
information about each of these “entities”?

News about London

REUTERS

reviews on hotels in London

-

Wiki pages about the London ?a f;" . | QMQT ]MQ

/ - \tures and tags about London
Linkedﬁ@ fl Ic kr

Social networks in London
You Tube

Videos and tags for London

18
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Entity Resolution:

identifies and aggregates the different entity profiles/records that
actually describe the same real-world object.

Application areas:

Social Networks, census data, price comparison portals, Linked Data

Useful because:
improves data quality and integrity

fosters re-use of existing data sources

19



The entity collections given as input to ER can be of two types:

clean, which are duplicate-free
e.g., DBLP, ACM Digital Library,Wikipedia, Freebase,

dirty, which contain duplicate entity profiles in themselves

e.g., Google Scholar, Citeseer”®

20
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Types of Entity Resolution

An ER task that receives as input two entity collections can be of
the following types:

Clean-Clean ER

Dirty-Clean ER

Dirty-Dirty ER

21
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|Z3S Types of Entity Resolution

An ER task that receives as input two entity collections can be of
the following types:

I. Clean-Clean ER (a.k.a. Record Linkage in databases)

Given two clean, but overlapping entity collections, identify the
entity profiles they have in common.

e.g., merge DBLP with ACM Digital Library
2. Dirty-Clean ER

3. Dirty-Dirty ER

22
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|Z3S Types of Entity Resolution

An ER task that receives as input two entity collections can be of
the following types:

I. Clean-Clean ER

2. Dirty-Clean ER
3. Dirty-Dirty ER

|dentify unique entity profiles contained in union of the input
entity collections.

For simplicity, we treat them as equivalent to Dirty ER (a.k.a.
. Deduplication in databases), which receives a single dirty entity
: collection as input.

23
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@) Computational cost
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ER is an inherently quadratic problem (i.e., O(N?)):
every entity has to be compared with all others

Does not scale to large entity collections (e.g., Big Data)

Solution: Blocking

similar entities are grouped into blocks

comparisons are only executed inside blocks

24
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@ Assumptions for Blocking in Databases

3

N
Assumptions:
I, Each entity profile corresponds to a single real-world object.

2. Every entity profile consists of a uniquely identified set of name-
value pairs.

3. A-priori known schema

4. For each attribute we know some metadata:
level of noise (e.g., spelling mistakes, false or missing values)

distinctiveness of values

5. Two matching profiles are detected if they have at least one
block in common.

25
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(Ej 3;%\;3 Standard Blocking for Databases
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Simplest form of blocking.
Works as a hash function.

Algorithm:

. Select the most appropriate attribute names w.r.t. noise and
distinctiveness.

2. Extract a summary from their values in order to form a set of
Blocking Key Values (BKVs)

3. For each BKY, create one block that contains all entities having
this BKV in their transformation.

26



iExample of Standard Blocking

-

ATASET 1

/Entity 1

first name=Antony P.

~

last name=Gray

address=Los Angeles, California

DATASET 2

Entity 3

first name=Antony

last name=Gray

K zip_code= 91456

v

address=L.A., California, USA

zip_code= 91456

7 N
Entity 2 Entity 4
\ﬁrst name=Bill ) name=William Nicholas
last name=Green last name=Green
\\ - £ >
address=Los Angeles, California address=L.A., California, USA
\zip_code=94520 ) zip_code=94520
N —
791456 (94520 A
Blocks on zip_code: "y 5 Entity4 | Entity 1 Entity 3
\\ J \\ /J

27




(Ef 3; §ES“) Advanced Blocking Methods

Most blocking methods for databases rely on the same signature-
based functionality (review in [Christen, TKDE 201 17]).

