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The Problem

model parameters

# of workers/clients
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loss on the data distribution on worker i
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’ Key features:
* Datais heterogeneous among clients
* Datais private

n workers/clients




Parallel SGD

Iteration k:
1. Server broadcasts x*
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Parallel SGD

Iteration k:

1. Server broadcasts x*

2. Workers compute stochastic gradients

3. Server averages the stochastic gradients and

makes an SGD step /
k
tFelgf| F gl 2t gy aF e gy

Exlgy] = V fi(2")
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Parallel SGD: (Some) Good Properties

Simple method
Provable convergence
Cheap iterations

B4 Can be improved in terms of communication efficiency
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Federated Learning
with a Target Client
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Federated Learning with a Target Client

Standard Federated Learning

Goal: find X such that

f ~ arg min {f(a?) = ,:LZfz-(ff)}
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Federated Learning with a Target Client

Standard Federated Learning Federated Learning with a Target Client

Goal: find X such that Goal: find X such that

T /A~ arg min {f(a:) = %Z fz(x)} i = arg min fi(x)

ZBGRC{’ xeRd
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Federated Learning with a Target Client

Standard Federated Learning Federated Learning with a Target Client
Goal: find X such that Goal: find X such that
»~ argmin § 1(0) = -3 1) :  arg i (0
T /A arg min )= — (x ¥ ~ arg min fi(x
gmGRd n P ' ngRd !

@ Eduard, wait a second... Isn’t it trivial?
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Federated Learning with a Target Client

Standard Federated Learning Federated Learning with a Target Client
Goal: find X such that Goal: find X such that
1 n
T /A arg min r) = — (T T ~ arg min fi(x
g min fz) n;ﬁ( ) g min f;(z)

@ Eduard, wait a second... Isn’t it trivial?

fz. (x) — EﬁiNDi [f& (af;)} Workers have only finite number of samples
O Maybe, some workers can be helpful

@ B3 But we don’t know which ones
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Federated Learning with a Target Client

Standard Federated Learning Federated Learning with a Target Client
Goal: find X such that Goal: find X such that
1 n
T /A arg min r) = — (x T ~ arg min fi(x
g min fz) n;ﬁ( ) g min f;(z)

@ Eduard, wait a second... Isn’t it trivial?
: — Workers h ly finit ber of I
fz(il?) — ]E&NDZ_ [fgz(l')] orkers have only finite number of samples
O Maybe, some workers can be helpful
@ B3 But we don’t know which ones

Personalized Federated Learning

Goal: find something “in between” X and X
(“in between” can be formalized in a number of ways)

T ~ argmin f;(x) Vi € {1,...,n}
rERY



Is Parallel SGD Good for FL with a Target Client?

n
okl k 1 k
Parallel SGD: T = — - E Zl g; where Ek [gf] _— vfz (xk)
1=
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Is Parallel SGD Good for FL with a Target Client?

1 n
Parallel SGD: xk—i_l — :L“k — Y- E ng, where Ek [gf] = sz ($k)
1=1

Toy 1-dimensional problem: n = 100 and f1 (:C) .= 332
fg(ﬂf) — fg(ﬂf) — ... = 10(37) .= (LC — 0001)2
fir(z) = fiz(x) = ... = froo(x) == (x — 10)7



Is Parallel SGD Good for FL with a Target Client?

1 n
Parallel SGD: xk—i_l — ;I;k — Y- E ng, where Ek [gf] = sz ($k)
1=1

Toy 1-dimensional problem: n = 100 and f1 (33) .= 562
fg(ﬂf) — fg(ﬂf) — ... = 10(27) .= (LC — 0001)2
fll(il?) — flz(ﬂf) = ... = flo()(il?) — (ZU — 10)2

* Parallel SGD (with small enough stepsize) converges to X = 9.00009 but X = 0
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Is Parallel SGD Good for FL with a Target Client?

Parallel SGD: g_;'k—i_l

:xk—"}/-

1
n [

n
k

Zgi, where |, [gF] = V f; (")

1=1

Toy 1-dimensional problem: n = 100 and f1 (:E) L= 5132
fg(ﬂf) — fg(ﬂf) — ... = fl()(af) .= (LC — 0001)2
fir(z) = fiz(x) = ... = froo(x) == (x — 10)7

* Parallel SGD (with small enough stepsize) converges to X = 9.00009 but X = 0

* Natural behavior since Parallel SGD is designed to solve the standard FL problem,

i.e., Parallel SGD uses

uniform averaging
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Naive Approach

Use target’s client data only:

k1 _

P g )

The method converges (under some assumptions) to X — exactly as desired
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Naive Approach

Use target’s client data only:

k1 _

P g )

The method converges (under some assumptions) to X — exactly as desired

l No collaboration!

