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A novel fast Fourier transform-based ab inito docking algorithm called SAM is
presented, for building perfectly symmetrical models of protein complexes with
arbitrary point group symmetry. The basic approach uses a novel and very fast
one-dimensional symmetry-constrained spherical polar Fourier search to
assemble cyclic Cn systems from a given protein monomer. Structures with
higher-order (Dn, T, O and I) point group symmetries may be built using a
subsequent symmetry-constrained Fourier domain search to assemble trimeric
sub-units. The results reported here show that the SAM algorithm can correctly
assemble monomers of up to around 500 residues to produce a near-native
complex structure with the given point group symmetry in 17 out of 18 test cases.
The SAM program may be downloaded for academic use at http://sam.loria.fr/.

1. Introduction

Many protein complexes in the Protein Data Bank (PDB;
Berman et al., 2002; http://www.rcsb.org/) are symmetric
homo-oligomers (Levy et al., 2006). Indeed, it appears that
large symmetrical protein structures have evolved in many
organisms because they carry specific morphological and
functional advantages compared to small individual protein
molecules (Goodsell & Olsen, 2000; Levy et al., 2008). There is
therefore considerable interest in studying and modelling the
structures of these large bio-molecular complexes. Although
many symmetrical complexes have been solved by X-ray
crystallography and cryo-electron microscopy, this can often
be a difficult and time-consuming process, and it would be
useful to be able to generate high-quality candidate complex
structures for use as templates in molecular replacement (MR)
techniques (Rossmann, 1990; Navaza, 2001), to provide
angular parameters for locked MR search functions (Tong,
2001) or to dock high-resolution structural models into low-
resolution cryo-EM density maps (Roseman, 2000), for
example. From a protein design point of view, it would also be
very useful to be able to predict computationally whether or
not a given monomer might self-assemble into a symmetrical
structure (Huang et al., 2005).

In the past few years, several ab initio protein–protein
docking programs, such as MolFit (Berchanski & Eisenstein,
2003), ClusPro (Comeau & Camacho, 2004), M-Zdock (Pierce
et al., 2005) and SymmDock (Schneidman-Duhovny et al.,
2005), have been adapted to apply various geometric filtering
constraints to extract approximately symmetrical pair-wise
docking orientations. Symmetry-constraint protocols may be
applied to refine the coordinates of a given symmetric struc-
ture using RosettaDock (André et al., 2007). The Haddock
docking engine allows up to six distance restraints to be
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defined when refining oligomeric complexes with certain cyclic
or dihedral symmetries (Karaca et al., 2010). However, to our
knowledge, there does not yet exist an ab initio docking
algorithm which can automatically generate perfectly
symmetrical protein complexes for arbitrary point group
symmetry types.

We previously described the ‘Hex’ polar Fourier correlation
method for rigid-body protein docking. Unlike conventional
three-dimensional Cartesian grid-based fast Fourier transform
(FFT) docking algorithms, Hex uses a spherical polar Fourier
(SPF) representation which favours rotational correlation
searches. Here, we present several developments of the SPF
correlation approach, which allow protein complexes with
point group symmetry to be assembled very rapidly by using a
series of one-dimensional FFTs. We call this approach ‘SAM’,
being short for ‘symmetry assembler’.

In order to build symmetrical protein complexes, it is
necessary to locate a certain number of protein monomers in
orientations that satisfy the symmetry elements of a given
point group. We are mainly concerned with cyclic (Cn) and
dihedral (Dn) point groups, but it is desirable to have a general
method which can build complexes with tetrahedral (T),
octahedral (O) and icosahedral (I) symmetries as well. Table 1
summarizes the number of symmetric complexes reported by
the 3D-Complex database (Levy et al., 2006). This shows that
C2 homo-dimers consitute the majority of known homo-
oligomers. However, many complexes have higher-order
rotational symmetry (i.e. Cn> 2), and a good number have
multiple rotational symmetry axes, namely those with Dn, T, O
and I point group symmetries. Thus, starting from a given
protein monomer, the overall aim of the present work is to
develop and implement exact and efficient SPF docking
expressions to generate candidate protein complexes having
one of the naturally occurring Cn, Dn, T, O and I symmetries.

