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ABSTRACT: We present a new conceptually simple and
computationally efficient method for nonlinear normal-mode
analysis called NOLB. It relies on the rotations-translations of
blocks (RTB) theoretical basis developed by Y.-H. Sanejouand
and colleagues [Durand et al. Biopolymers 1994, 34, 759—771.
Tama et al. Proteins: Struct, Funct, Bioinf. 2000, 41, 1-7]. We
demonstrate how to physically interpret the eigenvalues
computed in the RTB basis in terms of angular and linear
velocities applied to the rigid blocks and how to construct a

NOLB NMA

nonlinear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid
block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure
rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular
systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example,
NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall,
our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we
demonstrate by visual inspection, energy, and topology analyses and also by the MolProbity service validation. Finally, our
method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB
normal-mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes/. A graphical user

interface created for the SAMSON software platform will be made available at https://www.samson-connect.net.

B INTRODUCTION

Normal mode analysis (NMA) is an old and well established
technique’ that has recently found many new applications in
the field of structural biology and structural bioinformatics.*
The internal motions of a protein have been a topic of great
interest for a long time. One reason for this interest is the fact
that some of these motions are known to play an important role
in protein functions.””® While molecular dynamics (MD) can
nowadays accurately predict these motions, it is typically very
computationally expensive, whereas NMA is relatively cheap
and easily allows us to either extract the so-called essential
dynamics of the protein from MD trajectories’ or to compute
some low-frequency collective motions for a single struc-
ture.”'°”'* These low-frequency motions are particularly
interesting to the structural biology community because they
are commonly assumed to give more insight into protein
function and dynamics.”"?

Another application of NMA is the description and
prediction of conformational transitions in molecular systems.
More precisely, these transitions are approximated in a low-
dimensional conformation space composed of some lowest
normal modes."*~"® For example, NMA has been successfully
applied to protein—ligand docking problems,'”*° protein—
protein docking problems,”'~** and others.””” In these
applications, NMA is usually used as a supplement to the
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rigid docking search method" and allowds us to handle the
flexibility and even the conformational changes of proteins with
only a few additional degrees of freedom (DOF). We should,
however, mention that the relevance of the NMA in protein—
protein docking problems is still debatable.”**"

NMA uses a quadratic approximation of the potential energy,
and thus it produces linear deformations of the initial structure,
which are accurate only for small-amplitude motions. Larger
amplitudes can destroy, for example, the secondary structure
and break interatomic bonds, when NMA is applied to a
protein. An obvious circumvention for this problem will be to
take smaller amplitude steps and iteratively recompute and
diagonalize the Hessian matrix from the updated positions. This
procedure would indeed produce a more realistic deformation
of the initial structure thanks to the nonlinearity of the obtained
deformation. However, such an approach requires multiple
diagonalization steps, which may be computationally expensive
for some of the applications. Thus, multiple attempts were
made to introduce nonlinear deformations without the need of
multiple diagonalizations.

For example, in mechanical engineering, a Taylor expansion
of the normal modes vectors® was introduced, but this method
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requires the computation of the derivatives of the normal
modes which is a rather complex operation. Another method
from structural dynamics considers the expression of normal
modes as a function of “master coordinates” and reformulates
the equation of motion as an overdetermined system of partial
differential equations (PDEs),** which can be solved using a
Galerkin method, for example.”’ To our knowledge, the latter
method has only been demonstrated on small systems, and
solving a large overdetermined system of PDEs could be
prohibitively costly when applied to a complex system like a
protein. In structural biology the most straightforward way to
introduce nonlinear motions in NMA is to express the stiffness
matrix in the torsion angle subspace.'"**"** While NMA in this
subspace preserves both bond lengths and angles,”* ™" there is
a negative long-range effect that limits the applicability of the
method to small deformation amplitudes. Indeed, a small
change of one dihedral angle causes a propagation of Cartesian
displacements along the main chain of a protein or other
biopolymer with an increasing amplitude of deformation. Truly,
changes in torsional angles result in nonlinear Cartesian
trajectories of atoms, and Bray et al** demonstrated that
NMA performed in this subspace and projected to curved paths
in Cartesian coordinates describes protein conformational
changes more accurately than linear Cartesian motions.

In this paper we present a conceptually simple and intuitive
scheme for nonlinear normal-mode analysis that extrapolates a
motion computed from instantaneous linear and angular
velocities to large amplitudes. The scheme can be considered
as an evolution of the widely used rotations-translations of
blocks (RTB) method presented below. Thus, it will be easy to
integrate this scheme with the existing software tools based on
the RTB approach.