X Poor generalization if the target client’s dataset is small
X Small mini-batch = slow convergence for some tasks
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Non-Implementable Approach

Use data from clients with the same data distribution:

sty LS

1€G
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Non-Implementable Approach

Use data from clients with the same data distribution:

P S

subset of clients with
the same data distribution
as for the target client
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Non-Implementable Approach

Use data from clients with the same data distribution:

k+1

et = — .

1
g

1€G

g

&
<

The method converges (under some assumptions) to X — exactly as desired

B4 Collaboration is performed with useful clients only

subset of clients with
the same data distribution
as for the target client
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Non-Implementable Approach

Use data from clients with the same data distribution:

1
k+1 _ _k z : k
X = r — . .
/y | g | . g’l/ subset of clients with
1€

< the same data distribution
as for the target client

The method converges (under some assumptions) to X — exactly as desired
B4 Collaboration is performed with useful clients only
l We don’t know in advance who has the same distribution = non-implementable method

X Some clients with close distribution are ignhored, though they could be useful
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Update rule:

New Method: MeritFed

L, _,)/Zwk—kl k
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New Method: MeritFed

n
Updaterule: a’/’k—l_l — :L‘k — /')/ E
1=1

w

I_c—l—l k

(2

g;

\ aggregation weights
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New Method: MeritFed

n
{23 Update rule: ajk_l_l — ij — Y E wf+1gf
1=1

aggregation weights

n
A Key novelty: wk+1 ~ arg min f1 QCk — 7 E wigi
weAT —

1=




n
Updaterule: a’/’k—l_l — a’/‘k — ,-)/ E
1=1

% Key novelty:

k+1

New Method: MeritFed

A arg

min

w

c

AT

|

wz gz

k41 k

fl ﬂfk—’waz
1=1

aggregation weights

g;

probability simplex |AT = {

weR" |w>0

and zn:’wi = 1}

1=1
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n
Updaterule: a’/’k—l_l — :L‘k — /')/ E
1=1

% Key novelty:

k+1

New Method: MeritFed

~ arg min f; azk—fwai

probability simplex

aggregation weights

g;

AT :={

weR" | w>0

and zn:’wi = 1}

1=1

How to solve the above auxiliary problem?
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MeritFed: How to Solve Auxiliary Problem

Approach 1: use fresh data (if one can get fresh samples)
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MeritFed: How to Solve Auxiliary Problem

Approach 1: use fresh data (if one can get fresh samples)

Standard stochastic optimization on a simplex — can be solved via Stochastic Mirror Descent
X In practice, data is limited = we don’t have fresh data
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MeritFed: How to Solve Auxiliary Problem

Approach 1: use fresh data (if one can get fresh samples)

Standard stochastic optimization on a simplex — can be solved via Stochastic Mirror Descent
X In practice, data is limited = we don’t have fresh data

Approach 2: approximate f; with its sampled version based on extra validation dataset/train dataset
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MeritFed: How to Solve Auxiliary Problem

Approach 1: use fresh data (if one can get fresh samples)

Standard stochastic optimization on a simplex — can be solved via Stochastic Mirror Descent
X In practice, data is limited = we don’t have fresh data

Approach 2: approximate f; with its sampled version based on extra validation dataset/train dataset

w" ™ ~ arg min f1 " — E w;gr

weAY
fl(ﬂf = TA Z fe(a
EED
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MeritFed: How to Solve Auxiliary Problem

Approach 1: use fresh data (if one can get fresh samples)

Standard stochastic optimization on a simplex — can be solved via Stochastic Mirror Descent
X In practice, data is limited = we don’t have fresh data

Approach 2: approximate f; with its sampled version based on extra validation dataset/train dataset

n
k+1 . ¢ k k
w" T ~ arg min f [ ¥ — E W; g
weAY :
1=1
I Again, one can solve it with (mini-batched) Mirror Descent f (flf) . 1 f (ZE)
£%1In theory, D should be large enough to have f; =~ f; 1 ' |D| z : 3
cD

=

extra validation/training dataset
39



Mirror Descent

on a probability simplex with Kulback-Leibler distance as a Bregman divergence

Problem: /uI)IEllAI}f L (U))

f41 w' exp(—nVp(w'))

Method: 9, p—

Zw exp(—n[V(w))];

Exponent and product are computed component-wise
One can use a zeroth-order version of it for the auxiliary problem in MeritFed (for privacy)

Amir Beck. 2017. First-order methods in optimization. SIAM.
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Convergence Theory

Assumptions:

* Bounded variance E[Hgf — Vfl (gck)||2 ‘ ,ka] < 0'2

(Vi € G - clients with the same distribution) o
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Convergence Theory

Assumptions:

* Bounded variance
(Vi € G - clients with the same distribution)

e  Smoothness

ElllgF — V()| | "] < o?

