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A B S T R A C T

Protein assemblies are often symmetric, as this organization has many advantages compared to individual
proteins. Complex protein structures thus very often possess high-order symmetries. Detection and analysis of
these symmetries has been a challenging problem and no efficient algorithms have been developed so far. This
paper presents the extension of our cyclic symmetry detection method for higher-order symmetries with multiple
symmetry axes. These include dihedral and cubic, i.e., tetrahedral, octahedral, and icosahedral, groups. Our
method assesses the quality of a particular symmetry group and also determines all of its symmetry axes with a
machine precision. The method comprises discrete and continuous optimization steps and is applicable to as-
semblies with multiple chains in the asymmetric subunits or to those with pseudo-symmetry.

We implemented the method in C++ and exhaustively tested it on all 51,358 symmetric assemblies from the
Protein Data Bank (PDB). It allowed us to study structural organization of symmetric assemblies solved by X-ray
crystallography, and also to assess the symmetry annotation in the PDB. For example, in 1.6% of the cases we
detected a higher symmetry group compared to the PDB annotation, and we also detected several cases with
incorrect annotation. The method is available at http://team.inria.fr/nano-d/software/ananas. The graphical
user interface of the method built for the SAMSON platform is available at http://samson-connect.net.

1. Introduction

Symmetric protein complexes are very common in nature, as has
been highlighted in our previous work on symmetry detection in cyclic
protein assemblies (Pagès et al., 2018), and many of these are deposited
to the Protein Data Bank (PDB) (Berman et al., 2000). As function of
proteins is very often determined by their structure, it appears that
complex function requires complex structures (Levy et al., 2006; Levy
et al., 2008). High-order symmetries are thus essential to build large
and complex protein assemblies. Dihedral and cubic groups are over-
represented among large protein assemblies with some specific struc-
tural functions, for example those of viral capsids. Also, high-order
symmetry drastically reduces the complexity of de novo design of self-
assembling nanomaterials (King et al., 2012; King et al., 2014; Bale
et al., 2016; Hsia et al., 2016).

To assess the quality of symmetry for such assemblies, a cyclic
symmetry measure is necessary, as the cyclic axes constitute the basic
bricks from which one can reconstruct high-order symmetry groups.
However, considering each symmetry axis separately would result in a
globally incorrect assessment, as there are strict geometrical constraints
between different axes of symmetry in high-order symmetry groups.

This motivated us to develop a symmetry detection method specifically
suited for dihedral and cubic groups. Indeed, the need for this sym-
metry detection method exists, as some approximate methods, i.e. those
from BioJava (Prlić et al., 2012), are massively used to display the
symmetry axes on the PDB website (Berman et al., 2000).

Inspired by the quaternion arithmetic applied to the best super-
position of a set of points (Horn, 1987; Diamond, 1988; Kearsley, 1989)
together with our recent developments (Popov and Grudinin, 2014;
Neveu et al., 2018; Pagès et al., 2018), here we propose a new sym-
metry measure and an analytical method to find the best symmetry axes
of a symmetric assembly possessing multiple symmetry axes. The
method guaranties that the detected axes are consistent with the sym-
metry constraints. Similar to the case of cyclic symmetry detection
(Pagès et al., 2018), our method produces results with a machine pre-
cision, its cost function is solely based on 3D Euclidean geometry, and
most of the operations are performed analytically. This makes it ex-
tremely fast and particularly suitable for exhaustive analysis of PDB
data. Below we provide details about the high-order symmetry measure
and the computation of the symmetry axes for an assembly possessing
any point group symmetry. The method first perceives the topology
between different chains, and is able to deal with complex subunits that
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are composed of multiple chains. Then it iteratively solves a con-
strained quadratic optimization problem using a set of analytical solu-
tions.

2. Methods

2.1. Notations

Similarly to the analysis of the cyclic groups (Pagès et al., 2018), in
this paper we will be mainly dealing with ×3 3 matrices and 3-vectors.
Therefore, bold upper case letters (i.e. A) will denote matrices, bold
lower case letters (i.e. b) will denote vectors, and normal weight lower
case letters (i.e. c) will denote scalars. For trigonometric operations and
illustrations we will also use an arrow notation for 3-vectors, such as→v .

All amino acids, except glycine, are chiral. Hence, symmetry groups
that can be present in protein assemblies cannot contain any reflection,
inversion, or improper rotation. The only remaining finite point groups
are the cyclic (Cn for the cyclic group of order n), dihedral (Dn for the
dihedral group of order n), tetrahedral, octahedral and icosahedral
(respectively T O, and I), the three cubic groups. Symbol∈ ⋃ ⋃> >C D T O IΓ { } { } { , , }n n n n1 1 will denote one of these point groups.
Its cardinality, i.e. the number of its elements, will be denoted as |Γ|.

