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Problem formulation

Identical Markov decision processes evolving in discrete time
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Transitions are independent (given states and actions) but processes coupled through action-selection constraints

Objective is to maximize expected average reward over infinite time horizon

Many applications: logistics, healthcare, communication networks, recommendation systems, etc.

Transition probabilities and rewards are known in advance

Problem formulation

Identical Markov decision processes evolving in discrete time
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Notation

Consider 𝑛 identical processes with finite action space 𝐴 and state space 𝑆

Action selection must respect multiple linear constraints at each time

෍

𝑎∈𝐴

𝑦𝑛 𝑡, 𝑎 𝐶𝑛(𝑎) = 𝑑𝑛 and ෍

𝑎∈𝐴

𝑦𝑛 𝑡, 𝑎 𝐸𝑛(𝑎) ≼ 𝑓𝑛 for all 𝑡 ≥ 0 (matrix notation)
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𝑆𝑛 𝑡,𝑚 = state of process 𝑚 at time 𝑡 𝐴𝑛 𝑡, 𝑚 = action of process 𝑚 at time 𝑡

𝑦𝑛 𝑡, 𝑖, 𝑎 =
1

𝑛
෍

𝑚=1

𝑛

𝕝 𝑆𝑛 𝑡,𝑚 =𝑖,𝐴𝑛 𝑡,𝑚 =𝑎

State-action frequencies

𝑥𝑛 𝑡, 𝑖 =
1

𝑛
෍

𝑚=1

𝑛

𝕝 𝑆𝑛 𝑡,𝑚 =𝑖

State frequencies

෍

𝑎∈𝐴

𝑦𝑛 𝑡, 1, 𝑎 𝑦𝑛 𝑡, 2, 𝑎 𝑦𝑛 𝑡, 3, 𝑎

𝐶𝑛 1,1, 𝑎 𝐶𝑛 2,1, 𝑎

𝐶𝑛 1,2, 𝑎 𝐶𝑛 2,2, 𝑎

𝐶𝑛 1,3, 𝑎 𝐶𝑛 2,3, 𝑎

= 𝑑𝑛 1 𝑑𝑛 2Example



Notation

Consider 𝑛 identical processes with finite action space 𝐴 and state space 𝑆

Action selection must respect multiple linear constraints at each time

෍

𝑎∈𝐴

𝑦𝑛 𝑡, 𝑎 𝐶𝑛(𝑎) = 𝑑𝑛 and ෍

𝑎∈𝐴

𝑦𝑛 𝑡, 𝑎 𝐸𝑛(𝑎) ≼ 𝑓𝑛 for all 𝑡 ≥ 0 (matrix notation)

Ideally, we want policy that maximizes expected average reward over infinite time horizon

lim
𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1
1

𝑛
෍

𝑚=1

𝑛

𝐸 𝑟 𝑆𝑛 𝑡,𝑚 , 𝐴𝑛 𝑡, 𝑚 = lim
𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1

෍

𝑎∈𝐴

𝐸 𝑦𝑛 𝑡, 𝑎 𝑟 𝑎 (informal)
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𝑆𝑛 𝑡,𝑚 = state of process 𝑚 at time 𝑡 𝐴𝑛 𝑡, 𝑚 = action of process 𝑚 at time 𝑡

𝑦𝑛 𝑡, 𝑖, 𝑎 =
1

𝑛
෍

𝑚=1

𝑛

𝕝 𝑆𝑛 𝑡,𝑚 =𝑖,𝐴𝑛 𝑡,𝑚 =𝑎

State-action frequencies

𝑥𝑛 𝑡, 𝑖 =
1

𝑛
෍

𝑚=1

𝑛

𝕝 𝑆𝑛 𝑡,𝑚 =𝑖

State frequencies

𝑟 𝑖, 𝑎 = reward for process in state 𝑖 with action 𝑎



Electric taxis example
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𝐴𝑛 𝑡,𝑚 = 0
Send to airport