IV fi(z) = Vi) < Ljlz -y

42



Convergence Theory

Assumptions:

Bounded variance E k — kY 1|2 k < 2
(Vi € G - clients with the same distribution) [ng Vfl (CC )H ‘ v ] =7
Smoothness val(x) o vfl(y)“ S LHQS o yH

can be solved approximately

The auxiliary problem E[f( k+1) | :Ck {gz i1 ] — mln fl (:E — fwazgz) ~ <0
AT
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Convergence Theory

Assumptions:

Bounded variance E k — kY 1|2 k < 2
(Vi € G - clients with the same distribution) [ng Vfl (CC )H ‘ v ] =7
Smoothness val(x) o vfl(y)“ S LHQS o yH

can be solved approximately

The auxiliary problem E[f( k+1) | Ik {gz i1 ] — mln fl (:Ij — ’)/szgz) ~ <0
AT

Theorem: under the above assumptions MeritFed with y < 1/,; converges as

1 ez o 2 @) = fM) | 29Lo® 20
¥ 2 EIIVAEHIP < ST - e+

k=0
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Convergence Theory

Assumptions:

Bounded variance E k — kY 1|2 k < 2
(Vi € G - clients with the same distribution) [ng Vfl (CC )H ‘ v ] =7
Smoothness val(x) o vfl(y)“ S LH:U o yH

can be solved approximately

The auxiliary problem E[f( k+1) | :Ck {gz i1 ] — mln f1 (:E — WZw@gz) >~
AT

Theorem: under the above assumptions MeritFed with y < 1/,; converges as

N—-1 mf 2
E[[[V f1(z")[]7] < ﬁ}/N + Gl S

=0
the same bound as for “Ideal” Parallel
SGD that uses only clients with the
same data distribution

1
N
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Assumptions:

Bounded variance

(Vi € G - clients with the same distribution)

Smoothness

The auxiliary problem

can be solved approximately

Convergence Theory

ElllgF — V()| | "] < o?

IV fi(z) = Vi) < Ljlz -y

Theorem: under the above assumptions MeritFed with y < 1/,; converges as

N—-1

1
N
—0

E[[V fi(x

I <

E[f(z") | 2% {g7 }isi] — min fi (a: vzwzgz) <[4

(f1( ) — mf) N 2vLo*

YN 4

the same bound as for “Ideal” Parallel
SGD that uses only clients with the
same data distribution

Term caused by
inaccurate solution
of aux. problem
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Numerical Results: Problems and Baselines

We tested MeritFed on several tasks:

Mean estimation
Image classification: ResNet18 @ CIFAR10

Emotions classification: BERT @ GoEmotions
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Numerical Results: Problems and Baselines

We tested MeritFed on several tasks:

e Mean estimation

Image classification: ResNet18 @ CIFAR10

Emotions classification: BERT @ GoEmotions

ResNet1l8 @ MedMNIST

Baselines:

e SGD Full: standard Parallel SGD
e SGD ldeal: only clients from G participate

* FedAdp (Wu & Wang, 2021): Parallel SGD with
non-uniform aggregation weights based on
cosine similarity between gradients

* TAWT (Chen et al., 2021): in theory, it uses
hypergradient calculation; in practice, it is based
on cosine similarity between gradients

* FedProx (Li et al., 2020)

Wu, H., & Wang, P. (2021). Fast-convergent federated learning with adaptive weighting. IEEE Transactions on Cognitive Communications and Networking
Chen, S., Crammer, K., He, H., Roth, D., & Su, W. J. (2021). Weighted training for cross-task learning. arXiv preprint arXiv:2105.14095.
Li, T, Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks. 48

Proceedings of Machine learning and systems.