Main difference (to standard blocking):

redundancy — overlapping blocks

Drawbacks:
. Schema-dependent

2. Too many parameters to be configured (e.g., which attributes to
select, how to combine them in BKVs)

Partial solution:

. automatic configuration through machine learning techniques
: [Bilenko et. al., ICDM 2006] [Michelson et.al.,,AAAI 2006]

28
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(%) Q-grams Blocking

Iz3,§> [Baxter et. al., KDD 2003] [Gravano et. al., VLDB 2001]

NF &
Converts every BKYV into a list of g-grams

(i.e., substrings of length q).
For g=2, the keys 91456 and 94520 yield the foIIowing blocks:

o1 2

Advantage: O /) @
Entity 4 Entity 1 Entity 3

robust to noisy BKVs @ i i e

Drawback:

larger blocks — higher computational cost

29



. ouftix Array Blocking

IZ3S, |Aizawa et. al., WIRI 2005]|de Vries et. al., CIKM 2009]

Converts every BKYV to its list of suffixes that are longer than a

predetermined minimum length |

For | .

Advantage:
robust to noisy BKVs

Drawback:

min®

=3, the keys 91456 and 94520 yield the blocks:

91456
1456
/456

larger blocks — higher computational cost

94520
" 4520
(520

30
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% SOI‘ted NelgthrhOOd [Hernandez et. al., SIGMOD 1995]

=2 )0
&

. Entities are sorted in 91456r @
alphabetic order of BKVs. @

2. A window of fixed size 94520

slides over the sorted list.

15t step

31
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% SOI‘ted NelgthrhOOd |[Hernandez et. al., SIGMOD 1995]

=2 )0
&

L . 91456
. Entities are sorted in

alphabetic order of BKVs.

2nd step

slides over the sorted list.

2. A window of fixed size 94520 %

32
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<i E3§,E SOI’ted NClgthrhOOd |Hernandez et. al., SIGMOD 1995]

3

N &
. Entities are sorted in 91436
alphabetic order of BKVs. Entity 4
2. A window of fixed size 94520 @ 3rd step
slides over the sorted list.
Entity 3

Drawback: the fixed window may be

- too narrow in some cases, leaving out matches,

- too wide in other cases, including many irrelevant entities.

Solution:

adaptable window size based on the similarity of BKVs (Adaptive
: Sorted Neighborhood [Yan et.Al, JCDL 2007])

33



s - Lanopy CLlustering [McCallum et. al., KDD
(f& ?Si‘\ 2000

Not based on signatures.
Instead, entity profiles are compared with a cheap string

similarity metric m (e.g., TF-IDF, Jaccard similarity).

Algorithm:

. Select a random entity profile e,
from the pool of entities

2. Create a new block containing
all e s.t. m(e,e) <t,

3. Remove from the pool of entities

all e s.t.m(ee) <t, (<t

4. Repeat until the pool is empty

34
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(5 23 Characteristics of Big Data
L35

They include Web 2.0 data, Semantic Web, Dataspaces.

Voluminous, (semi-)structured datasets.
DBPedia 3.4: 36.5 million triples and 2.| million entities
BTCO09: 1.15 billion triples, 182 million entities.

Users are free to insert not only attribute values but also

attribute names =2 high levels of heterogeneity.
DBPedia 3.4: 50,000 attribute names
Google Base: 100,000 schemata and 10,000 entity types
BTCO09: 136K attribute names

Large portion of data originating from automatic information
extraction techniques = noise, tag-style values

35
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@) Blocking over Big Data
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Existing blocking techniques are inapplicable, due to:

- Loose schema binding.
- High levels of heterogeneity.

- Noise and missing attribute names or values.

These settings call for blocking methods that:

- Are robust to noise.

- Are decoupled from schema information.

36



Exemplary Challenges of Big Data

DATASET 1

/Entity 1 \

name=United Nations Children’s Fund

DATASET 2

acronym=unicef

Loose Schema

headquarters=CaIifoV\

Entity 3

organization=unicef

California

Binding />\;tatus=active

\ address=Los Angeles, 91335
— Split
values
name=Ann Veneman
\ /<
position=unicef .
) Attribute
=Californi Het it
address=Californi eterogeneity

\

ZipCode=90210

N
Los Angeles, 91335

lastName=Veneman

residence=California

zip_code=90201

37




@ Problem Definition
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W2

Metrics for assessing block quality:

Pair Completeness: PC = detectedw

existing matches
Reduction Ratio: RR —1. method com@avis@esin # of
baseline comparisons comparisons)
Problem Definition:

Given two duplicate-free entity collections (Clean-Clean ER),

cluster their entities into blocks and process them so that both PC
and RR are maximized.

