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The Problem

model parameters

# of parameters

# of workers/clients

𝑛 workers/clients

. . .

loss on the data distribution on worker 𝑖

Key features:
• Data is heterogeneous among clients
• Data is private
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Parallel SGD

. . .

Iteration 𝒌:
1. Server broadcasts 𝑥𝑘 
2. Workers compute stochastic gradients
3. Server averages the stochastic gradients and 

makes an SGD step
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Parallel SGD: (Some) Good Properties

✅Simple method

✅Provable convergence

✅Cheap iterations

✅Can be improved in terms of communication efficiency
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Federated Learning
with a Target Client
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Federated Learning with a Target Client

Standard Federated Learning

Personalized Federated Learning

Goal: find ො𝑥 such that

Goal: find something “in between” ො𝑥 and ෤𝑥 
(“in between” can be formalized in a number of ways)

Federated Learning with a Target Client

Goal: find 𝑥ු such that

Eduard, wait a second… Isn’t it trivial?
Workers have only finite number of samples
Maybe, some workers can be helpful

But we don’t know which ones
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Is Parallel SGD Good for FL with a Target Client?

Parallel SGD: ,       where

Toy 1-dimensional problem: 𝑛 = 100 and

• Parallel SGD (with small enough stepsize) converges to ො𝑥 = 9.00009 but 𝑥ු = 0

• Natural behavior since Parallel SGD is designed to solve the standard FL problem,
i.e., Parallel SGD uses uniform averaging
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Naive Approach

Use target’s client data only:

✅The method converges (under some assumptions) to 𝑥ු – exactly as desired
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Naive Approach

Use target’s client data only:

✅The method converges (under some assumptions) to 𝑥ු – exactly as desired

No collaboration!

❌Poor generalization if the target client’s dataset is small
❌Small mini-batch → slow convergence for some tasks
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Non-Implementable Approach

Use data from clients with the same data distribution:

✅The method converges (under some assumptions) to 𝑥ු – exactly as desired

✅Collaboration is performed with useful clients only

We don’t know in advance who has the same distribution → non-implementable method

❌Some clients with close distribution are ignored, though they could be useful

subset of clients with
the same data distribution

as for the target client
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New Method: MeritFed
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New Method: MeritFed

aggregation weights

Update rule:

Key novelty:

How to solve the above auxiliary problem?

probability simplex
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MeritFed: How to Solve Auxiliary Problem

Approach 1: use fresh data (if one can get fresh samples)

✅Standard stochastic optimization on a simplex – can be solved via Stochastic Mirror Descent
❌In practice, data is limited → we don’t have fresh data

Approach 2: approximate 𝑓1 with its sampled version based on extra validation dataset/train dataset

extra validation/training dataset

✅Again, one can solve it with (mini-batched) Mirror Descent

In theory, ෡𝐷 should be large enough to have 𝑓1 ≈ ෡𝑓1
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Mirror Descent
on a probability simplex with Kulback-Leibler distance as a Bregman divergence 

Problem:

Method:

✅Exponent and product are computed component-wise
✅One can use a zeroth-order version of it for the auxiliary problem in MeritFed (for privacy)

Amir Beck. 2017. First-order methods in optimization. SIAM.
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Convergence Theory

Assumptions:

• Bounded variance 
(∀ 𝑖 ∈ 𝒢 - clients with the same distribution)

• Smoothness

• The auxiliary problem
can be solved approximately

Theorem: under the above assumptions MeritFed with 𝛾 ≤ Τ1
2𝐿 converges as

the same bound as for “Ideal” Parallel 
SGD that uses only clients with the 

same data distribution

Term caused by 
inaccurate solution

of aux. problem
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Numerical Results: Problems and Baselines

• Mean estimation

• Image classification: ResNet18 @ CIFAR10

• Emotions classification: BERT @ GoEmotions

We tested MeritFed on several tasks:
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Numerical Results: Problems and Baselines

• Mean estimation

• Image classification: ResNet18 @ CIFAR10

• Emotions classification: BERT @ GoEmotions

• ResNet18 @ MedMNIST

We tested MeritFed on several tasks: Baselines:

• SGD Full: standard Parallel SGD

• SGD Ideal: only clients from 𝒢 participate

• FedAdp (Wu & Wang, 2021): Parallel SGD with
non-uniform aggregation weights based on
cosine similarity between gradients

• TAWT (Chen et al., 2021): in theory, it uses
hypergradient calculation; in practice, it is based
on cosine similarity between gradients

• FedProx (Li et al., 2020)

• Wu, H., & Wang, P. (2021). Fast-convergent federated learning with adaptive weighting. IEEE Transactions on Cognitive Communications and Networking
• Chen, S., Crammer, K., He, H., Roth, D., & Su, W. J. (2021). Weighted training for cross-task learning. arXiv preprint arXiv:2105.14095.
• Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks.