2.2. Root mean square deviation

As in our previous work on cyclic groups (Pagès et al., 2018), we
will express the symmetry measure of a molecular assembly using the
root mean square deviation (RMSD). Given two sets of N points each,=A a{ }i N and =B b{ }i N , the RMSD between them is given as∑= −⩽ ⩽A B

N
a bRMSD( , ) 1 | | .

i N
i i2

1

2

(1)

2.3. Group theory

Firstly, we will give a brief introduction to the group theory used in
the paper. A group is a set of elements equipped with an operation that
combines any two elements to form a third element. Formally, it can be
written in the form of ☆(Γ, ), where Γ is a set of elements supplied with
a group operation ☆. A homomorphism is a function that takes a group
element as input and returns an element of another group as output,
preserving the group structure. Given two groups ☆(Γ , )1 and ∗(Γ , )2 , a
homomorphism f from Γ1 to Γ2 satisfies the following property,∀ ′ ∈ ☆ ′ = ∗ ′g g f g g f g f g, Γ : ( ) ( ) ( ).1 (2)

A homomorphism is called bijective if∀ ∈ ∃ ∈ =g g f g gΓ ! Γ such that ( ) ,2 2 1 1 1 2 (3)

meaning that it provides a one-to-one association between the elements
of the two groups. In this paper, we will consider three different types of
groups:

• Rotation groups, where the elements are rotations and the group
operation is the composition of rotations. The group of all rotations

in 3 dimensions will be noted SE (3), and rotations will be noted r.

• Permutation groups, where the elements are permutations and the
group operation is the composition of permutations. A permutation
σ of the set … n{1, , } will be noted …σ σ n( (1), , ( )). The group of all
permutations of n elements will be noted Sn.

• Point groups Γ that will be composed of abstract elements. We know
how these elements are combined (meaning that we know the re-
sults of composition of any two elements), and we will take the
freedom to use the elements either as permutations or as rotations,
thanks to the bijective homomorphisms that will be computed.

The considered point groups are only those that can be described
with rotation operators (no reflections or inversions). We say that a set
of points (a protein assembly will be represented with a set of points)
has a Γ symmetry if the rotations in Γ keep this set globally invariant.
More precisely, any rotation operator in Γ will displace each point that
is located outside of the rotation axis, but another point will take its
place. It is natural to see Γ as a rotation group, but also as a permutation
group, since a rotation applied to a set of points will permute them. For
example, Fig. 1 illustrates a C5 point group, which has a bijective
homomorphism with a rotation group and a bijective homomorphism
with a permutation group.

2.4. Problem definition

For a molecular point group ∈ ⋃ ⋃> >C D T O IΓ { } { } { , , }n n n n1 1 , and
an assembly =A a{ }i j N N, ,s a consisting of Ns subunits, each composed of
Na atoms, we want to minimize the following loss function,

∑ ∑ ∑= −∈ = =N N
ra aLoss 1

|Γ|
min ( ( )) ,

s a σ r g i

N

j

N

σ i j g i j2
, Γ 1 1

( ), , 2
g g

s a

g
(4)

such that ↦g σg and ↦g rg are the bijective homomorphisms from Γ
to subsets of Sn and SE (3). The loss function is the sum of RMSDs be-
tween the original assembly and the rotated assemblies for every ro-
tation in the group Γ. We should mention that this loss function is very
natural, since it is only based on Euclidean 3D distances, no adjustable
parameters are required and all the rotations rg have equal importance.

2.5. Workflow

Minimization of the loss function 4 requires optimization over the
group of rotations, which is a continuous optimization, and over the
group of permutations, which is a discrete optimization. In practice, we
do not know how to do both simultaneously, so we first apply a heur-
istic approach to determine the correspondences σg between the sub-
units, and then we optimize the rotations. Overall, we solve the opti-
mization problem in three steps,

1. Subunit definition
2. Estimation of the permutations
3. Optimization of the rotations (5)

The third step is an analytical continuous minimization. It gives the
expected result with a machine precision, as we have already

Fig. 1. Point group C5 is illustrated. (a) Set of points with a cyclic symmetry of order 5; (b) All the rotations that keep this set of points fixed; (c) Associations between
the elements of C5, permutations of the points and rotations.
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demonstrated for cyclic symmetries (Pagès et al., 2018). The first two
steps are heuristics that assume the assembly to be symmetric enough,
which allows to estimate the best correspondences between the sub-
units. This problem of estimating the best correspondence is discrete.
Any error during the estimation of the correspondences typically leads
to the solution of optimization Problem 4 with the Loss comparable to
the distance between the center of masses (COMs) of the subunits. It is
therefore straightforward to verify whether the result of our discrete
optimization is correct. Without loss of generality, we assume that the
molecular point group called Γ is given. If it is not the case, we can
exhaustively search over three cubic groups and also try all the dihedral
groups below a certain maximum order. Below we discuss the in-
dividual steps of our optimization algorithms in more detail.

2.6. Finding the subunits

We call subunit a minimum part of the symmetric assembly, from
which the entire assembly can be reconstructed by replicating the
subunits according to the symmetry operator. Note that the total
number of subunits in a complete symmetric assembly has to be equal
to |Γ|. In most of the practical cases, subunits are actually the individual
chains of the molecular assembly. In this case, it is straightforward to
define them. In some cases, however, subunits can be composed of
several chains. To find these multi-chain subunits, we create several sets
of chains, each forming a Γ symmetric assembly. Then, the subunits are
defined by appropriately choosing one chain from each of these sets as
shown in Fig. 2. All the sets are Γ-symmetric assemblies, and thus
contain precisely |Γ| chains. Since we know the initial number of chains
in the assembly, we also know that the number of sets has to be equal to
the number of chains divided by |Γ|. These sets are constructed using a
penalty function defined for a pair of chains with four contributions.
These are obtained by computing a pairwise sequence alignment fol-
lowed by a structural superposition for all the pairs of chains. For two
chains i and j in an assembly composed of n chains, we define their
penalty function as

= + + + + + + +d i j
d i j

d
d i j

d
d i j

d rad
d i j

d
( , )

( , )
40

( , )
3Å

( , )
0.05

( , )
3Å

,seq

seq
max

struct

struct
max

angle

angle
max

center

center
max

(6)

where

• d i j( , )seq is the minus BLOSUM62 score (Henikoff and Henikoff,
1992) of the sequence alignment between chains i and j, computed
using the MUSCLE package (Edgar, 2004).