The same applies to Dirty ER.

disclaimer:

Precision of entity matching is dependent on the entity similarity measures, and is
orthogonal to the above problem.

38
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Outline

- |Introduction

- Approach
Core ldeas
Effectiveness Layer
Type of pair-wise comparisons
Metric Space for Blocking Methods
Meta-blocking Layer
Efficiency Layer

- Evaluation
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Three-layered approach*:

D Yoy 2953%

Framework Outline

DB

E_> B!ocfk B ; Met?- B Block.
I. Effectiveness Layer Building Blocking Processing >

Build blocks in a way that involves:
Attribute-agnostic functionality
Redundancy for robustness and high effectiveness
2. Meta-blocking

Restructure a block collection into a new one with fewer comparisons, but
equally high effectiveness.

2. Efficiency Layer

Process blocks s.t. entire blocks or individual comparisons that do not
contribute to effectiveness are discarded (thus increasing efficiency).

= ™Code and data are fully available at: sourceforge.net/projects/erframework/.

40
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Effectiveness Laver
s y
Goal:

place every pair of matching entities in at least one common block.
Solution:

redundancy to reduce the likelihood of missed matches,

attribute-agnostic functionality to be able to handle Big Data.
Drawbacks:

the blocks are overlapping (i.e., repeated comparisons),

high number of comparisons between irrelevant entities.

Three families of approaches:

. Token Blocking

2. Attribute Clustering (Clean-Clean ER)
3. URI Semantics Blocking (Dirty ER)

41
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(zlz3§[ Token BlOCklng [Papadakis et al., WSDM2011]

>
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Attribute-agnostic blocking scheme:

completely ignores attribute names.
considers all attribute values.

Functionality:

I given an entity profile, it transforms it into the set of tokens

contained in its values.

2. creates one block for each distinct token — each block
contains all entities with the corresponding token*.

Redundancy is inherent!

*Each block should contain at least two entities.

42



5 Token Blocking Example

W{a\
DATASET 1

DATASET 2
/" Entity 1

\ Entity 3

name=United Nations Children’s Fund

organization=unicef
acronym=unicef

California

\ headquarters=California

status=active
4 \ _
Entity 2 Entity 4
name=Ann Yeneman firstName=Ann
position=unicef I i lastName=Veneman
address=California residence=California

(California
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(%) Attribute-Clustering Blocking
L3S

s [Papadakis et. al., TKDE201 3|

Goal

group attribute names into clusters s.t. we can apply Token Blocking
independently in each cluster, yielding more efficient but equally effective
blocks

Algorithm
Input data: N, N,
Parameters: a string similarity metric m, a representation model r
Procedure:

for every attribute name n. in N,
find the most similar n; in N, s.t. m(r(n), r(n)))> O
connect them with an edge

do the same for every attribute name n, in N,

get transitive closure

get connected components

merge together singleton clusters

44
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@ Attribute-Clustering Blocking — Part B
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Versatile settings:
I, character n-grams with Jaccard similarity
2. token n-grams with TF-IDF

3. n-gram graphs with value similarity (graph metric)

The last one performs better, but computationally expensive.

Similar to Schema Matching, but fundamentally different:

I, Associated attribute names do not have to be semantically equivalent.
They only have to produce good blocks.

2. All singleton attributes are associated with each other.

| 3. Schema matching approaches do not scale to the highly heterogeneous big
' data.

45



Evidence for URI Semantics Blocking

Attribute-agnostic blocking leads to high levels of redundancy. For Semantic VWeb
data, three sources of evidence create blocks of lower redundancy:

I. Semantics in entity URIs (i.e., Infix) [Papadakis et al.,iiWWAS 2010]
Infixes may consist of several concatenated tokens.