𝐴𝑛 𝑡, 𝑚 = 1
Send downtown

𝐴𝑛 𝑡,𝑚 = 2
Charge taxi

𝑆𝑛 𝑡 + 1,𝑚 ∼ min 𝑆𝑛 𝑡,𝑚 − 𝑋0, 0

𝑆𝑛 𝑡 + 1,𝑚 ∼ max 𝑆𝑛 𝑡,𝑚 − 𝑋1, 0

𝑆𝑛 𝑡 + 1,𝑚 = min 𝑆𝑛 𝑡,𝑚 + 2,7

Action-selection constraints

෍

𝑖∈𝑆

𝑦𝑛 𝑡, 𝑖, 0 ≥ 0.1 at least 10% at airport

෍

𝑖∈𝑆

𝑦𝑛 𝑡, 𝑖, 2 ≤ 0.7 at most 70% charging

Implicit constraints

෍

𝑎∈𝐴

𝑦𝑛 𝑡, 𝑖, 𝑎 = 𝑥𝑛(𝑡, 𝑖)

𝑦𝑛 𝑡, 𝑖, 𝑎 ≥ 0

𝑆𝑛 𝑡,𝑚 ∈ 0,… , 7
Battery level

Each taxi is 
a process



Restless bandits

Important particular case with two actions 𝐴 = 0,1 and a single constraint:

෍

𝑖∈𝑆

𝑦𝑛 𝑡, 𝑖, 1 ≤ 𝛼 inequality constraint or ෍

𝑖∈𝑆

𝑦𝑛 𝑡, 𝑖, 1 =
𝛼𝑛

𝑛
equality constraint
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[1988 - Whittle] 
Conjectures asymptotic optimality 
if indexability holds

[1990 - Weber and Weiss]
Counterexample but indexability and 
global attractivity sufficient

[2023 - Gast, Gaujal and Yan]
Bounds on optimality gap 
(exponentially small) 

Whittle index
policy

LP-priority
policies

[2016 - Verloop] 
LP-priority policies subsume Whittle index policy and are 
asymptotically optimal if global attractivity holds

[2023 - Gast, Gaujal and Yan]
Bounds on optimality gap 
(exponentially small) 

[2023 - Hong, Xie, Chen and Wang] 
Follow the Virtual Advice

[2024 - Hong, Xie, Chen and Wang] 
Set-expansion and ID policies

[2024 - Yan] 
Align and Steer policy

Non-priority 
policies

Multiple 
actions and 
constraints

[2023 – Brown and Zhang] 
Finite horizon and discounted 
infinite horizon

[2024 – Gast, Gaujal and Yan] 
Finite horizon



Objective

All processes together form single MDP with state space 𝑆𝑛 and action spaces contained in 𝐴𝑛

History-dependent policies: map history to probability distribution on action vectors

Stationary policies: map state vectors to probability distributions on action vectors

Expected average reward (or gain) exists for stationary policies but may not exist for history-dependent policies

𝑔𝑛
𝜋 𝑠 = lim

𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1
1

𝑛
෍

𝑚=1

𝑛

𝐸𝑠
𝜋 𝑟 𝑆𝑛 𝑡, 𝑚 , 𝐴𝑛 𝑡,𝑚

Standard MDP theory implies that there exists stationary deterministic 𝜋∗ such that

𝑔𝑛
𝜋∗ 𝑠 = 𝑔𝑛

∗ 𝑠 = sup
𝜋

limsup
𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1
1

𝑛
෍

𝑚=1

𝑛

𝐸𝑠
𝜋 𝑟 𝑆𝑛 𝑡,𝑚 , 𝐴𝑛 𝑡,𝑚 for all 𝑠 ∈ 𝑆𝑛

Curse of dimensionality

Optimal policy can be computed with dynamic programming but computation time grows exponentially with 𝑛

Objective is to find simple policy with asymptotically optimal gain
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Linear program relaxation

Assume that 𝐶𝑛 𝑎 → 𝐶 𝑎 , 𝐸𝑛 𝑎 → 𝐸 𝑎 , 𝑑𝑛 → 𝑑 and 𝑓𝑛 → 𝑓 as 𝑛 → ∞
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𝑔𝑟 = maximize
𝑦∈Δ𝑆×𝐴