Proceedings of Machine learning and systems.
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Mean Estimation
Setup: Problem:

• Three distributions:
𝒟1 =  𝒩(0, Ι), 𝒟2 =  𝒩 𝜇1, Ι , 𝒟3 =  𝒩 𝑒, Ι ,
where 1 = 1, … , 1 ⊤ and 𝑒 = 1
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ResNet18 @ CIFAR10: Setup

• 20 clients are divided into three groups

• Goal of the first client: classify the first three classes (has data for those classes only)

• Second group (10 workers): 𝛼 ∈ (0,1] portion of data consists of samples from classes 0, 1, 2;
1 − 𝛼 portion of data contains samples from classes 3, 4, 5

• Third group (9 workers): data consists of samples from classes 6, 7, 8, 9
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ResNet18 @ CIFAR10: Results with Extra Data



54

ResNet18 @ CIFAR10: Results without Extra Data

MeritFed works even without extra data!
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BERT @ GoEmotions: Setup
• 20 clients are divided into three groups

• Goal of the first client: classify the “joy” emotion

• Second group (10 workers): 𝛼 ∈ (0,1] portion of data consists of samples from “joy” class;
1 − 𝛼 portion of data contains samples from “neutral” class

• Third group (9 workers): data consists of samples from “neutral” class and other basic emotions
(like “anger”, “fear”, “sadness” and so on)
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BERT @ GoEmotions: Results with Extra Data
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Bonus: Byzantine-Robustness for Free

Setup:

• Mean estimation with 55 clients

• 5 clients have the same distribution as a 
target one

• 50 clients know the target distribution 
and perform a Byzantine-attack

Observation: MeritFed will work even if other workers send (intentionally) “harmful” vectors
✅In other words, MeritFed is Byzantine-robust

Attacks:

• ALIE (Baruch et al., 2019)

• IPM (Xie et al., 2019)

• Bit Flipping (BF): Byzantines send (−𝑔𝑖
𝑘) instead of 𝑔𝑖

𝑘

• Random Noise (RN): Byzantines send 𝑔𝑖
𝑘 + Gaussian noise

• Baruch, G., Baruch, M., & Goldberg, Y. A little is enough: Circumventing defenses for distributed learning. NeurIPS 2019.
• Xie, C., Koyejo, O., & Gupta, I. Fall of empires: Breaking byzantine-tolerant sgd by inner product manipulation. UAI 2020.
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Bonus: Byzantine-Robustness for Free



59

Low-Resource Machine Translation
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There are about 7000 Languages

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf

…but many of them possess low amount of resources (texts)
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Training LLMs for Low-Resource Languages

• Cross-lingual transfer learning (from high-resource to low-resource languages)

Existing approaches:

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf
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Training LLMs for Low-Resource Languages

• Cross-lingual transfer learning (from high-resource to low-resource languages)

• Zero-shot learning: rain a model in one domain and assume it generalizes more or less out-of-the-box in a 
low-resource domain

• Few shot learning: train a model in one domain and use only few examples from a low-resource domain to 
adapt it

• Joint multilingual learning: train a single model on a mix of datasets in all languages

Existing approaches:

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf

Main difficulty: it is unclear in-advance what languages to use as “helpers” and to what extent

Wait a second… but this is exactly the same problem as in FL with a target client
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Languages in NLP As Clients in FL 
Federated Learning Natural Language Processing
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Languages in NLP As Clients in FL 
Federated Learning Natural Language Processing

Not much data

Harder to train a model

Let us apply MeritFed!
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MeritOpt
a.k.a. MeritFed-type wrapper for any stochastic first-order method

For example, OptStep can be a step of SGD, AdaGrad, RMSProp, Adam, etc.
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Considered Tasks and Setup

• Multilingual Machine Translation on South East Asian languages
• Multilingual Machine Translation on he subset of Sami languages (from Finno-Ugric languages)

Tasks:

Model: M2M100

Baselines:

• Fine-tuning to all languages including the target language (FTall)
• Fine-tuning to all languages except the target language (FTnot)
• Fine-tune to the target language only (FTonlyt)
• Continuous Pretraining to all languages, followed by additional fine-tuning to the target language (CPall)
• Continuous Pretraining to all languages but the target, followed by additional fine-tuning to the target 

language (CPnot)



73

South East Asian Languages
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South East Asian Languages



76

Conclusion
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Main Takeaways

• Merit(Fed)Opt – new method for (FL with a target client) for learning 
from the diverse datasets

• Personalized Federated Learning can be applied to the training of LLMs
for low-resource languages 
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Limitations

• Scalability

• We tried the approach for low-resource languages only

• Results are provided for M2M100, while numerous LLMs are available

• Only one target client

• Theory does not show how helpful other clients are if they have different but 
close distribution
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Thank you!
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