Prefix Infix Suffix
http://dblp.13s.de/d2r/resource/publications/books/sp/wooldridgeV99  /ThalmannN99
http//bibsonomy.org/uri/bibtexkey/books/sp/wooldridgeV99  /ThalmannN99 /dblp

2. Relations between entities (i.e., Infix Profile)
The URIs of attribute values can be represented by their Infixes.

3. Literal values (i.e., Literal Profile)
Values that do not correspond to blank nodes or URIs can be represented by their tokens.

Infix = ====~- Infix Profile - ---—,
URL: <http://dbpedia.org/resource/Barack_Obama> | 1 Barack_Obama i Michelle_Obama:
1 . - real - '— o - - - - | wail
blrthnan.*e. 'Barack Huurfm Obama Il ! Joe Biden Hawaii |
dateOfBirth: “1961-08-04 veral Profi e e mmm = = ’
~ : YT TP I TR I IHawmiS eral Profile =======cccace- |
blrthPIace.. | ‘.Ha.»an ..http.//dbpcdla..org, resource; Hav.ctm. | . Barack 08 America States
shortDescription: “44th President of the United States of America | ) ,
. . . o _ 01 Obama 04 20 44th
SPOUSe: <http://dbpedia.org/resource/Michelle_Obama> : 2009 of  HusseinHawail United :
hcenrecident  <httn:// : Ires 1ee Ridens 2002 o ussein
Vicepresident: http://dbpedia.org /resource/Joe_Biden : 1061 the | President |
____________________ I
46
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URI Semantics Blocking
|[Papadakis et al., WSDM2012]

33

The above sources of evidence lead to 3 blocking methods:

|. Infix Blocking

every block contains all entities whose URI has a specific Infix

2. Infix Profile Blocking

every block corresponds to a specific Infix (of an attribute value) and
contains all entities having it in their Infix Profile

3. Literal Profile Blocking
every block corresponds to a specific token and contains all entities having it
in their Literal Profile

Individually, these methods may not cover all entities
(e.g., Infix Blocking does not cover blank nodes).
<. However, they are complementary and can be combined

7| into composite blocking methods for higher effectiveness.

47
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Outline

- |Introduction

- Approach
Core ldeas
Effectiveness Layer
Type of pair-wise comparisons
Metric Space for Blocking Methods
Meta-blocking Layer
Efficiency Layer

- Evaluation
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|Z3S Meta-blocking Layer [Papadakis et. al., TKDE]

Main idea

block assignments provide valuable evidence for the similarity of
entities: the more blocks two entities share, the more similar and
more likely they are to be matching

Goal:

restructure a given block collection into a new one that contains
substantially lower number of comparisons (RR»0), while being
equally effective (same PC).

49
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E3§ Type of pair-wise comparisons

Every comparison between entity profiles p; and p, belongs to one of
the following types:

[ Matching comparison if p; = p;.

2. Redundant comparison if p; and p, have been compared in a
previously examined block.

3. Superfluous comparison if p; or p; or both of them have been
matched to some other entity (Clean-Clean ER).

4. Non-matching comparison if p; # p..

To enhance efficiency without any impact on effectiveness, we should
discard the last three types of comparisons.

50
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@ Meta-blocking Layer [Papadakis et. al., TKDE]

3

N &
Main idea

block assignments provide valuable evidence for the similarity of
entities: the more blocks two entities share, the more similar and
more likely they are to be matching

Goal:

restructure a given block collection into a new one that contains
substantially lower number of redundant and non-matching
comparisons (RR»0), while being equally effective (same PC).

Solution: Blocking graph
Nodes — entities
Edges — between entities co-occurring in at least one block

Weights — how similar are the adjacent entities

51
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|B§ Metric Space for Blocking Methods

The graph pruning algorithms requires setting a threshold.
|deally, we could set pruning thresholds using PC and RR.