B THE METHOD

Harmonic Oscillator Model. In order to briefly explain the
NMA method, let us consider a molecular system with N,

atoms at an equilibrium position qOG[RW". We call

V : R*™ — R the potential energy of our molecular system.
We aim at analytically computing the molecular vibration of our
system around its equilibrium. In order to do so we introduce
q:R" - R*™, a small time-dependent molecular displace-
ment of our system around ¢, The basic idea of the NMA
method is to represent the potential energy V in the vicinity of
qo by its quadratic approximation and to analytically solve the
Newton’s equation of motion

M(G + §,) + VV(q, + q) ¥ Mg + Kqg =0 (1)

where M is the diagonal mass matrix, and K is the Hessian
matrix of the potential energy V evaluated at the equilibrium
position g,. We should note that in classical mechanics K is
traditionally called the stiffness matrix. A standard method to
analytically solve this kind of ordinary differential equation
(ODE) is to uncouple it by computing the square matrix of
eigenvectors L and the diagonal matrix of eigenvalues A of the
mass-weighted stiffness matrix K,, = M~"/*KM~/>

K, =LAL" )

We call 7 : R" — R*™ the projection of g into the eigenspace
of K,, and we call (4,),o..3y, the diagonal values in A. Then, left

multiplication of the ODE (1) by L"™M"/? gives the following
system of uncoupled equations

n= LTMI/Zq

i+ An =0 i=1..3N, (3)
which can be solved by the classical ordinary differential
equation (ODE) theory. In classical mechanics and engineer-
ing, an eigenvector associated with a harmonic oscillator
described above is called a normal mode with the corresponding
oscillating frequency given as N/ . The potential energy
associated with a harmonic oscillation of this mode is thus
linearly proportional to 4;. Note that since the potential energy
V is expanded around its local minimum, all 4; > 0. Typically,
the five or six first eigenvalues are null as they correspond to the
rigid body motions, which lie in the kernel of K. Since for
most of the applications we are only interested in collective
motions, it seems natural to only consider a few of the lowest
nontrivial normal modes.

RTB Model. In the past, many methods were developed to
reduce the dimensionality of the original NMA problem. For
example, pioneering works of Noguti and G&*' and Levitt et
al.** and later of Ma et al.** and Chacén et al.*° explored the
NMA approach in internal coordinates, Hinsen'’ proposed
NMA in a reduced Fourier basis, and finally, many researchers
considered coarse—graining.1’2’42_44 One of the first and most
popular methods to coarse-grain the initial system is the RTB
approach introduced by Durand et al." and further developed
by Tama et al.” and Li and Cui.”® In this method, individual or
several consecutive amino residues are considered as rigid
blocks that can only exhibit rotational and translational
motions."” A very detailed description of the RTB method
was made by Lezon et al,** where the authors provided both
the mathematics behind the method along with a nice physical
interpretation of the model. We should note that recently an
extension to the RTB method called cluster-NMA has been
proposed.”*® It follows the same philosophy as the RTB
method but considers real rigid block rotations about C, atoms.
The RTB method allows for the computation of a fairly
accurate approximation to the normal modes of a large
molecular system, typically a protein, in a reasonable amount
of time. The main idea of the method is to describe the system
as n rigid blocks and to present the infinitesimal internal
motions of the system as a set of infinitesimal rotations and
translations of these rigid blocks. The transition from the RTB
coordinate system with 6n DOFs to the all-atom coordinate

system with 3N DOFs is performed by an orthogonal

projection matrix P € R*™*®, The normal modes in the

RTB coordinates are then computed by calculating the
eigenvectors of the matrix P'K, P.

Let us now briefly explain how the projection matrix P is
obtained. We start from the conservation laws of the linear
momentum and the angular momentum of a rigid block
consisting of N;, atoms written in mass-weighted coordinates

N,
JM,q = Z [ g, for a translation
k=1

N,
11/2q = Z Jmy (qk X qk) for a rotation
= (4)

where M, is the total mass of the rigid block, I is the rigid
block’s inertia tensor, g is the blocks’s displacement, m, is the
mass of the k™ atom of the block, and g, is the displacement of
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Figure 1. A motion of a rigid block. a) A rigid block A with the COM at € is rotated about an axis 7 by an angle A¢ and then translated by a vector
AZ. The result of the first rotation is shown as a dashed outline. The result of the complete motion is denoted as A’. This motion can be also
represented as a pure rotation about a new center 7 by the same angle A¢. The origin of the coordinate system is denoted as O. b) Schematic
comparison of the linear and nonlinear motion extrapolation methods. Please notice the final positions of the centers of mass and the size of the rigid

blocks.

the k™ atom of the block. The elements constituting PT the
matrix projecting an all-atom motion ¢ into a motion of rigid
block , are then obtained by differentiating (4) with respect to
g This leads to translation P, and rotation P, matrices of size
3N, X 3 each, computed for each of the rigid blocks and written
through their k 3 X 3 square components