• d i j( , )struct is the RMSD between two chains i and j, after the best

superposition of the corresponding alpha-carbons.

• Let us define an angle α i j( , ) between two chains i and j as the angle
returned by the superposition procedure, i.e. the rotation angle
between them after the COMs were superposed. In a perfectly
symmetric assembly, only a few values of these angles are possible.
More precisely, if a group Γ contains multiple symmetry axes …n nj k
of orders …j k, correspondingly, then the pairs of chains will be
mutually rotated by angles mπ l2 / , where ⩽ <m l1 with = …l j k . We
define d i j( , )angle as the absolute value of the difference between
α i j( , ) and the closest listed angle.

• d i j( , )center is the distance between the initial COM of the whole as-
sembly and its position after applying the rigid-body transformation
that superposes chain i with chain j.

In all the contributions in the equation above, dmax stands for the
largest value of the corresponding contribution. This way, we ensure
that all the terms in the above equation have weights of approximately
the same magnitude, and none of these terms are bigger than 1. To
improve the discrimination of the penalty function for the assemblies
with nearly perfect symmetry, we also add constants to dmax to make
the values of denominators sufficiently large.

Algorithm 1: Clustering algorithm.

After having computed all the pairwise penalties d i j( , ), we apply an
algorithm to cluster the chains into several sets, as it is listed in
Algorithm 1. To merge two sets, we define a new set containing all the
chains from the two other sets. The clustering algorithm is based on the
computation of pairwise distances between the sets, where each dis-
tance is defined as an average of the penalties between all pairs of
chains, such that one chain belongs to the first set and another chain
belongs to the second set.

Once the sets are computed, we proceed with the construction of the
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Fig. 2. Examples of finding subunits in a C5 complex containing 10 chains, which leads to 2 sets and 5 subunits. Each chain is shown as a shape, with a local
coordinate frame computed with a structural superposition. A correct clustering in this example should determine a set with the chains 1, 2, 3, 4, 5 (light grey) and
another one with the chains 6, 7, 8, 9, 10 (dark grey). The correspondence between the subunits after a rotation is represented by the colored arrows. Chains
belonging to the same subunits are drown with the same outline colors. After we define the two sets, the first subunit is created by taking arbitrary chains from each
cluster (1 and 7 in (A), 1 and 6 in (B), 1 and 9 in (C)). The other subunits are created using the correspondences between the chains in the sets. Note that the
assembling of subunits is not unique. In (A) and (B) the subunits seem to be assembled more naturally, as they contain chains that are spatially proximate to each
other. However (C) is a perfectly valid assembly too. All the three subunit assemblies give exactly the same result in terms of symmetry axes and the RMSD loss
function.
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subunits. To do so, we first compute for each of the sets the symmetry
axes corresponding to the group Γ. The detailed axes computation
procedure is explained below. Then, we group chains from different sets
to construct the subunits. We first match axes computed for all the sets,
then we choose one arbitrary reference chain from each set and as-
semble them to create the first subunit. For all the other subunits, we
choose a group operator and assemble together all the chains from the
different sets that correspond to the reference chain to which this op-
erator is applied. The correspondence estimation method is detailed
below.

2.7. Correspondences between subunits after a rotation

The number of bijective homomorphisms ↦g σg from Γ to subsets
ofSn grows exponentially with the size of Γ, it is thus not feasible to do
an exhaustive search for |Γ| bigger than 10. Therefore, to estimate the
correspondence between the subunits we set up heuristics.

Let us start by imagining a perfectly symmetric system consisting of
n subunits, with the center of the symmetry located at the origin. Let⩽ ⩽c{ }i i n{1 } be the COMs of the subunits. Remark that ci are located on a
sphere. The convex hull of ⩽ ⩽c{ }i i n{1 } , which is a polyhedron with n
vertices, possesses the following properties: each axis of symmetry of
order >s 2 crosses two faces of the convex hull, which are the regular
polygons with s vertices, and each axis of symmetry of order 2 crosses
an edge of the convex hull. We first create a reference graph from the
edges of the convex hull that belong to the regular polygons with one of
symmetry axes of order >s 2 passing through them. The topology of
this graph does not depend on the choice of the selected perfectly
symmetric system (see Fig. 3). For the dihedral assemblies we also in-
clude into the graph the edges crossing the 2-fold axes. The main idea
behind the correspondence estimation method is to fit our non-perfect
system to a perfect canonical example, and then to use the known
correspondence from this canonical example to deduce the correspon-
dence of our system. To create such a fitting, the COMs of the subunits
are projected on a sphere centered in the COM of the assembly. Then
the polyhedral graph P (Grünbaum et al., 2003) of the convex hull is
computed, and we seek for subgraphs of P that are isomorphic to the
reference graph. This problem is generally known as the subgraph iso-
morphism problem, which has been well studied in literature (Ullmann,
1976). Since our example is not perfect, it happens that we obtain ei-
ther zero or several matches. If we get zero matches, we connect the
two most spatially proximate yet unconnected vertices in our graph
with an edge and restart the subgraph isomorphism procedure until we
obtain some result. If we get several results, we use two geometric
criteria to select the best one. More precisely, the first criterion is the
variance of the lengths of the graph edges that belong to the same
regular polyhedra. The second criterion is the difference between the
reference subunits’ angles α i j( , ) and the observed angles.