However, PC and RR can only be measured a-posteriori:

have to first construct and examine all blocks

Instead, we need an a-priori estimation of the PC and RR values:
in order to guide the block restructuring process

without executing any comparisons
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@ Metric Space for Blocking Methods

N &

BC-CC metric space:

CC Ideal Point

.Redunda ncy-bearing
Method

.Partitioning
Method

1 [El-1
Blocking Cardinality (BC)

- average block assignments per entity: highly correlated with PC
Comparisons Cardinality (CC)

- average block assignments per comparison: highly correlated with RR
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Enhancing Effectiveness

- combining complementary atomic methods into composite ones
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@) Block Enhancement on BC-CC Space
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Enhancing Effectiveness (e.g., Method, Method, - Method,)

- combining complementary atomic methods into composite ones

cC | ldeal Point
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@) Block Enhancement on BC-CC Space
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Enhancing Effectiveness (e.g., Method, Method, - Method,)

- combining complementary atomic methods into composite ones

Enhancing Efficiency
- Meta-blocking

- Block Processing

cc ‘ ldeal Point
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Enhancing Effectiveness (e.g., Method, Method, - Method,)

- combining complementary atomic methods into composite ones

Enhancing Efficiency (e.g., Method; — Method,)
- Meta-blocking

- Block Processing

L™
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cc ‘ Ideal Point
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(sz %b} Meta-blocking: Block Collecting

~
o
w o

Transforming the pruned blocking graph into a block collection.

For undirected blocking graphs:

every retained edge creates a block of minimum size

For directed blocking graphs:

for every node (with retained outgoing edges), we create a new
block containing the corresponding entities
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Outline

- |Introduction

- Approach
Core ldeas
Effectiveness Layer
Type of pair-wise comparisons
Metric Space for Blocking Methods
Meta-Blocking Layer
Efficiency Layer

- Evaluation
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2.
3.

(%) Efficiency Layer

eliminate repeated comparisons,

discard superfluous comparisons,

avoid non-matching comparisons.

without affecting effectiveness.

Techniques:
Comparison’s Type

Repeat Superfluity Non-match Scheduling

Method Method method method
Block- _ ) 1. Block Purging Block
refinement 2.Block Pruning | Scheduling
Comparison- | Comparison | Duplicate Comparison Comparison
refinement Propagation | Propagation Pruning Scheduling

& e = = Q) =30 = O
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Oversized blocks: large number of
comparisons, the vast majority of which is
redundant, non-matching and superfluous.

Block Purging: discards oversized blocks by
setting an upper limit

on size of each block [Papadakis et al,,
WSDM 2011], or

on number of comparisons it contains
[Papadakis et al., WSDM 2012]

Purged Set of Blocks

/unicef h
Entity 3
Entlty | Entity 2
\\ J
/Veneman A
[Enity 2 [Entity 4
N\ /)
/Ann A
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In Clean-Clean ER, matched Entities do not need to be compared again.
They can be propagated through a central data structure that contains

the matched duplicates from each dataset.

Before processing

Gnicef

Entity [
o

[Veneman

Em@ﬁ@y 2 Entity 4

[Ann

After processing 15t block

After processing 2" Block

- After processing 3" Block

Total Comparisons: 0O
Duplicates Dataset 1: {null}
Duplicates Dataset 2: {null}

Total Comparisons: 2
Duplicates Dataset 1: {Entity 1}
Duplicates Dataset 2: {Entity 3}

Total Comparisons: 3
Duplicates Dataset 1: {Entity 1, Entity 2}
Duplicates Dataset 2: {Entity 3, Entity 4}

Total Comparisons: 3!
Duplicates Dataset 1: {Entity 1, Entity 2}
Duplicates Dataset 2: {Entity 3, Entity 4}
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EB*S Block Scheduhng |Papadakis et al., WSDM2011} ‘

Enhance effect of Duplicate Propagation, by detecting duplicates as
early as possible:

order blocks so as to examine first those blocks that are highly
likely to contain duplicates

This likelihood is expressed through the utility measure that is assighed

to each block: . gain I

" cost. InaX(Ib Wb, ,D

where |b; || and |b;,| are number of entities from dataset | and 2, that
are contained in block b
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Ordered Set of Blocks _ Total Comparisons: O
” Duplicates Dataset 1: {null}

0.5 (Veneman h Duplicates Dataset 2: {null}

unicef=
U =1
Elfﬁ]@ﬁ@y 2 Em@ﬁ@y 4 Veneman
\\ ) Total Comparisons: 1

” Duplicates Dataset 1: {E2}
Veneman Uy, =1 Ann -\ Duplicates Dataset 2: {E4}
eneman