P, — E, for a translation
k Mb

_ ~1/2 com .
= — Jm (1) /“[r, — r~"] for a rotation (s)

T

where k is one of the N, atom indices, r, is the position of the
corresponding atom in the block, and r““™ is the position of
the block’s center of mass (COM). The rigid block’s
displacement (8, 8) 6-vector is then obtained by summing up

the displacements in the RTB coordinate frame

N,
T .
6= Z Ptqu for a translation
k=1

N,
0= Z Pz;qk for a rotation
k=1 (6)

Having written these equations, we can write the projection
matrix P as a diagonal block matrix

Py Pa

Pt” Pr“ (7)

This projection allows, in principle, to drastically reduce the
size of the stiffness matrix, which made it possible to study large
biomolecular assemblies.”***” We want to emphasize that the
rotational part in (7) is an infinitesimal rotation of a rigid block
about its center of mass. Linearization of this rotation, as we
will show below, distorts the interatomic distances and
produces unrealistic molecular conformations for large
deformation amplitudes. Below we will introduce a new
method to circumvent this problem.

RTB Normal Modes. The main idea of our method is the
nonlinear extrapolation of the instantaneous directions of
motion described by the normal modes computed in the
RTB subspace. These normal modes are calculated by the
diagonalization of the RTB-projected mass-weighted stiffness
matrix

P'K,P=LAL" (8)

where L is the matrix composed of the RTB normal modes with
the corresponding diagonal eigenvalue matrix A. This equation
can be rewritten as

K, = (PLA(PLY' ©)

Comparing this equation with (2) we can obtain the all-atom
normal modes L" (in mass-weighted coordinates) as a
projection of RTB normal modes L according to

LY =PL (10)

The original RTB method used this equation to compute a
linear deformation of the original molecular structure along
directions L". However, we are going to use the structure of the
projection matrix P to compute a more natural nonlinear
deformation.

To proceed further, first of all we should remember that the
size of an RTB normal mode vector L}’ is 61, with n being the
number of rigid blocks. Each of the six consecutive coordinates
in this vector corresponds to a certain rigid block, with the first
three coordinates providing the instantaneous displacement of
the rigid block’s COM, and the second three coordinates
providing the instantaneous axis of rotation of the rigid block,
passing though its COM. Introducing time dependence of the
variables and taking the time derivative of the RTB normal
mode vector, we can interpret its components as instantaneous
linear velocities and instantaneous angular velocities of individual
rigid blocks. The final step of our method is the extrapolation of
rigid blocks” motion for large amplitudes starting from their
instantaneous linear and angular velocities.

Extrapolation of the Instantaneous Motion. In the
standard NMA method, molecular vibrations in a multidimen-
sional harmonic oscillator are all uncoupled and can be found
by solving (3), which gives a sinusoidal function as a time-
dependent vibration in normal coordinates.> For our
applications, however, it is sufficient to only consider the
maximum amplitude of the deformation a, which, in principal,
can be a sinusoidal function in time as well. Then, for a rigid
block with mass M, and inertia tensor I, given its instantaneous
linear velocity ¥, and its instantaneous angular velocity @,
expressed in mass-weighted coordinates, we first compute these
in the nonmass weighted coordinates as follows

v =M%,
- —1/2 >
o=1""w, (11)
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Then, the translational increment in the rigid block’s position
A% and the angular increment in its orientation A¢) can be
computed as

AX = av
i=ad/|oll,
A¢ = a|lad]l, (12)

where the rigid block’s rotation is described with a unit axis 7
passing through its COM and an angle ¢. We see that the
motion of the rigid block can now be described as a rotation
about an axis 7 by an angle A¢, denoted as R(A¢, 1), followed
by a translation by a vector AX. These rotation and translation
operations are computed starting from instantaneous angular
and linear velocities. The question is, however, how do we
interpret this motion at large deformation amplitudes a. We
should note that, generally, rotation and translation do not
commute and thus the order of these operations matter.
However, this is not the case for infinitesimal rotations. At large
amplitudes, we are free to choose the order of the operations
for our extrapolation, and for simplicity we stick to the order
when the rotation is applied first.