Once the polyhedral graph computed from the input structure has
been mapped to the reference graph, we use the precomputed

correspondences of the reference graph to map them on our graph and
obtain the correspondences between subunits for each element of Γ.
This way, we ensure that the function ↦g σg is, by construction, a
bijective homomorphism.

2.8. Graph representation of the group generation

A dual representation of a symmetry group given as a set of per-
mutations, will be a set of rotations. All of these can be obtained as a
combination of two generator rotations, one r3 being a rotation about a
3-fold axis →v3 by an angle π2

3
for cubic groups, (respectively rn being a

rotation about a n-fold axis →vn by an angle π
n

2 for dihedral groups) and

the other r2 being a rotation about a 2-fold axis →v2 by an angle π . We
should emphasize that these two rotations are present in the 3 possible
cubic groups. Then, we may represent all the elements of a point group
symmetry as vertices in a Cailey graph (Cayley, 1878), whose edges
correspond to the two types of the generator rotations. A group element
here can be seen as a certain rotation of the symmetric assembly. For
example, a tetrahedral symmetry would have 12 elements (or rota-
tions), an octahedral symmetry would have 24 elements, and an ico-
sahedral symmetry would have 60 elements. The same representation
holds for dihedral symmetry groups. These, however, will have one
generator being rn, a rotation about the n-fold axis by an angle π

n
2 in-

stead of r3 as the first generator. The number of elements is dependent
on their order, n2 elements for Dn. It is easy to demonstrate that all the
elements in the groups can be obtained from any initial element by
successively applying a combination of the two generator rotations, such
that the Cailey graphs are connected, as it is shown in Fig. 4. We can
also see that a combination of the two generator rotations only produces
the group elements, such that the graphs are finite.

2.9. Geometry of multiple axes of symmetry

A rotation operator can be uniquely represented by an axis and an
angle of rotation (Popov and Grudinin, 2014). In our case, to determine
the rotation operators, it is convenient to only work with their axes,
since the angles are already constrained by the symmetry group. These
axes are always placed in an identical configuration with respect to
each other, and the position of two axes is sufficient to determine the
positions of all other axes (Ritchie and Grudinin, 2016). Thus we con-
struct our basis with the axes of the two generator rotations defined
above. The angle a between the two basis axes is uniquely defined by
the type of symmetry group, as it is shown in Fig. 5. It is more con-
venient, however, to use cosine of the angle =α acos( ), such that

= = =α α α ϕ1
3

2
3 3

,Tetrahedral Octahedral Icosahedral (7)

where ϕ is the golden number +( 5 1)/2. The angles a will be then≈ ° ≈ ° ≈ °a a a54.7 35.3 20.9 .Tetrahedral Octahedral Icosahedral (8)

It is interesting to note that the dihedral symmetry group Dn can
also be rigorously described with two generator axes. One is a n-fold axis→vn defining the Cn symmetry and the second is a 2-fold axis →v2 per-
pendicular to it, such that =α 0Dihedral and = °a 90Dihedral . For any 3D
rotation rg, its rotation axis can be expressed in a basis spanned by 3
axes → →v v,2 3, and

→ × →v v3 2 (respectively → →v v, n2 , and → × →v vn 2 for a dihedral
group Dn), such that the associated rotation quaternion ̂Q g is written as

̂ ≡ = + + ×Q s s a b cq v v v v[ , ] [ , ]g g g g g g g3 2 3 2 (9)

for cubic groups and

̂ ≡ = + + ×Q s s a b cq v v v v[ , ] [ , ]g g g g g n g g n2 2 (10)

for dihedral groups. The rotation quaternion ̂ ̂Q Q g2 obtained by applying

A B C

Fig. 3. Three convex hulls of COMs of perfectly symmetric tetrahedral assem-
blies. The black edges correspond to the maximum common topology between
all the possible tetrahedral configurations. The green and blue edges are present
only in some convex hull topologies. (A) and (C) show two typical topologies,
while (B) shows a degenerated example, where some of the convex hull faces
are rectangular instead of being triangular. By applying some random noise to
the assembly shown in (B), we can obtain a convex hull with randomly chosen
green and blue edges.

G. Pagès, S. Grudinin -RXUQDO�RI�6WUXFWXUDO�%LRORJ\���������������²���

���



r2 after rg has the following coefficients,= − += −= −= −
s αa b
a c
b s αc
c a

( )
( )

( )
( ).

g g

g

g g

g (11)

Similarly, the rotation quaternion ̂ ̂Q Q g3 obtained by applying r3 after rg
has the following coefficients,

= − + += − + += − += − +

s a αb

a s αc

b c

c b

( )

( )

.

s
g g

a
g g

b
g

c
g

2
3

2

2
3

2

2
3

2

2
3

2

g

g

g

g
(12)

Finally, for a dihedral group Dn, the rotation quaternion ̂ ̂Q Qn g has the
following coefficients,

= +
= +
= +
= +

( ) ( )
( ) ( )
( ) ( )
( ) ( )

s s a

a a s

b b c

c c b

cos sin

cos sin

cos sin

cos sin .