Entiey2 | Endity 4 Entiey2 | Endity 4 Uann™1
N\ y N py

Total Comparisons: 1
Ann ™ > Duplicates Dataset 1: {E2}

Upnn=1 Duplicates Dataset 2: {E4)}
Entity 2 Entity 4
\\ J

Total Comparisons: 3
(see slide 15)

U

U 0.5

unicef

To:tal Comparisons: 2
Duplicates Dataset 1: {E1, E2}
Duplicates Dataset 2: {E3, E4}
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@ Effect of Block Scheduling
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cost of identifying new duplicates is called

duplicate overhead (dh): g1, - comparisons,
* duplicates,

(Veneman

comparisonsk: # of comparisons executed Em@ﬁ@y 2 [Entity 4
. . After

after examining the (k-1)-th block 1 block ahet
containing new duplicates (Ann 1

duplicates,: # of matched pairs of entities in

the k-th block containing new duplicates.

X
. . EnEity 5 Enity ©
dh increases as we move from first block to N\ ")

next ones:
due to Block Scheduling, the lower the Jul
' ' Entfty |
execution order of a block is, the more Aﬂer\\ /

comparisons and the less unique duplicates 4n gjock

dh,=(1+1)/1=2
7 it entails
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(iE! 3 %S' :) Block Prumng |Papadakis et al., WSDM 2011]

dh provides a good estimation of the duplicates that remain to be
detected — the higher its value is, the more unlikely it is to identify
new duplicates in the remaining blocks at a reasonable cost (i.e.,

#comparisons).

Therefore, the ER process can be terminated prematurely, when dh
gets high.

Block Pruning sets an upper limit on duplicate overhead, called dh__,
based on the total number of comparisons n contained in the original

set of blocks: Jh =10

As soon as dh exceeds dh__ , the entire process is terminated.
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m Comparison Propagation
» >

E3S i [Papadakis et al., JCDL2011]

N &
Goal : eliminate all redundant comparisons.
Naive solution: store all executed comparisons in a hash table — not scalable

Our approach: indirect propagation of all executed comparisons in three steps

I. Block Enumeration: assign to each block an index denoting its position
on the block processing list.

2. Inverted Index: Data structure associating entities with block indices.

ﬂ::{> b, p{ b Pl b
l:>[b4]-i[b8]

ﬁ;:s = DI

3. Two entities are compared iff they satisfy the Least Common Block
Index Condition: the index of the current block is their minimum

common block index. E.g., p, and p; are compared in b, but the condition
does not hold in b..
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lz3s COmpanson Prunlng [Papadakis et al., SWIM 2011]

Goal. discard non-matching comparisons.

How can we infer that two entities are non-matching without
actually comparing them?

Examine number of blocks they have in common!

Comparison Pruning discards a comparison between p; and p,; if it does
not satisfy the following condition:

jsmin — Es(pl’ p])

where:

JS(p;, p)) is the Jaccard coefficient of their block lists, and
a - min(iBC.!,iBC?)
iBCﬁ.‘. - iBCff —a- n'zin(_iBCi‘, ._ iBCff)

ES min @ —
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Comparison Scheduling
|[Papadakis et. al., TKDE1]

&

Enhances the effect of Duplicate Propagation: it schedules
the execution of individual comparisons so that those

involving real matches are executed first.

The utility of every comparison between p; and p; is:

u(pspy) = J5(p»py) " ICF(p) - ICF(p)
where |S(p;, p;) is the Jaccard coefficient of the block lists,

and ICF(p,) is the inverse comparison frequency of p,.