෍

𝑎∈𝐴

𝑦 𝑎 𝑟 𝑎

subject to෍

𝑎∈𝐴

𝑦 𝑎 𝑃(𝑎) = ෍

𝑎∈𝐴

𝑦 𝑎

෍

𝑎∈𝐴

𝑦 𝑎 𝐶 𝑎 = 𝑑

෍

𝑎∈𝐴

𝑦 𝑎 𝐸(𝑎) ≼ 𝑓

Linear program relaxation

Interpretation

𝑦 𝑖, 𝑎 = lim
𝑛→∞

lim
𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1

𝐸𝑠
𝜋 𝑦𝑛 𝑡, 𝑖, 𝑎

Inner limit exists for stationary policies

Constraints need only hold on average

𝑃 𝑎 = transition matrix given action 𝑎

If 𝐶𝑛 𝑎 = 𝐶 𝑎 , 𝐸𝑛 𝑎 = 𝐸 𝑎 , 𝑑𝑛 = 𝑑 and 𝑒𝑛 = 𝑒, then 𝑔𝑛
∗ 𝑠 ≤ 𝑔𝑟 for all 𝑠 ∈ 𝑆𝑛

Upper 
bound

limsup
𝑛→∞

sup
𝑠∈𝑆𝑛

𝑔𝑛
∗ 𝑠 ≤ 𝑔𝑟



Fluid problem

Define 𝑋𝑛 = 𝑥 ∈ Δ𝑆 ∶ 𝑛𝑥 ∈ ℤ𝑆 ⊂ Δ𝑆 = 𝑋 and 𝑌𝑛 = 𝑦 ∈ Δ𝑆×𝐴 ∶ 𝑛𝑦 ∈ ℤ𝑆×𝐴 ⊂ Δ𝑆×𝐴 = 𝑌

Recall that 𝑔𝑟 is upper bound for gain in the limit as 𝑛 → ∞
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Discrete control

𝜙𝑛 ∶ 𝑋𝑛 → 𝑌𝑛 such that for all 𝑥 ∈ 𝑋𝑛:

෍

𝑎∈𝐴

𝜙𝑛 𝑥 𝑎 = 𝑥,

෍

𝑎∈𝐴

𝜙𝑛 𝑥 𝑎 𝐶𝑛 𝑎 = 𝑑𝑛 and ෍

𝑎∈𝐴

𝜙𝑛 𝑥 𝑎 𝐸𝑛(𝑎) ≼ 𝑓𝑛

𝜙𝑛 determines evolution of 𝑥𝑛, 𝑦𝑛 and we have:

𝑦𝑛 𝑡 = 𝜙𝑛 𝑥𝑛 𝑡 and 𝐸 𝑥𝑛 𝑡 + 1 = ෍

𝑎∈𝐴

𝐸 𝑦𝑛 𝑡, 𝑎 𝑃 𝑎

Fluid control

𝜙 ∶ 𝑋 → 𝑌 such that for all 𝑥 ∈ 𝑋:

෍

𝑎∈𝐴

𝜙 𝑥 𝑎 = 𝑥,

෍

𝑎∈𝐴

𝜙 𝑥 𝑎 𝐶 𝑎 = 𝑑 and ෍

𝑎∈𝐴

𝜙 𝑥 𝑎 𝐸(𝑎) ≼ 𝑓

Fluid trajectory given by 𝜙 and 𝑥 0 = 𝑥0 is:

𝑦 𝑡 = 𝜙 𝑥 𝑡 and 𝑥 𝑡 + 1 = ෍

𝑎∈𝐴

𝑦 𝑡, 𝑎 𝑃 𝑎

Find 𝜙 such that σ𝑎∈𝐴 𝑦 𝑡, 𝑎 𝑟 𝑎 → 𝑔𝑟 as 𝑡 → ∞ for all fluid trajectories (i.e., regardless of initial condition)Fluid problem



Overview of main results

We can obtain asymptotically optimal policies in two steps:

1. Find continuous solution of fluid problem

2. Construct discrete controls that approximate solution (rounding)

We provide conditions for:

1. Existence of solutions to fluid problem (sufficient and necessary for particular case)

2. Explicit constructions of solutions and asymptotically optimal discrete controls
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Theorem. Consider discrete controls 𝜙𝑛 and fluid control 𝜙 such that:

▪ 𝜙 solves the fluid problem and is continuous

▪ max
𝑥∈𝑋𝑛

𝜙 𝑥 − 𝜙𝑛 𝑥 → 0 as 𝑛 → ∞

The gain of the discrete controls 𝜙𝑛 approaches 𝑔𝑟 as 𝑛 → ∞ for arbitrary (and possibly random) initial conditions 𝑥𝑛 0 ∶ 𝑛 ≥ 1