If no external forces act on a rigid block, due to the momenta
conservation laws it will be moving along a straight line.
However, our rigid blocks interact with each other, and thus
they are always subject to implicit forces. Therefore, it is
reasonable to assume that the angular velocity of a rigid block is
the result of a rotation about a certain center. This is the key
observation of our method. Now, let us represent the motion of
the rigid block as a pure rotation about a new rotation center 7,
as it is shown in Figure la. Without loss of generality we
assume that 7 is orthogonal to 7, i.e. 7 -#i = 0. The new rotation
center 7 can be found from the following identity

R(Ag, 7i)(A —C) + ¢+ AZ = R(Ap, i) (A - 7) + 7

(13)
where A are atomic positions of the rigid block, and € is its
COM vector. It is easy to demonstrate that this equation has a
solution only when vectors AX and 7 are orthogonal to each
other, which is not, generally, the case in 3D. To provide a
unique solution, we represent the increment in the rigid block’s
position A% as a sum of two orthogonal vectors

where AX) is orthogonal to 7 and A% is collinear to 7. If only
the orthogonal A%, translation is used for the extrapolation of
motion, then the unique solution of (13) is given as
Ag
F=7+ A% /2 + (7 X A% /(Ztan—)
/2 + (5 x A7)/ an .

We can see that the center of the extrapolated rotation 7
depends on the amplitude of the rotation angle A¢, which is
not suitable for our reasons. However, at infinitely small
amplitudes, it converges to the following value

h o=, ¢ + (i x 9)/]|d]l, (16)

which we will use for the motion extrapolation. Finally,
extrapolated _Posmons A’ of a rigid block with initial atomic
positions at A are given as

"=R(Ag, #i)(A - %) + % + AR (17)

Figure 1b schematically shows a comparison between the
proposed nonlinear extrapolation method and the standard
linear extrapolation. Please note the final positions of the rigid
blocks. Please also note that the linear extrapolation method
does not preserve the shape of the rigid block. Mathematically
speaking, this happens because the underlying transformation
matrix represents a linearized rotation and has a nonunity
determinant.

Potential Function. In principle, our approach can be used
with any potential function. However, to omit the need of
initial system’s energy minimization, we have chosen an all-
atom anisotropic network model (ANM),'>*® which is a type of
elastic network model where the initial structure is always at
equilibrium. The assessment of several elastic network models
can be found, i.e., in Fuglebakk et al.*”*° We specifically chose
the all-atom model to make sure that torques acting on the
rigid blocks are accurately computed. The all-atom ANM has
the following potential function

V(‘]) = Z g(di;’ - dzo 2

dj<R, (18)

where d;; is the distance between the i and the j* atoms, dg is
the reference distance between these atoms, as found in the
original structure, y is the stiffness constant, and R, is a cutoff
distance, typically between 8 and 15 A. The stiffness matrix
corresponding to this potential function is composed of the
following blocks™'***

( 0y2 00 0_0
X)Xl X%

2 o0 ..
Hij=(d02 yt] ’1 (y) ytlzll l;é]
0.0 _00 /0y
zwy zyyy (%
H; = _Z Hij
j#i (19)
where x; = x; — x;, y; = y; — , and z; = z; — z;. In practice, to

rapidly compute this matrix, we use an efficient neighbor search
algorithm.”" We should note that for large systems the atomic
representation is not needed if we are only interested in a few
slowest collective motions. Thus, in principle, our method can
also use a simplified mode], i.e., with only C, atoms provided
that each rigid block will be composed of at least four particles
to have nonsingular inertia tensors and nonzero torques.

B TEST CASES

To assess the method, we have selected three types of tests.
First, we chose three molecular systems for the visual
inspection of the motions. These systems are the T7 large
terminase (pdb code 4bij), the TAL effector PthXol bound to
its DNA target (pdb code 3ugm), and the cytoplasmic domain
of a bacterial chemoreceptor from Thermotoga maritima (pdb
code 2ch7). Our second test is the energy comparison between
the linear and nonlinear deformations along some low-
frequency modes at different deformation amplitudes. For
this test we have selected four structures of molecular systems
from those provided in the 2015/2016 Cryo-EM Model
Challenge.52 These are the structure of the T7 large terminase
described above, the structure of the human y-secretase (pdb
code 5a63), the structure of the capsaicin receptor TRPV1
(pdb code 3j9j), and the structure of the TRPV1 ion channel
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(pdb code 3jSp). Finally, in the third test we measured the
memory and CPU consumption of our method with five
molecular structures of increasing size ranging from 4,630
atoms to 284,479 atoms. These are the structure of the
cytoplasmic domain of a bacterial chemoreceptor from
Thermotoga maritima (pdb code 2ch7 with 4,630 atoms
excluding hetero atoms), the structure of the human y-secretase
(pdb code 5a63 with 9,646 atoms excluding hetero atoms), the
structure of the T7 large terminase (pdb code 4bij with 18,855
atoms excluding hetero atoms), the structure of the photo-
system II complex (pdb code SbSe, 40,908 atoms excluding
hetero atoms), and the structure of the E. coli 70S ribosome
(pdb code 5j8a, 284,479 atoms excluding hetero atoms). We
should mention that the last structure is one of the largest that
the protein data bank™ currently contains.