To reduce its high computational cost, it is usually applied

after Comparison Propagation and Comparison Pruning.
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Composmg ER worktlows
¢_[Papadakis et. al., TKDE2013]

Block Processmg

15t step 2"d step 3""I step 4 step 5th step 6" step \
Block Meta- Core Scheduling Non-match
Building blockmg Methods Methods Methods Methods
Token Block Block Comparison Block
Blocking Purging Scheduling Propagation Pruning
OR AND OR OR
Agnostic Duplicate Comparison Comparison
Clustering Propagation Scheduling Pruning
OR
Total
Description

Actual selection depends on the application requirements and
the available resources

In general, comparison-refinement methods are more accurate

’
but more time- and resource-consuming than block-refinement
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Introduction

- Approach

Evaluation
Experimental Settings
Block Building Performance
Scalability of Token Blocking
Block Purging Performance
Meta-blocking Performance

Block Processing Performance
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Experimental Settings

Metrics

detected_matcheﬁ.eca”)

Pair Completeness: pc _
existing matches
Reduction Ratio: RR =1 method compisamags in # of
baseline comparisons Comparisons)
Datasets

Entities | 82 million 1,190,734 2,164,058

Name-Value Pairs .15 billion 17,453,516 36,653,387
, | 1,591 5,988,554
Duplicates (IFP) (Same-As) 892,586

@ Note |:out of 43,75 million distinct triples of Dygp.4i., Only 10,36 million (<25%) are common.

same-as statements.

— Note 2:IFP corresponds to pairs of matching entities that are implicitly denoted via their common values for some
Inverse Functional Properties. Same-As corresponds to pairs of matching entities that are explicitly denoted through
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{ Scalability of Token Blocking

£3

N
»°

We considered subsets of Dpg .-

For each subset we estimated the following metric:

comparisons per entity =

average comparisons
| DBPedias.o | + | DBPedias4

10000000
(%2
g 1000000 --------- - e D U = GD e s O em am Sm .-
(7] - - - - =
=~ 100000 |—===

[
g- < 10000 Our Approach
o & = = = Naive Method
O w1000
v O
S 10
<

1
[119010, 216209] (476042, 864839] (833074, 1513468] (1190734, 2164058]

size of sample data sets [DBPedia 3.0 RC, DBPedia 3.4]

3-4.5 orders of magnitude less comparisons (efficiency)

PC always above 95% (recall)
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Block Building Performance

DBPedla

Token Blocking 6.18 - 1012 892,560 99.99% -
Term Vector EM 6.38 - 1012 891,546 99.99% -
Term Vector AC 6.18 - 1012 391,560 99.99% 0.01%
Trigrams AC 1.05 - 1012 892,425 99.98% 83.04%
Trigram Graphs AC 1.03 - 1012 892,516 99.99% 83.39%
BTCO9

Token Blocking 2.59 - 1016 99.32% 92.26% -
nfix Blocking 6.24 - 1012 59.31% 49.60% 99.98%
nfix Profile Blocking 1.07 - 10%° 84.19% 99,99% 95.86%
Literal Profile Blocking 2.67 - 10%° 94.49% 24.51% 89.68%
nfix+Infix Profile 1.10 - 10%° 85.16% 87.14% 95.77%
nfix+Literal Profile 3.25-10% 96.43% 65.67% 87.46%
nfix Profile+Literal Profile 3.81-10%° 96.64% 52.09% 85.30%
All (Combined) 3.90 - 10%° 97.98% 91.13% 84.96%
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Block Purging Performance

(£

DBPedla

Token Blocking 5.68 - 1010 891,767 99.91% 99.08%
Term Vector EM 4.34 - 1010 891,709 99.90% 99.32%
Term Vector AC 5.68 - 1010 391,767 99.91% 99.08%
Trigrams AC 3.06: 1010 892,402 99.98% 97.08%
Trigram Graphs AC 2.42 - 1010 892,463 99.99% 97.64%
BTCO9
Token Blocking 15.49 - 1011 96.79% 60.52% 99.99%
nfix Blocking 0.004 - 1011 58.85% 49.54% 99.99%
nfix Profile Blocking 1.62 - 1011 76.53% 41.36% 99.99%
Literal Profile Blocking 9.37 - 101! 94.34% 18.29% 99.99%
nfix+Infix Profile 1.69 - 1011 72.64% 86.60% 99.99%
{Infix+Literal Profile 8.79 - 1011 94.48% 63.75% 99.99%
“Infix Profile+Literal Profile 12.00 - 1012 93.57% 50.03% 99.99%
All (Combined) 11.64 - 101 95.37% 89.35% 99.99%
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Block Processing Performance