π
n g

π
n g

π
n g

π
n g

π
n g

π
n g

π
n g

π
n g

2 2

2 2

2 2

2 2
(13)

2.10. Optimization of the rotations

Here we will use the same notations as in our previous work
on cyclic symmetries (Pagès et al., 2018). From now on, for simplicity,
we will only write equations for the cubic group. Indeed, the
equations for the dihedral group are obtained by substituting
the index n for the index 3. Our goal is to minimize the loss
function defined in Eq. (4). For each element g of the chosen
symmetry group, the contribution to the loss function is the RMSD
between r A( )g and =A a{ }g σ i j( ),g . According to the RMSD master
Eq. (3) from Pagès et al., 2018 with =B Ag, we can say that A and B
have the same COM, so the translational part of RMSD becomes null
and we obtain

= + +⊥r A A
N

s xq I q q xRMSD ( ( ), ) 4 4 ,g g T g T g gs2
(14)

where

and = ∑ ×= ∑ −⊥
( )

N
x N
x a a

a a
/
/ .

g i j σ i j i j

gs i j i j σ i j

, ( ), ,

, , ( ), 2
g

g (16)

Our aim will be to minimize the sum of squared RMSDs over all
elements g of the group Γ. Let us first assume that we know the value of
one of the two axes v3 or v2, for example, v3. In practice, we first

A B C D

Fig. 4. Cailey graph representation of the different cubic groups, (A) the tetrahedral, (B) the octahedral, (C) the icosahedral, and (D) the dihedral D8. Each vertex
represents a group element, which is also a rotation of the symmetric assembly. The directed edges are the generator rotations applied to the group elements. The blue
edges are the r3 generator rotations, the red edges are the r2 generator rotations, and the green edges are the rn generator rotations. Each vertex has indegree and outdegree
of two, such that the graph is balanced.

A B C D

Fig. 5. Four high-order point symmetry groups, (a) tetrahedral, (b) octahedral, (c) icosahedral and (d) dihedral group D8. Two generator axes for each of the groups
are shown. The 3-fold axis is colored in blue, the 2-fold is colored in red, and the 8-fold axis of the D8 group is colored in green. The angle a between the generator
symmetry axes is highlighted in yellow. These two axes are sufficient to describe the entire symmetry group. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

= ⎛
⎝
⎜⎜⎜

∑ + − ∑ + − ∑ +− ∑ + ∑ + − ∑ +− ∑ + − ∑ + ∑ +
⎞
⎠
⎟⎟⎟

y y z z x y x y x z x z
x y x y x x z z y z y z
x z x z y z y z x x y y

I
( ) ( )/2 ( )/2
( )/2 ( ) ( )/2
( )/2 ( )/2 ( )

,g

i j σ i j i j σ i j σ i j i j i j σ i j σ i j i j i j σ i j

i j σ i j σ i j i j i j σ i j i j σ i j σ i j i j i j σ i j

i j σ i j σ i j i j i j σ i j σ i j i j i j σ i j i j σ i j

, ( ), , ( ), ( ), , , ( ), ( ), , , ( ),

, ( ), ( ), , , ( ), , ( ), ( ), , , ( ),

, ( ), ( ), , , ( ), ( ), , , ( ), , ( ),

g g g g g g

g g g g g g

g g g g g g (15)
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compute v3 axis as a cyclic axis using the method from Pagès et al.,
2018, then we alternate the computations of v2 and v3 considering the
other axis as known. This method converges to machine precision in
about 10 iterations. Thanks to the RMSD master equation, we can write
the loss function as a function of the axis v2 as follows,
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We can rewrite this equation as the following minimization problem
with respect to v2,+ +
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The two constraints come from the unit norm of the rotation axes
and the geometry of the generator axes. The above equations has the
following coefficients,
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Similar equations can be written for the optimization of the loss
function with respect to v3.

2.11. 2D trust-region optimization problem

The optimization problem (18) can be efficiently solved by reducing
it to the standard form of the trust-region subproblem. However, in our
particular case, we can use one of the constraints in Eq. (18) to project
the optimization problem to a two-dimensional subspace. This allows us
to solve it analytically, as we explain below.

First of all, it is convenient to chose an orthonormal basis v v v( , , )x y 3
and rewrite the vector v2 in this basis as= + +α x yv v v v .x y2 3 (20)

Then, the optimization problem (18) reduces to+ +
+ + + ++ + ++ = −
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To solve it, we find stationary points of the corresponding Lagrangian

L x y λ( , , ),= + + + + + + − +L x y λ kx lxy my px qy λ x y α( , , ) 2 2 2 ( 1 ),2 2 2 2 2

(22)

with the following coefficients==== += +
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Assigning the partial derivatives of the Lagrangian to zeros, we arrive to
the following system of equations,

⎧⎨⎩
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After eliminating λ we obtain

⎧⎨⎩ + − − + − =+ = −lx m k xy ly qx py
x y α
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Finally, we exclude the last equation by changing the variables and
introducing the new optimization variable t,
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Then, making the change of variables and multiplying the first equation
by non-zero + t(1 )2 2 we obtain,
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This is our final fourth-order algebraic equation, whose roots can be
found analytically (Neumark, 2014). After finding all of its roots, we
discard the complex ones, then compute the corresponding values of x
and y, substitute them in the original quadratic function (21) and
choose the pair of x and y that gives the smallest value. We also ad-
ditionally test the case of = − −y α1 2 and =x 0 that has been ex-
cluded during the change of variables in eq. (26).