Bl RESULTS AND DISCUSSION

Visual Inspection of the Nonlinear Motions. For the
first test we have computed some lowest-frequency normal
modes for several molecular systems and present the difference
between the linear and the nonlinear extrapolation approaches,
as it is described below. The first molecular system
demonstrates three basic types of internal motions (see Figure
2), and the other two systems illustrate some biologically
relevant motions (see Figure 3). Overall, Figures 2 and 3 clearly

Figure 2. Comparison of linear (A, C, E) and nonlinear (B, D, F)
motion extrapolations of a coiled coil protein (pdb code 2ch7). Three
types of motions are shown, bending (A, B), stretching (C, D), and
twisting (E, F). Several snapshots at different deformation amplitudes
are superposed to each other. These are colored according to the
values of the overall deformation, as measured by the RMSD. The
colorbars show the RMSD with respect to the initial position. The
arrows follow the trajectories of individual atoms.

Figure 3. Comparison of linear (A, C) and nonlinear (B, D) motions
computed for two molecular systems. Several snapshots at different
deformation amplitudes are superposed to each other. These are
colored according to the values of the overall deformation, as
measured by the RMSD. The colorbars show the overall RMSD with
respect to the initial positions. The arrows follow the trajectories of
individual atoms. (A, B). Sliding of a DNA-binding protein (colored
from cyan to purple) in the groove of the surface of the DNA (pdb
code 3ugm). (C, D). Motion of two subunits of a terminase pentamer
protein (pdb code 4bij). Three other subunits are shown in the surface
representation. The S-fold symmetry axis points toward the top of the
figure.

demonstrate that the nonlinear extrapolation produces visually
better and physically more realistic motions than the standard
approach. We should mention that in this test we used a single
residue as a rigid block. We have additionally performed
experiments with a larger number of residues per block, up to
10, and the results are very similar to the ones presented below.

There are, generally, three basic types of internal motions
that a molecular system may exhibit. These are bending,
stretching, and twisting. All of these motions can be clearly seen
with symmetric elongated rodlike objects. Therefore, for the
first illustration we have chosen a coiled-coil water-soluble
protein from the cytoplasmic domain of a bacterial chemo-
receptor (pdb code 2ch7). For this protein, we have computed
its ten lowest normal modes and specifically selected those that
correspond to the described basic types of motions. Then, we
have computed the linear and nonlinear motion extrapolations
at different amplitudes. These are presented in Figure 2. The
difference between the two types of extrapolations is especially
apparent for motions with a large portion of involved rotation.
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Figure 4. Comparison of linear and nonlinear deformations averaged over the 10 lowest normal modes computed for the following systems: (a-c)
4bij, (d-f) 5263, (g-i) 3j9j, and (j-1) 3jSp. In (a,d,gj) the bond harmonic energy as a function of the deformation amplitude is shown. In (b,e,hk) the
total number of broken bonds as a function of the deformation amplitude is shown (in a log scale). In (c,f;i,l) the number of broken bonds between
individual amino acids is shown as a function of the deformation amplitude. See the main text for details.

For example, Figures 2A-B show a bending type of motion and
Figures 2E-F show a twisting motion. For these two types of
motions the difference between the two extrapolation

approaches is visually clear. This is because for these types of

motions the translational component is typically negligible with

respect to the rotational component, which is given as a pure

rotation of rigid blocks about a certain center. Thus, the
nonlinear extrapolation produces a very different result at large

deformation amplitudes. However, for the stretching motion,
which is shown in Figures 2C—D, there is no noticeable visual
difference between the two types of motion extrapolation. This
is because in this case the motion is mostly represented by its
translation component, and there is almost no difference
between the two extrapolation approaches.

Another interesting type of motion where the nonlinear
extrapolation produces a noticeable different result is the spiral
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Figure 5. Comparison of linear and nonlinear deformations of the coiled-coil cytoplasmic domain of a bacterial chemoreceptor (pdb code 2ch7)
assessed by the MolProbity server.”® Results for the bending motion are shown in the left column, for the twisting motion the results are shown in
the middle column, and for the stretching motion the results are shown in the right column. Multiple MolProbity statistics are plotted as a function
of the deformation amplitude. The "clashscore’ is the number of serious clashes (atomic overlap >0.4 A) per 1,000 atoms. Bad bonds and angles are
those that are further away than four standard deviations from the expected values. The MolProbity score is a log-weighted combination of the
clashscore, the percentage of not favored Ramachandran angles, and the percentage of bad side-chain rotamers, giving one number that reflects the

crystallographic resolution at which those values should be expected.