Block Purging 2.42 - 1010 - 892,463 99.99% 0.05

WE Block Scheduling 1.55- 1019 93.58% 892,463 99.99%  0.16
' Block Pruning 7.24 - 107 99.70% 879,446 98.53%  0.01
Comparison Propagation 1.24 - 1019 | 48.86% 892,463 | 99.99% 5.75

WEF,  Block Scheduling 9.20 - 108 | 96.20% 892,463 | 99.99% 0.16
Comparison Pruning 4.98 - 107 § 99.79% 837,286 | 93.80% 4.14
Comparison Propagation 1.24 - 1019 48.86% 892,463 99.99% 5.75

WF;  Comparison Pruning 4.32-10% 98.21% 837,286 93.80% 4.14
Comparison Scheduling 4.46 - 107 99.82% 837,286 93.80% 0.51
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(fof 3;%: ‘) Meta-blocking Performance

NP
Token Blocking 3.98 - 10'0 - 99.91% -
ARCS 2.85- 108  99.28% 92.45% -7.45%
CBS 340 - 107  91.46% 95.47% -4.42%
WEP ECBS 5.77 - 10° 85.50% 99.66% -0.23%
JS .11 - 10  71.80% 99.73% -0.16%
EJS .10 - 10'%  72.32% 99.77% -0.11%
ARCS 1.85 - 10° || 95.34% 99.41% -0.48%
CBS 3.57- 107  91.04% 99.35% -0.54%
CEP ECBS 994 - 10°  75.02% 99.75% -0.14%
JS 1.96 - 10'®  50.76% 99.87% -0.02%
EJS 1.99 - 10'%  49.74% 99.88% -0.01%
ARCS CBS ECBS JS EJS
WNP 0.26 - 103  99.94% 79.46%  51.71% 61.14% 82.09% 79.61%

CNP 0.50 - 108  99.88% 93.43%  92.35% 94.05%  9557%  95.99%
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Materialization Time (MT): time for
Graph Building and Edge Weighting.

Restructure Time (RT): time for
Graph Pruning and Block Collecting.

Comparisons Time (CT): time for

executing the retained comparisons.

Performance over DBPedia in hours, using
Intel Xeon E5472 3.0 GHz and 16GB of RAM.
Profile comparison was done with Jaccard
imilarity.

Meta-blocking Time Requirements

Token BI. 0 0 14237
ARCS 7.48 17.00 25.13 49.62

w  CBS 8.08 8.53 26.81 43.42
E ECBS 11.69 940 27.93 49.03
P IS 7.74 6.75 26.76 41.26
EJS 6.87 7.12  32.46 46.45

ARCS 687 16.08 181 | 24.7§

C CBS 7.12 6.97 4.64 18.73
E ECBS 7.26 7.40 2.84 17.49
P JS 6.81 6.56 0.28 13.66
EJS 6.81 7.45 0.25 14.51

ARCS 6.81 17.58 13.05 40.64

w  CBS 6.84 6.87 29.08 49.99
N ECBS 6.84 7.08 35.56 56.84
P IS 7.36 9.07 26.74 42.24
EJS 6.81 7.44  36.85 58.83

ARCS 6.81  17.58 3.49 27.89

C CBS 6.84 6.87 5.35 19.06
N ECBS 6.84 7.08 2.05 15.97
P IS 7.36 9.07 0.78 17.21
EJS 6.81 7.44 0.85 15.10
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(il_ff 32%% Conclusions

N 5

Entity resolution (ER) is an increasingly important problem

Becoming more relevant in the big data era

Proposed a framework for ER in big data
Systematic study and organization of all proposed techniques
effectiveness layer, meta-blocking, efficiency layer

Novel techniques targeted to big data scenarios
Lead (up) to more than 95% RR for more than 99% PC!

Several challenges ahead

Scalability is always a goal

Incremental methods are necessary
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