2. Methods

2.1. Coordinate operators and SPF representations

In order to generate symmetry-related docking configura-
tions, it is convenient to start with a single protein monomer at
the origin, and to generate and score copies of the monomer in
different candidate symmetry-related orientations. To
generate orientations in a systematic way, we introduce the
notion of a translation and a rotation coordinate operator,
T̂Tðx; y; zÞ and R̂Rð!; "; #Þ, respectively. These represent the
actions of translating an object by an amount x ¼ ðx; y; zÞ and
rotating the object about the origin using the Euler rotation

angles ð!; "; #Þ. Here, we use the Euler ‘zyz’ convention, in
which a general rotation can be expressed as three consecutive
rotations about the z and y axes:

R̂Rð!; "; #Þ ¼ R̂Rzð!ÞR̂Ryð"ÞR̂Rzð#Þ; ð1Þ

where R̂Rzð#Þ is applied first. Normally, the Euler rotation
angles are restricted to the ranges ð0 $ ! < 2$, 0 $ " < $,
0 $ # < 2$Þ, but we show below that one of these ranges
should be reduced in the presence of symmetry.

In order to develop the equations necessary for a docking
search, it is useful to introduce a ‘docking operator’,$, such
that the notation

AðrÞ$ BðrÞ ð2Þ

is taken to mean a docking interaction between proteins A
and B. In the present work, the functions AðrÞ and BðrÞ
represent three-dimensional shape-density functions of the
two proteins, while r represents a polar coordinate in three-
dimensional space, r ¼ ðr; %; ’Þ % ðx; y; zÞ. Following the
original Hex docking algorithm, AðrÞ and BðrÞ consist of linear
combinations of three-dimensional interior and surface skin
density functions (Ritchie & Kemp, 2000). Thus, by introdu-
cing a scale factor, K, with units of kJ mol&1, a three-dimen-
sional overlap integral of the form

S ¼ K
R

AðrÞ'BðrÞ dr ð3Þ

may be treated as a shape-based docking score or pseudo
interaction energy [the asterisk denotes the complex conju-
gation of AðrÞ]. While the functions AðrÞ and BðrÞ are initially
entirely real, adopting the convention of conjugating one of
these functions in the above overlap expression ensures that
the docking score (taken as the real part of S) remains
meaningful with complex functions. Indeed, by treating AðrÞ
and BðrÞ as complex quantities, it is possible to accelerate the
search over multiple candidate docking orientations using
FFT techniques (Ritchie & Kemp, 2000; Ritchie et al., 2008).
In the subsequent analysis, we will drop the scale factor K and
we will use only the symbols AðrÞ and BðrÞ instead of the actual
linear combinations for the sake of clarity.

In the rigid-body docking problem where the relative
orientations of A and B are unknown, we adopt the conven-
tion that the centres of mass of proteins A and B are initially
located at the origin, and we let the expression

AðrÞ$ T̂Tðx; y; zÞR̂Rð!; "; #ÞBðrÞ ð4Þ

represent a general interaction between protein A and a
rotated and translated version of protein B. Consequently, the
aim is to find the six parameters (x; y; z;!;"; #) that give the
most favourable interaction.

Note that the symbol$ can be treated like an equality in
the sense that applying an inverse translation to each side of
equation (4),

T̂Tðx; y; zÞ&1AðrÞ$ R̂Rð!; "; #ÞBðrÞ; ð5Þ

represents exactly the same relative orientation of the two
protein monomers as in the previous expression. In either
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Table 1
The number of Cn and Dn complexes in the 3D-Complex database.