Setup:

Three distributions:

Dl = N(O, I), DZ = N([J.]., I), Dg = N(e, I),

where1 =(1,...,1D)"Tand|le]| =1

Mean Estimation

Problem:

min Beop, [l — &]I°
TE
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Mean Estimation

Setup:

Three distributions:

Dy = N(0,D),D, = N(ul,1), D3 = N(e ),
where1 =(1,...,1D)"Tand|le]| =1

150 clients: 5 workers have data from Dy,

95 —from D, and 50 — from D5

Each client has 1000 samples

(target one has extra 1000 samples for validation)

Problem:

min Beop, [l — &]I°
TE
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Mean Estimation

Setup:

Three distributions:

Dy = N(0,D),D, = N(ul,1), D3 = N(e ),
where1 =(1,...,1D)"Tand|le]| =1
150 clients: 5 workers have data from Dy,
95 —from D5, and 50 — from D5
Each client has 1000 samples

(target one has extra 1000 samples for validation)

10° 5 TAWT
S5GD Ideal

1g-14 —#— 5GD Full - — -
. MeritFed SMD
A _ MeritFed MD
2 1079 _m- FedAvg K=5
= FedAvg K=10

19—3: FedAdp

1879 4

6 ld@B 2dﬂﬂ Eébﬂ 4ﬂbﬂ EBhB
Iterations

Figure 1: Mean Estimation: p = Figure 2: Mean Estimation: p =

0.001, MD learning rate = 3.5.
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Iterations

lege

0.01, MD learning rate = 4.5.
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MSELpss

107% 4

1071 4
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MeritFed SMp ¥ MTTE—
MeritFed MD
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T
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Figure 3: Mean Estimation: u =
0.1, MD learning rate = 12.5.
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ResNetl1l8 @ CIFAR10: Setup

20 clients are divided into three groups
Goal of the first client: classify the first three classes (has data for those classes only)

Second group (10 workers): a € (0,1] portion of data consists of samples from classes 0, 1, 2;
1 — a portion of data contains samples from classes 3, 4, 5

Third group (9 workers): data consists of samples from classes 6, 7, 8, 9
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ResNetl8 @ CIFAR10: Results with Extra Data
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ResNetl8 @ CIFAR10: Results without Extra Data
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BERT @ GoEmotions: Setup

20 clients are divided into three groups
Goal of the first client: classify the “joy” emotion

Second group (10 workers): « € (0,1] portion of data consists of samples from “joy” class;
1 — a portion of data contains samples from “neutral” class

III

Third group (9 workers): data consists of samples from “neutral” class and other basic emotions

n

(like “anger”, “fear”, “sadness” and so on)

FEEL ALL YOUR EMOTIONS

source: Photos from Disney/Pixar
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BERT @ GoEmotions: Results with Extra Data
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Bonus: Byzantine-Robustness for Free

Q Observation: MeritFed will work even if other workers send (intentionally) “harmful” vectors
4 \n other words, MeritFed is Byzantine-robust

Setup: Attacks:

* Mean estimation with 55 clients ALIE (Baruch et al., 2019)

* 5 clients have the same distribution as a IPM (Xie et al., 2019)

target one
Bit Flipping (BF): Byzantines send (—g¥) instead of g¥

* 50 clients know the target distribution

and perform a Byzantine-attack Random Noise (RN): Byzantines send g + Gaussian noise

* Baruch, G., Baruch, M., & Goldberg, Y. A little is enough: Circumventing defenses for distributed learning. NeurlPS 2019. 57
* Xie, C, Koyejo, O., & Gupta, I. Fall of empires: Breaking byzantine-tolerant sgd by inner product manipulation. UAI 2020.
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Low-Resource Machine Translation



 /

V. Moskvoretskii, N. Tupitsa, C. Biemann, S. Horvath, E. Gorbunov, I. Nikishina. Low-Resource Machine
Translation through the Lens of Personalized Federated Learning (EMNLP Findings 2024)

Adobe

Viktor Moskvoretskii Nazarii Tupitsa Chris Biemann Samuel Horvath Irina Nikishina
Researcher Research Assistant Professor Assistant Professor Postdoc
Skoltech MBZUAI Universitat Hamburg MBZUAI Universitat Hamburg

(searches for PhD
positions!)
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There are about 7000 Languages

Some languages lack geographic data
. > -]
Back to home page and do not appear on this map.

Map data ©2018 Google, INEGI | Terms of Use

...but many of them possess low amount of resources (texts)

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf



Training LLMSs for Low-Resource Languages

Existing approaches:

e Cross-lingual transfer learning (from high-resource to low-resource languages)

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf
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Training LLMSs for Low-Resource Languages

Existing approaches:

e Cross-lingual transfer learning (from high-resource to low-resource languages)

e Zero-shot learning: rain a model in one domain and assume it generalizes more or less out-of-the-box in a
low-resource domain

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf
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Training LLMSs for Low-Resource Languages

Existing approaches:

e Cross-lingual transfer learning (from high-resource to low-resource languages)

e Zero-shot learning: rain a model in one domain and assume it generalizes more or less out-of-the-box in a
low-resource domain