sliding of a transcription activator-like effector (TALE) protein extrapolated motions of the TALE protein (colored from cyan
in a surface groove of its DNA target. This motion, both using to purple) look more physically realistic in the nonlinear case.
linear and nonlinear extrapolations at large amplitudes, is We should note that the maximum overall root-mean-square
shown in Figures 3A-B. Here, we can see very similar motions deviation (RMSD), as measured for the linear extrapolation, is
of the DNA molecule (colored from green to red), while the about 9 A. At such large deformation amplitudes, the linear
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extrapolation significantly perturbs the structure, as can be
illustrated by broken covalent bonds. We should also emphasize
that this sliding motion, as computed by the NOLB analysis
around the system’s equilibrium position, is biologically
relevant, as has been recently demonstrated by the direct
observation of TALE protein dynamics.”* More precisely, the
TALE proteins are capable of rapid diffusion along DNA using
a combination of sliding and hopping.

Finally, as the last example, we have chosen a pentameric
assembly of terminase proteins with the C; cyclic symmetry.
The terminase is a powerful motor that converts ATP
hydrolysis into mechanical movement of the DNA.> Similar
to the previous examples, we have computed the lowest normal
modes for the whole assembly and chosen the one that is
responsible for the opening and closing of the channel in the
middle of the assembly. More precisely, here each of the five
subunits rotates symmetrically such that the channel in the
middle changes its shape. Figures 3C—D show the difference
between both the linear and the nonlinear extrapolations of this
motion. In order to make the figure more comprehensible, we
show the motion of only two out of five subunits, colored from
cyan to purple according to the amplitude of the deformation.
The three remaining subunits (shown in surface representa-
tion) are static. Again, we can see that at large amplitudes the
nonlinear extrapolation looks more physically realistic than the
linear one. Similar to the previous example, this motion
composed of symmetric rotations of each of the five subunits,
as computed by the NOLB analysis, is biologically relevant and
has been noticed during the cryo-electron microscopy
reconstruction of the T7 large terminase.”> More precisely,
the five terminase subunits rotate to adapt the channel in such a
way that it can accommodate the guest DNA.

Topology Comparison. As we have discussed above, the
nonlinear normal modes approach demonstrated visually better
results on all the tested examples. However, both linear and
nonlinear extrapolation methods result in physically unrealistic
local geometries at large deformation amplitudes. Thus, an
additional energy minimization is typically required to relax the
locally disturbed molecular geometries. Therefore, in this test
we estimate the computational difficulty of such a minimization,
which should be proportional to the deformation energy of the
final structure. More precisely, we assume that the covalent
bonds in the initial molecular structure are represented by
harmonic springs with a force constant of 500 kcal/(mol A?),
which is a typical value in classical force fields,””** and we also
assume that the total potential energy in the system is given by
the sum of the bond contributions.

For this test, we measured the potential energy of the
molecular structures generated by both linear and nonlinear
extrapolations at various deformation amplitudes. Figures
4(a,d,gjj) show potential energy for several molecular structures
averaged over ten lowest normal modes as a function of the
overall RMSD of the final structure with respect to the initial
one. We can see that for all the systems the nonlinear normal
modes approach produces geometries with a lower bond energy
than the standard linear NMA method, at least for
deformations that do not exceed 25 A in RMSD. This means
that, in principle, it will be computationally more efficient to
optimize the structures produced by the NOLB approach
compared to the standard one.

To extend the analysis of the produced molecular topologies,
we compared the number of broken covalent bonds in the final
molecular structures. We define a covalent bond between two

atoms as broken if its length exceeds the sum of the
corresponding van der Waals radii multiplied by a factor of
0.6. Figures 4(behk) show the total number of broken
covalent bonds for the two approaches and clearly demonstrate
that the linear extrapolation perturbs local molecular geo-
metries much more compared to the NOLB method. Indeed,
we can see that the gap between the two curves increases when
the deformation amplitudes become larger. However, since the
NOLB NMA approach relies on the rigid body dynamics and
all the individual amino acids are treated as rigid blocks, we
additionally compared the number of broken covalent bonds
between individual amino acids for the two extrapolation
approaches. Figures 4(c,fil) show these comparisons. For this
case we can see that at small deformation amplitudes, the
NOLB method breaks more covalent bonds, which should be
expected. At large deformation amplitudes, however, the NOLB
method performs better than the standard approach. Nonethe-
less, we should only consider the total number of broken bonds
or the total deformation energy of the system. In all the cases,
as Figure 4 demonstrates, the NOLB NMA approach produces
much better results compared to the standard method. In the
Supporting Information we also provides individual tables that
list the data for each of the normal modes individually for all
the described molecular structures.