3. Results and discussion

3.1. Examples

Fig. 6 presents an example of symmetry axes detection for each of
the cubic groups, i.e. tetrahedral, octahedral and icosahedral, and for a
dihedral group of order 6. These assemblies do not possess any parti-
cular computational difficulty. Indeed, their asymmetric subunits are

Fig. 6. Four examples of symmetric assem-
blies with their axes. All of these are seen
from a 3-fold axis except for the last one,
seen from a 6-fold axis. The order n of each
axis is represented with a regular n-gone,
except of order 2 represented with a
rhombus. A – A tetrahedral assembly (1d0i)
with the RMSD loss of 0.36Å. B – An octa-
hedral assembly (1bfr) with the RMSD loss
of 0.22Å. C – A perfect icosahedral as-

sembly (1stm) with the RMSD loss of 0.0Å. D – A dihedral D6 assembly (1f52) with the RMSD loss of 0.20Å. This illustration and all the illustrations below were
produced in SAMSON ( www.samson-connect.net).
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composed of a single chain, which makes the first step of optimization
Problem 5 trivial.

Some assemblies contain more chains than the number of asym-
metric subunits expected from their point group symmetry. Each sub-
unit thus must be composed of several chains. For example, Fig. 7
shows the 5t0v structure, which is an octahedral assembly with 48
chains and a stoichiometry of A24B24. This example demonstrates that
our method determines symmetry axes in assemblies where the asym-
metric subunits are composed of multiple chains. We should also note
that in this case it is important to rigorously take into account all the
chains, since the angular difference in the axis determination can be as
large as °1 if only chains A or B are considered.

While scanning the PDB, we found several assemblies that are
classified with a low-order symmetry group, but can alternatively
possess a higher symmetry group. For example, Fig. 8 shows the 1ocw
structure, which is a perfect C4 assembly with a stoichiometry of A4B4
and the RMSD loss of 0Å. Our algorithm also detects a D4 pseudo-
symmetry with the RMSD loss of 2.68Å, which is rather low. The visual
inspection of this protein confirms this possibility (see Fig. 8). Similarly,
we also discovered some assemblies with cubic symmetries that were
labelled as cyclic in the PDB database. Fig. 9 shows two of such ex-
amples. One is the 4itv protein labelled as C2 (RMSD loss of 4.44 Å), but
also possessing a tetrahedral symmetry with the RMSD loss of 10.94Å.
The other is the 5hpn protein labelled as C5 (RMSD loss of 0.68Å), but
also possessing an icosahedral symmetry with the RMSD loss of 0.56Å.

3.2. Comparison with other methods

We compared our approach with two other published methods
following the comparison strategy from our previous work on symmetry
detection in cyclic protein assemblies (Pagès et al., 2018). More pre-
cisely, we compared it to the results published by David Avnir and
colleagues (Dryzun et al., 2011; Pinsky et al., 2013). We will refer to it
as to CSM (Continuous Symmetry Measure). We also compared our
method to the one from Emmanuel Levy (Levy et al., 2006), and will
refer to it as to Levy. Please refer to the first part of our paper (Pagès
et al., 2018) for more details.

For the comparison, we have selected all dihedral assemblies pre-
sented in the original CSM publications (Dryzun et al., 2011; Pinsky
et al., 2013). These are listed in Table 1. We have also complemented
these assemblies with three examples of cubic groups, 5x47 with tet-
rahedral symmetry, 4p18 with octahedral symmetry, and 4zor with
icosahedral symmetry.

Table 1 lists the execution time and the symmetry measure (RMSD
value) for the three tested methods. As in the cyclic case (Pagès et al.,
2018), it clearly shows that our method scales with the size of the input
assembly much better than the two other methods. This is especially
notecable for large assemblies. Regarding the accuracy of the obtained
results, it is typically much better than in the Levy method for high-
order symmetries. As we have mentioned in the first part of this work,
comparison to CSM is trickier because this method considers more
atoms than we do. Therefore, the additional atoms add more freedom to

Fig. 7. The 5t0v octahedral assembly. The
homologous chains are colored with the
same color. A – The chains of the first type
form an octahedral assembly with the RMSD
loss of 2.94Å. B – The chains of the second
type also form an octahedral assembly with
the RMSD loss of 2.67Å. The axes are
slightly different from the first assembly,
with about °1 of difference. C – The axes are
computed for the full assembly, with the
RMSD loss of 2.83Å.

Fig. 8. The 1ocw protein colored in blue for the A chains and red for the B
chains. A – as seen from the 4-fold axis. B – as seen from a 2-fold axis computed
with our method.