 Few shot learning: train a model in one domain and use only few examples from a low-resource domain to
adapt it

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf

64



Training LLMSs for Low-Resource Languages

Existing approaches:

e Cross-lingual transfer learning (from high-resource to low-resource languages)

e Zero-shot learning: rain a model in one domain and assume it generalizes more or less out-of-the-box in a
low-resource domain

 Few shot learning: train a model in one domain and use only few examples from a low-resource domain to
adapt it

e Joint multilingual learning: train a single model on a mix of datasets in all languages

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf
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Training LLMSs for Low-Resource Languages

Existing approaches:

e Cross-lingual transfer learning (from high-resource to low-resource languages)

e Zero-shot learning: rain a model in one domain and assume it generalizes more or less out-of-the-box in a
low-resource domain

 Few shot learning: train a model in one domain and use only few examples from a low-resource domain to
adapt it

e Joint multilingual learning: train a single model on a mix of datasets in all languages

@Main difficulty: it is unclear in-advance what languages to use as “helpers” and to what extent

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf
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Training LLMSs for Low-Resource Languages

Existing approaches:

Cross-lingual transfer learning (from high-resource to low-resource languages)

Zero-shot learning: rain a model in one domain and assume it generalizes more or less out-of-the-box in a
low-resource domain

Few shot learning: train a model in one domain and use only few examples from a low-resource domain to
adapt it

Joint multilingual learning: train a single model on a mix of datasets in all languages

@Main difficulty: it is unclear in-advance what languages to use as “helpers” and to what extent

Q Wait a second... but this is exactly the same problem as in FL with a target client

https://phontron.com/class/multiling2022/assets/slides/multiling-03-typology.pdf
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Languages in NLP As Clients in FL

Federated Learning Natural Language Processing

AN %\
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Languages in NLP As Clients in FL

Federated Learning Natural Language Processing

AT AN
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Harder to train a model
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Languages in NLP As Clients in FL

Federated Learning Natural Language Processing

AT AN

1 O & S o b
= g@ Notmihdata

Harder to train a model

Let us apply MeritFed!
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MeritOpt

a.k.a. MeritFed-type wrapper for any stochastic first-order method

n
k41 k k+1 k
et — Optotep | « ,E wi+gi,’yk
i=1

n
wht arg min f; | OptStep Zlfk, Zwigf,%
i=1

wEA“l"'

For example, OptStep can be a step of SGD, AdaGrad, RMSProp, Adam, etc.
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Considered Tasks and Setup

Tasks:

 Multilingual Machine Translation on South East Asian languages
* Multilingual Machine Translation on he subset of Sami languages (from Finno-Ugric languages)

Model: M2M100

Baselines:

* Fine-tuning to all languages including the target language (FTall)

* Fine-tuning to all languages except the target language (FTnot)

* Fine-tune to the target language only (FTonlyt)

* Continuous Pretraining to all languages, followed by additional fine-tuning to the target language (CPall)

 Continuous Pretraining to all languages but the target, followed by additional fine-tuning to the target
language (CPnot)
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South East Asian Languages

Javanese
Small Medium Large
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Figure 1: Weights distribution for South East Asian languages. Target languages and data sizes are in captions.
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South East Asian Languages
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Figure 3: Weights distribution for target Indonesian
language with unrelated Hungarian included.



South East Asian Languages

Method Tagalog Javanese
Small Medium Large Small Medium Large
Score Steps Score Steps Score Steps Score Steps Score Steps Score Steps
CPau 2924+ 006 21K 3099 +0.04 40K 3389=x0.15 124K 1943+0.14 12K 2005+0.12 25K 2097013 87K
CPriot 2872+0.16 15K 3050%+0.12 42K 33.744+0.19 129K 1946+0.12 12K 1995+0.12 25K 21.19£009 89K

MeritFed 29.73+0.04 14K 31424+0.07 14K 3353+027 47K 19.74+0.03 2K 20.23 + 0.11 3K 21.44 + 0.13 8K

Table 2: Mean SpBLEU scores and the number of steps required to reach them for baselines and MeritFed within
the different data sizes of Javanese and Tagalog languages.
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Conclusion



Main Takeaways

Merit(Fed)Opt — new method for (FL with a target client) for learning
from the diverse datasets

Personalized Federated Learning can be applied to the training of LLMs
for low-resource languages
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Limitations

Scalability

We tried the approach for low-resource languages only

Results are provided for M2M100, while numerous LLMs are available
Only one target client

Theory does not show how helpful other clients are if they have different but
close distribution
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Thank you!
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