To complete the analysis, we have also evaluated the quality
of several selected structures using a popular MolProbity
server.’”® For this evaluation we chose three types of
deformations of a coiled coil cytoplasmic domain of a bacterial
chemoreceptor presented in Figure 2, namely, bending,
twisting, and stretching. MolProbity is a structure validation
Web service widely used to evaluate the quality of X-ray or
NMR structures. For the analysis it uses a variety of physics-
and knowledge-based algorithms. Figure S5 presents the
computed MolProbity statistics. More precisely, it shows the
amount of serious clashes (with atomic overlap >0.4 A), the
percentage of statistically abnormal bonds and angles, and
finally, the cumulative "MolProbity score’, which reflects the
crystallographic resolution at which these structures should be
expected. As before, we can see that at large deformation
amplitudes the NOLB method produces consistently better
structures than the standard linear approach. This conclusion is
true for all studied types of motions. At small deformation
amplitudes, the linear NMA approach performs slightly better if
we consider the total number of serious clashes in the
structures. Interestingly enough, this number can even decrease
compared to the crystallographic structure, presumably because
of its moderate resolution.

The presented examples demonstrate that the NOLB
approach is able to generate structures with a fewer number
of geometric distortions compared to the linear NMA method.
However, after a certain amplitude of deformation, our method
will also produce topological artifacts. This amplitude will
generally depend on the type of motion or, more technically,
on the amount of the involved rotation compared to the
translation (see eqs 14 and 17). For a pure rotational motion,
for example, trajectories of all the rigid blocks will be located on
certain circles, and thus the maximum geometrical distortion of
the structure will be always bounded by the circles radii
regardless of the deformation amplitude. Figure 2F gives a fare
approximation of such a motion. For the other extreme case of
a pure translational motion, there will be no difference between
the two approaches, and the distortions produced by the
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NOLB method will be the same as in the standard approach, as
it is shown in Figure 2D.

We would like to conclude this section mentioning that
structural distortions presented above are not a serious obstacle
for the applicability of the Cartesian NMA approaches. Indeed,
the produced molecular structures can be straightforwardly
optimized using standard techniques, for example, gradient-
based minimizers and classical force fields. However, as we
hinted above, it will be computationally more efficient to
optimize a structure produced by the NOLB approach
compared to the linear one due to a typically lower energy of
the NOLB structure. Also, at large NMA deformation
amplitudes, the result of such an optimization for the linear
technique will be generally different from the one of the
nonlinear technique. Thus, the presented NOLB approach is a
computationally cheap alternative to the other NMA methods
when large deformation amplitudes are required.

Memory and CPU Consumption. Finally we demonstrate
the scalability of our method on five molecular structures of
various sizes and geometries, as we have described in more
detail above. We should specifically mention that these results
only demonstrate the performance of our RTB NMA
implementation. The subsequent nonlinear analysis of the
motions takes only a marginal piece of the total time, which can
be ignored. More technically, our method uses sparse data
representation and the Lanczos scheme to find a subset of
eigenvectors of the Hessian matrix. As a reference, we also
provide results of other state-of-the-art NMA methods. These
are the RTB module of the ProDy package® and the iMod
method that performs NMA in internal coordinates.’® Both of
these methods operate with dense matrices and use LAPACK
routines for the partial diagonalization. ProDy computes a
subset of eigenvectors of a real symmetric matrix, whereas iMod
seeks for a subset of eigenvectors of the generalized symmetric
definite eigenvalue problem. We should mention that we also
tested the original RTB NMA implementation of Yves-Henri
Sanejouand and colleagues,”” but it turned out to be much
slower than the other tested methods because of the full
Hessian diagonalization. Also, the CHARMM program used to
have a §eneralized RTB method called block-normal-modes
(BNM);*® but it disappeared from the recent CHARMM
releases, and we could not assess its performance. We present
the numerical results measured on a MacBook Pro Mid 2015
laptop with a 2.8 GHz Intel Core i7 processor and 16 GB 1600
MHz DDR3 RAM. The same interaction cutoff value of 10 A
was used in all the tested methods. The rigid blocks in both
ProDy and NOLB were constructed on a single residue basis.
For the iMod method, we chose all the dihedral angles as
degrees of freedom. Table 1 lists the memory consumption of
the NOLB method on the tested structures. We can see that
even the structure of the E. coli 70S ribosome with ~300,000
atoms, which is one of the largest in the protein data bank, can
be computed with our method on all the modern computers.
Figure 6 shows the total execution time of the NOLB, ProDy,
and iMod methods to compute the first 10, 100, and 1,000
normal modes for five systems of increasing size. We should
mention that the NOLB method spends almost all of its time in
the diagonalization of the Hessian matrix, thus its total time can
be generally attributed solely to the diagonalization procedure.
Also, in these tests, we have disabled the output of the
computed normal modes, as this might take a significant
portion of time. Overall, the timing for our method scales
linearly with the size of the molecular structure and nonlinearly