Fig. 9. A – The 4itv protein classified in PDB as C2 (RMSD loss of 4.44Å), also
has a tetrahedral symmetry with the RMSD loss= 10.94Å. B – The 5hpn
protein classified in PDB as C5 (RMSD loss of 0.68Å), also has an icosahedral
symmetry with the RMSD loss= 0.56Å.

Table 1
Comparative results between AnAnaS, CSM and Levy methods for dihedral and
cubic molecular assemblies.

PDB Code Group RMSD
(AnAnaS)

RMSD
(CSM)

RMSD
(Levy)

AnAnaS
Timea

CSM
Timeb

Levy
Timea

1msoc D3 1.36Å – 1.39Å 0.13 s 3.7 s 0.49 s
2hhb D2 1.64Å 2.43Å 1.64Å 0.05 s 12.2 s 0.28 s
2nwc D7 0.81Å – 0.89Å 0.63 s 3950 s 2.3 s
2rgw D3 0.34Å 0.39Å 0.47Å 0.23 s – 1.8 s
1odi D3 0.35Å 0.50Å 0.47Å 0.14 s – 1.5 s
1f52 D6 0.19Å 0.15Å 0.54Å 1.21 s – 16.6 s
5x47 T 0.85Å – 1.02Å 0.32 s – 5.62 s
4p18 O 0.19Å – 2.13Å 3.1 s – 131 s
4zorc I 1.05Å – 2.38Å 18.8 s – 1118 s

a AnAnaS and Levy times were measured on a Windows laptop equipped
with an Intel i7 @ 3.1 GHz.

b CSM times and CSM symmetry measures were taken from Dryzun et al.,
2011 and Pinsky et al., 2013 with a different, 7 year older, CPU. However, we
believe that the order of magnitude of these timings is still correct.

c For these structures, the biological assembly was used.
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the CSM method when it chooses the correspondences between these,
which can explain small differences in the computed RMSD values. For
example, in the 1f52 case CSM reports a smaller RMSD measure than
we do (0.15Å vs. 0.19Å).

3.3. Exhaustive analysis of symmetric structures in the PDB

To demonstrate the efficiency of our approach, we exhaustively
analyzed all the structures labelled as symmetric in the PDB. To do so,
we downloaded their biological assemblies (about 40,800 cyclic, 9,800
dihedral and 1,300 cubic examples as for January 2018) and assessed
the symmetry for each of these. Fig. 10 plots the distribution of the
RMSD symmetry measures for assemblies with different types of sym-
metry. We should note that there are many structures with a very low
RMSD value (< 0.001Å), which is the precision of the pdb format.
These are typically obtained by replicating subunits with crystal-
lographic symmetry or BIOMT transforms, so they have a perfect
symmetry. Regarding all other structures, we can see that all the three
distributions of cyclic, dihedral, and cubic groups follow the same law
in the log-log scale. The maxima of the distributions belong to the range
of 0.2–0.5Å, and there are no noticeable differences between the
shapes of all of these.

Another interesting question we are able to answer using our tool is
whether the degree of asymmetry is related to the size of the assembly
under consideration. In other words, we can study if the RMSD sym-
metry measure is related with the radius of gyration of the symmetric
assemblies. A geometrical intuition would suggest that as the angular
uncertainty should stay constant with the size of the assembly, and of
protein assembly grows larger, the imperfections of its symmetry be-
come more pronounceable. Visually, we would expect a linear corre-
lation between the RMSD symmetry measure and the radius of gyration
of the assemblies. However, it is not the case in reality. Indeed, Fig. 11
does not demonstrate any clear relation between the size and the im-
perfection of the PDB assemblies, and the correlation between these two
variables is only about 0.1. Interestingly enough, large assemblies are
very well organized with sufficiently small values of the RMSD

measure. This is one of the reasons behind our choice of RMSD as the
symmetry measure instead of its normalization by the size of the
structure (as it is often done in other methods by Dryzun et al., 2011;
Pinsky et al., 2013). We should specifically add that in the case of very
small assemblies, we consider them symmetric only if the corre-
sponding RMSD measure is smaller than half of the radius of gyration of
the assembly.

3.4. How good are symmetry annotations in the PDB?

Our tool also allows to assess the overall quality of annotations of
symmetric assemblies in the PDB. More precisely, we compared the
highest symmetry group suggested by our method with the group
provided in the PDB. If these two groups are different, there are two
types of possible errors. First, one of the two groups can be a subgroup
of the other one (e.g. C4 is a subgroup of D4). This type of errors simply
results from a difference of sensibility between the annotation methods.
We call the groups compatible. Second, the two groups may also be in-
compatible (e.g.C4 and D5). This case means that one of the two results is
wrong and a careful visual inspection is generally required.