If 𝑦∗ solves LP and 𝑦 𝑡 → 𝑦∗ as 𝑡 → ∞ for all fluid trajectories, then 𝜙 solves the fluid problemParticular case



Sufficient conditions for asymptotic optimality

If the above conditions hold, we provide explicit constructions for:

▪ A solution 𝜙 of the fluid problem such that 𝑦 𝑡 → 𝑦∗ as 𝑡 → ∞ for all fluid trajectories

▪ Asymptotically optimal discrete controls 𝜙𝑛 such that max
𝑥∈𝑋𝑛

𝜙 𝑥 − 𝜙𝑛 𝑥 → 0 as 𝑛 → ∞
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1. Structure of transition matrices

Single process (no constraints or rewards) admits 𝜋 such that:

▪ Markov chain associated with 𝜋 is unichain and aperiodic

▪ 𝑆+
∗ is contained in the unique irreducible class

Such policy 𝜋 exists if and only if the policy that selects actions 
uniformly at random has the above properties

2. Structure of constraints

Problem satisfies the following properties:

▪ Restless bandit problem or multiple inequality constraints

▪ Nonnegative coefficients (resource allocation)

▪ All coefficients are zero for one action

These conditions are for enforcing feasibility

𝑦∗ solves LP, 𝑥∗ = ෍

𝑎∈𝐴

𝑦∗ 𝑎 , 𝑆+
∗ = 𝑖 ∈ 𝑆 ∶ 𝑥∗ 𝑖 > 0



Conditions for asymptotic optimality of restless bandits

13

ID policy

Consider relaxed single-process problem

Optimal policy is unichain and aperiodic

LP-priority policies

▪ Global attractor property

▪ System is unichain and aperiodic

Our conditions

Consider policy that selects actions 
uniformly at random

This policy is unichain, aperiodic and 𝑆+
∗

is contained in irreducible class

Whittle index policy

▪ Indexability

▪ Global attractor property

▪ System is unichain and aperiodic

Follow the Virtual Advice

Consider relaxed single-process problem

Optimal policy is unichain and satisfies 
synchronization assumption

Relaxed problem

Same rewards but relaxed constraint:

lim
𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1

෍

𝑖∈𝑆

𝑦 𝑡, 𝑖, 1 = 𝛼



Electric taxis example
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Resource allocation inequality constraints:

෍

𝑖∈𝑆

𝑦𝑛 𝑡, 𝑖, 1 + 𝑦𝑛 𝑡, 𝑖, 2 ≤ 0.9

෍

𝑖∈𝑆

𝑦𝑛 𝑡, 𝑖, 2 ≤ 0.7

All coefficients are zero for action “send to airport”

Multichain example



Counterexample for Whittle index policy
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Equality-constrained restless bandits

Example from [2023 - Gast, Gaujal and Khun]

Indexability condition fails

Whittle indexes are not well-defined



Counterexample for LP-priority policies
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Equality-constrained restless bandits

Example from [2020 - Gast, Gaujal and Yan]

Global attractor property fails for LP-priority 
policy (and Whittle)



Counterexample for FTVA and ID policy
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3

21

𝑟 = 1

𝑟 = 0

𝑟 = 0

3

21

𝑟 = 0
𝑟 = 0

𝑟 = 1

Equality constraint with 𝛼 = 1/2 Initial condition: all processes in state 1

Multichain 
example



Asymptotic optimality result (reminder)
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Find 𝜙 such that σ𝑎∈𝐴 𝑦 𝑡, 𝑎 𝑟 𝑎 → 𝑔𝑟 as 𝑡 → ∞ for all fluid trajectories (i.e., regardless of initial condition)Fluid problem

Fluid control is 𝜙 ∶ 𝑋 → 𝑌 such that for all 𝑥 ∈ 𝑋:

෍

𝑎∈𝐴

𝜙 𝑥 𝑎 = 𝑥,

෍

𝑎∈𝐴

𝜙 𝑥 𝑎 𝐶 𝑎 = 𝑑, ෍

𝑎∈𝐴

𝜙 𝑥 𝑎 𝐸(𝑎) ≼ 𝑓

Fluid trajectory given by 𝜙 with initial condition 𝑥0 is:

𝑥 0 = 𝑥0, 𝑦 𝑡 = 𝜙 𝑥 𝑡

𝑥 𝑡 + 1 = ෍

𝑎∈𝐴

𝑦 𝑡, 𝑎 𝑃 𝑎

Theorem. Consider discrete controls 𝜙𝑛 and fluid control 𝜙 such that:

▪ 𝜙 solves the fluid problem and is continuous

▪ max
𝑥∈𝑋𝑛

𝜙 𝑥 − 𝜙𝑛 𝑥 → 0 as 𝑛 → ∞

The gain of the discrete controls 𝜙𝑛 approaches 𝑔𝑟 as 𝑛 → ∞ for arbitrary (and possibly random) initial conditions 𝑥𝑛 0 ∶ 𝑛 ≥ 1



Main ideas of proof

Suppose fluid control 𝜙 and discrete controls 𝜙𝑛 are as in theorem

𝑥𝑛 𝑡 + 1 = 𝑧𝑛 𝑡 + 1 +෍

𝑎∈𝐴

𝑦𝑛 𝑡, 𝑎 𝑃 𝑎 with 𝐸 𝑧𝑛 𝑡 = 0 and 𝐸 𝑧𝑛 𝑡 2
2 ≤

1

𝑛
𝐸 𝑥𝑛 𝑡 1

Consider a MDP with finite state and action spaces

Let 𝜋 be a stationary (deterministic) policy with transition matrix 𝑃𝜋

𝑔𝜋 𝜈 = lim
𝑇→∞

1

𝑇
෍

𝑡=0

𝑇−1

𝐸𝜈
𝜋 𝑟 𝑆 𝑡 , 𝐴 𝑡 = 𝜈𝑃𝜋

∗𝑟𝜋 = 𝐸𝑆∼𝜈𝑃𝜋∗ 𝑟 𝑆, 𝜋 𝑆 with 𝑃𝜋
∗ =

1

𝐾
෍

𝑘=0

𝐾−1

𝑃𝜋
𝑘

Proof of Theorem: apply Lemma 2 with the stationary distribution 𝑥𝑛 0 that gives gain of 𝜙𝑛 for the given initial distribution
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Lemma 1. Let 𝑥0 be random variable on Ω such that 𝑥𝑛 0 ⇒ 𝑥0 as 𝑛 → ∞

𝑥𝑛 𝑡 ⇒ 𝑥 𝑡 and 𝑦𝑛 𝑡 ⇒ 𝑦 𝑡 as 𝑛 → ∞

where 𝑥 𝜔, 𝑡 , 𝑦 𝜔, 𝑡 ∶ 𝑡 ≥ 0 is fluid trajectory with 𝑥 𝜔, 0 = 𝑥0 𝜔

Lemma 2. Let 𝑥𝑛 0 be stationary distribution of 𝑥𝑛

lim
𝑛→∞

෍

𝑎∈𝐴

𝐸 𝑦𝑛 0, 𝑎 𝑟 𝑎 = 𝑔𝑟



Solutions of the fluid problem
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𝑦∗ solves LP, 𝑥∗ = ෍

𝑎∈𝐴

𝑦∗ 𝑎 , 𝑆+
∗ = 𝑖 ∈ 𝑆 ∶ 𝑥∗ 𝑖 > 0 , 𝛽 𝑥 = max 𝜆 ≥ 0 ∶ 𝜆𝑥∗ ≼ 𝑥

𝑆

𝑆+
∗

𝑥∗

𝑆

𝑆+
∗

𝑥

𝑆

𝑆+
∗

𝛽 𝑥 𝑥∗



Solutions of the fluid problem
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Theorem. The following statements are equivalent:

▪ There exists a continuous fluid control 𝜓 such that, for all fluid trajectories, 𝑥 𝑡 leaves 𝑥 ∈ 𝑋 ∶ 𝛽 𝑥 = 0 in finite time

▪ There exists a continuous solution of the fluid problem 𝜙 such that 𝑦 𝑡 → 𝑦∗ as 𝑡 → ∞ for all fluid trajectories