Table 1. Memory Consumption of the NOLB NMA Method
on the Tested Molecular Structures”

all-atom RTB
PDB no. of Hessian Hessian ~ memory
name code atoms size size required
chemoreceptor 2ch7 4,630 13,890 3,702 123 Mb
human 7- 5263 9,646 28,938 7,338 310 Mb
secretase
terminase 4bij 18,855 56,565 14,220 570 Mb
photosystem II SbSe 40,908 122,724 31,494 1.3 Gb
70S ribosome Sj8a 284,479 853,437 123,804 9.3 Gb

“All the computations were performed using the double precision
variables. We set the interatomic interaction cutoff to 10 A. The
number of atoms is listed without the heteroatoms. The size of the
matrices is given as the number of rows (or columns) they contain.
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Figure 6. Total time taken by the NOLB, ProDy, and iMod methods
to compute first 10, 100, and 1,000 normal modes for five molecular
structures as a function of their size in a log—log scale. Several data
points are missing because ProDy failed on the largest system and
iMod failed on the smallest and the largest systems. See the main text
for details.

with the number of the computed normal modes. Regarding
the other two methods, we can draw several observations. First
of all, in terms of speed ProDy and iMod are very similar to
each other despite the fact that one uses the RTB model in the
Cartesian space, while the other uses model representation in
the internal coordinates. Second, the performance of these two
methods is almost independent of the number of requested
modes. We should mention that iMod failed on the smallest
chemoreceptor system outputting zero eigenvectors, so we
removed these data from the plot. Finally, both methods failed
with the segmentation fault on the largest system during the
computation of the Hessian matrix. Therefore, we repeated the
test removing all the RNA chains from the ribosome molecule,
such that the final structure contained only 90,587 atoms, but
the two methods failed again. To conclude, if only a few normal
modes are required (up to 100), then the sparse iterative
scheme based on the Lanczos diagonalization algorithm seems
to be advantageous over the other strategies. The difference
becomes very significant for mid- to large-size systems starting
at about 20,000 atoms. On the other hand, if all the modes are
required, then the dense diagonalization methods are much
more effective. Finally, for molecular systems of a very large size
starting from about 100,000 atoms, only the sparse method
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implemented in NOLB completed the job. We should mention
here that, of course, more aggressive coarse-graining schemes
can be used for large systems such that dense diagonalization
methods will be very efficient as well. Also, our test case is far
from being exhaustive, and more rigorous comparisons of
different diagonalization techniques can be found elsewhere, for
example in a recent study from the authors of iMod,”” where
they drew the same conclusions regarding the advantage of the
iterative Krylov subspace techniques. Overall, this test
demonstrated that modern NMA algorithms compute the
slowest normal modes for midsize molecular systems in a very
reasonable time, typically in less than a minute, and in many
cases these are computed in several seconds almost at the
interactive rates.

B CONCLUSION

In this work we have presented a conceptually simple and
computationally efficient method for nonlinear normal-mode
analysis. It relies on the rotation-translation of rigid blocks
theoretical basis developed by Y.-H. Sanejouand and
colleagues.”> We have demonstrated how to physically
interpret the eigenvalues computed in the RTB basis in terms
of angular and linear velocities applied to the rigid blocks and
how to construct a nonlinear extrapolation of motion using
these velocities. The key observation of our method is that the
angular velocity of a rigid block can be interpreted as the result
of an implicit applied force, such that the motion of the rigid
block can be considered as a pure rotation about a certain
center. In principle, our method is independent of the force
field. However, we have only tested it with the anisotropic
network model. We demonstrated the motions produced with
the NOLB method on three different molecular systems and
noted that some of the lowest frequency normal modes
correspond to the biologically relevant motions, as has been
reported in the literature. For example, NOLB has detected the
spiral sliding motion of the TALE proteins, which are capable
of rapid diffusion along DNA. It has also detected the
simultaneous rotation of the five terminase subunits in a
pentameric assembly, which allows it to accommodate the guest
DNA. We have compared our method with the standard
approach in Cartesian coordinates and have shown that the
NOLB NMA produces better structures, especially at large
deformation amplitudes, as has been also confirmed by the
MolProbity service validation. We have also demonstrated that
our method is scalable and can be applied to very large
molecular systems, such as ribosomes. In the future it will be
interesting to study how the NOLB normal modes describe
protein conformational changes compared to other ap-
proaches.”” Standalone executables of the NOLB NMA are
available at https://team.inria.fr/nano-d/software/nolb-
normal-modes/. A graphical user interface created for the
SAMSON software platform will be shortly available at https://
www.samson-connect.net.
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