Table 2 lists the results for 51,358 PDB structures. In 50,378 cases
(98.1% of all the cases), the symmetry group annotated by the PDB is
the one found by our method. These cases are located at the green di-
agonal of the table. Red cells show the incompatible groups, while
white cells show the compatible groups. Our method is generally more
sensitive compared to the PDB annotation. Indeed, there are 845
structures (1.6%) for which it finds a higher order compatible group,
while only in 125 cases (0.2%) the PDB annotated compatible group has
a higher order. Finally, there are only 13 cases (0.03%) that present
incompatible groups. We have visually inspected all of these structures.
The two of these annotated as T and detected as C5 are 4aod and 4aoe,
for which the biological assemblies are indeed C5. The 11 other cases
have uncertainties between C2 and C3 annotation. In all of these cases,
both symmetries are detected by our method, and the difference of
RMSD between the two symmetries is smaller than 1Å. Moreover, some
of these examples have less than 5 amino acids in each chain, and are at
the limit of the usability of the annotation techniques. We can also
mention two particular cases. One is 3alz, for which both perfect C3 and
C2 axes are detected, and is actually a part of a D3 assembly. The other is
3aqq, which is annotated as C2 in the PDB, but looks much more like a
partial C3 assembly.

The first column of Table 2 lists 75 structures for which AnAnaS was
not able to detect symmetry. There are 4 reasons that explain this:

• For the 6 icosahedral structures, we ran out of memory at the dis-
crete optimization step. Thus, no results were outputted and we
considered these cases as assymetric.

• Some structures have missing or additional chains that are not
supported by our program. For example, 2zl2 has a D7 symmetry but
contains 24 chains, 10 of them being very small peptides. AnAnaS
expects a multiple of 14 chains as input to test a D7 symmetry and,
therefore, does not test it. However, if we remove these small
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peptides, we detect a D7 symmetry with an RMSD of 0.35 Å.

• Some structures are at the edge of the threshold that we set up for
the assemblies to be symmetric. More precisely, as we explain it
below, RMSD must be smaller than 7 Åand also smaller than half of
the radius of gyration.

• Finally, some structures do not possess the symmetry annotated in
the PDB. For example, 2ol9 is the structure of two identical peptides
translated with respect to each other, and these are annotated as C2,
while a C2 symmetry would necessarily require a rotation between
the two peptides.

3.5. Computational details

We implemented the AnAnaS method using the C++ programming
language. It is available as a standalone executable and also as a module
with graphical user interface for the SAMSON software platform. We
can also provide the source code upon request.

We have exhaustively assessed our program with all the structures
labeled as symmetric in the PDB. This demonstrates the reliability and
robustness of our method overall, and its heuristic for the discrete op-
timization steps in particular. Running the tests on all of these struc-
tures took us about 10 h on a Windows laptop equipped with an Intel
Core i7 @ 3.1 GHz CPU. For all the examples we tested, the running
time was largely dominated by the multiple sequence alignment, which
is required to compare the relevant alpha carbons in different subunits.
Only in one case (2qzv) with a D48 symmetry, the computational bot-
tleneck turned out to be the graph matching step.

We should also say that if no symmetry group is specified by a user,
then the program exhaustively tests all the symmetry groups that are
consistent with the number of chains in the input assembly. Also, we
label an assembly as symmetric only if the corresponding RMSD mea-
sure is smaller than 7Å and smaller than half of its radius of gyration.
The second condition is added to filter out very small asymmetric as-
semblies.

4. Conclusions

This work extends our previous cyclic symmetry detection method

(Pagès et al., 2018) for high-order point groups. It required to develop a
robust heuristic algorithm that perceives the correspondence between
asymmetric subunits, and also to extend the constrained quadratic
optimization problem from Pagès et al., 2018 to multiple symmetry
axes with mutual constraints. Using the quaternion arithmetic, we ex-
pressed the constrained optimization problem as a 2D trust-region
subproblem and found its solution analytically. We have compared out
method with two other published techniques that can detect symmetry
in high-order symmetrical assemblies and demonstrated that it is gen-
erally much more robust and efficient.

We have demonstrated the efficiency of our method on all the
structures marked as symmetric in the PDB, including those with
multiple chains per asymmetric subunit or with pseudo-symmetry. It
allowed us to verify symmetry annotations in the PDB and detect sev-
eral inconsistencies in the annotations. For example, in 1.6% of the
cases, we detected a higher symmetry group compared to those pro-
vided in the PDB. We have also compared structural organization of
protein assemblies with different point group symmetries and con-
cluded that these follow the same distribution laws. Finally, we have
detected that the angular impurity in symmetry does not scale with the
size of the assemblies. More precisely, very often these are the largest
and high-order symmetry systems that are organized the most reg-
ularly.

The method is available at https://team.inria.fr/nano-d/software/
ananas/. The SAMSON GUI-assisted module is available at http://
samson-connect.net/.
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Table 2
Summary of the symmetry groups annotated in the PDB (rows) against the ones discovered by AnAnaS (columns). Red cells mark incompatible groups,
while white cells mark compatible groups and green cells mark identical groups. For example, first cell shows that there are 54 structures annotated as C2
in the PDB for which we found a C1 symmetry (i.e. no symmetry).

PDB
AnAnaS C1 C2 C3 C4 C5 C6 C7 C8 D2 D3 D4 D5 D6 D7 D8 T O I Total

C2 54 33091 8 23 6 470 15 7 1 1 205 2 33883
C3 2 3 4188 16 60 4269
C4 1 2 1046 7 4 1060
C5 6 561 1 568
C6 2 2 411 1 416
C7 104 6 110
C8 34 3 37
D2 3 26 6571 6 1 2 6609
D3 8 5 1939 1952
D4 1 1 654 5 661
D5 1 236 237
D6 106 106
D7 1 1 99 101
D8 34 34
T 2 359 3 364
O 329 329
I 6 2 617 625
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