Furthermore, we can take 𝜙 𝑥 = 𝛽 𝑥 𝑦∗ + 1 − 𝛽 𝑥 𝜓 1 − 𝛽 𝑥 −1 𝑥 − 𝛽 𝑥 𝑥∗

𝑦∗ solves LP, 𝑥∗ = ෍

𝑎∈𝐴

𝑦∗ 𝑎 , 𝑆+
∗ = 𝑖 ∈ 𝑆 ∶ 𝑥∗ 𝑖 > 0 , 𝛽 𝑥 = max 𝜆 ≥ 0 ∶ 𝜆𝑥∗ ≼ 𝑥

𝑋

𝑥 ∈ 𝑋 ∶ 𝛽 𝑥 = 0 = 𝑥 ∈ 𝑋 ∶ 𝑥 𝑖 = 0 for some 𝑖 ∈ 𝑆+
∗



Solutions of the fluid problem
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Theorem. The following statements are equivalent:

▪ There exists a continuous fluid control 𝜓 such that, for all fluid trajectories, 𝑥 𝑡 leaves 𝑥 ∈ 𝑋 ∶ 𝛽 𝑥 = 0 in finite time

▪ There exists a continuous solution of the fluid problem 𝜙 such that 𝑦 𝑡 → 𝑦∗ as 𝑡 → ∞ for all fluid trajectories

Furthermore, we can take 𝜙 𝑥 = 𝛽 𝑥 𝑦∗ + 1 − 𝛽 𝑥 𝜓 1 − 𝛽 𝑥 −1 𝑥 − 𝛽 𝑥 𝑥∗

𝑦∗ solves LP, 𝑥∗ = ෍

𝑎∈𝐴

𝑦∗ 𝑎 , 𝑆+
∗ = 𝑖 ∈ 𝑆 ∶ 𝑥∗ 𝑖 > 0 , 𝛽 𝑥 = max 𝜆 ≥ 0 ∶ 𝜆𝑥∗ ≼ 𝑥

𝑡 steps with 𝜓
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Sufficient conditions for constructing solutions

Consider functions 𝜓 ∶ 𝑋 → 𝑌 of the form

𝜓 𝑥 = 𝛾𝜓1 𝑥 + 1 − 𝛾 𝜓2 𝑥 where 𝛾 ∈ 0,1 and 𝜓1 𝑥 𝑖, 𝑎 = 𝑥 𝑖 𝜋 𝑎|𝑖

Here 𝜓1 is based on a single-process policy 𝜋 and we assume that:

▪ 𝜋 is unichain and aperiodic and 𝑆+
∗ is contained in its unique irreducible class

▪ 𝜓2 is such that the convex combination satisfies the constraints

We prove by induction that

𝐿 ∘ 𝜓 𝑡 𝑥0 = 𝛾𝑡𝑥0𝑃𝜋
𝑡 + 1 − 𝛾 𝑤𝑡 𝑥

0 where 𝐿 𝑦 = ෍

𝑎∈𝐴

𝑦 𝑎 𝑃 𝑎 and 𝑤𝑡 𝑥
0 ∈ ℝ+

𝑆

Conditions of theorem hold: if 𝑥𝜋 is the stationary distribution of 𝜋, then 𝑥𝜋 𝑖 > 0 for all 𝑖 ∈ 𝑆+
∗ and 𝑥0𝑃𝜋

𝑡 → 𝑥𝜋

We can define 𝜓2 and 𝛾 explicitly in the following cases:

▪ Restless bandit problem with equality or inequality constraints

▪ Problems with multiple resource allocation inequality constraints and one action that does not consume resources

In these cases we can also define discrete controls 𝜙𝑛 explicitly
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Conclusion

Asymptotically optimal policies can be obtained in two steps:

1. Find a continuous fluid control 𝜙 that solves the fluid problem

2. Define discrete controls 𝜙𝑛 that approach 𝜙 uniformly

We provided sufficient conditions and constructions for carrying out these steps

1. There exists a suitable unichain and aperiodic single-process policy (constraints and rewards not involved)

2. Restless bandit problem or multiple resource allocation inequality constraints

Second condition is for constructing feasible policies explicitly

We compared our policy with other policies for restless bandit problems

▪ Our results seem to hold under weaker assumptions

▪ Our policy is asymptotically optimal when other policies are not
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Thanks for your attention