3D-Complex also reports 86 tetrahedral, 47 octahedral and six icosahedral
complexes (the 3D-Complex database excludes all viral structures).

n 2 3 4 5 6 7 8 11

Cn 8740 992 223 107 76 29 5 10
Dn 2111 585 173 46 20 23 6 0



case, the corresponding pair-wise docking score, S, would be
calculated as a three-dimensional overlap integral of the form

S ¼
R

AðrÞ'
!
T̂Tðx; y; zÞR̂Rð!; "; #ÞBðrÞ

"
dr: ð6Þ

Here, we represent protein shapes as SPF expansions of
complex spherical harmonic, Ylmð%; ’Þ, and Gauss–Laguerre,
RnlðrÞ, basis functions:

AðrÞ ¼
P
nlm

AnlmRnlðrÞYlmð%; ’Þ; ð7Þ

where Anlm are complex expansion coefficients (see Appendix
B). Nonetheless, when working in the SPF domain, it is often
more efficient to calculate one side of a given ‘docking
equation’ than the other. Thus, it is important to consider the
most efficient order of operators for a given symmetry type.

2.2. Cyclic Cn complexes

With SPF basis functions, rotations and translations of SPF
representations are most easily implemented with respect to
the z axis. Hence, it is convenient to associate the z axis with
the main (one-dimensional FFT) rotational and translational
degrees of freedom (DOFs) and to associate the y axis with
the principal rotational symmetry axis.

Because an individual protein monomer is asymmetric, we
normally have to assume that it can take any orientation in
space relative to a set of fixed coordinate axes. Thus,
describing a particular orientation of a given monomer, A,
with respect to a random starting orientation will absorb three
rotational DOFs. Let us suppose that the operator associated
with that description is R̂Rð!; "; #Þ. If we then copy the rotated
A into an equally rotated monomer B, we can describe the
docking interaction between a pair of Cn symmetry mates by
applying the following transformations:

R̂Ryð!jþ 1ÞT̂TzðDÞR̂Rð!; "; #ÞBðrÞ$ R̂Ryð!jÞT̂TzðDÞR̂Rð!; "; #ÞAðrÞ;
ð8Þ

where the angles !j ¼ 2$j=n are rotations around the prin-
cipal symmetry axis. This equation highlights the fact that
there exist only four degrees of freedom ðD;!; "; #Þ between
the monomers in a complex with Cn symmetry. It is shown in
Appendix A that the range of the ! rotation angle must be
restricted to 0 $ ! < $.

For a symmetric dimer or trimer, the above pair-wise A$
B interaction is the only interaction that needs to be calcu-
lated. For Cn> 3, there may also exist additional higher-order
[i.e. 1 $ 3, . . . , 1 $ (n/2 + 1)] interactions which should in
principle be taken into account. However, these are likely to
be small or negligible in most cases, and are ignored in the
current work.

Nonetheless, a weakness of the above approach is that when
n becomes large it becomes necessary to translate each
monomer far from the origin in order to achieve the desired
separation between consecutive pairs of monomers. Such large
translations can seriously reduce the resolution of the shape-
density representations because of the exponential fall-off in
the SPF radial basis functions. Therefore, in order to have
expressions which involve only small translations, it is desir-

able to perform the SPF docking search near the origin and to
transform only the top solutions back to the symmetry frame.
Fig. 1 describes the problem graphically.

Thus, with the aid of Fig. 1, it is preferable to begin instead
with

T̂TzðSÞR̂Rð!; "; #ÞAðrÞ$ R̂Ryð!ÞT̂TzðSÞR̂Rð!; "; #ÞBðrÞ; ð9Þ

where ! ¼ 2$=n and S ¼ D=½2 sinð!=2Þ+. To calculate this
equation with A at the origin, we apply T̂TzðSÞ

&1 to each side to
give

R̂Rð!; "; #ÞAðrÞ$ T̂TzðSÞ
&1R̂Ryð!ÞT̂TzðSÞR̂Rð!; "; #ÞBðrÞ: ð10Þ

Then, to locate B on the positive z axis, we apply Ryð& Þ to
each side, where  ¼ $=2 þ !=2 (see Fig. 1), to obtain

R̂Ryð& ÞR̂Rð!; "; #ÞAðrÞ
$ R̂Ryð& ÞT̂TzðSÞ

&1R̂Ryð!ÞT̂TzðSÞR̂Rð!; "; #ÞBðrÞ: ð11Þ

It can then be shown that

R̂Ryð& ÞT̂TzðSÞ
&1R̂Ryð!ÞT̂TzðSÞ ¼ T̂TzðDÞR̂Ryð!ÞR̂Ryð& Þ; ð12Þ

where D is the distance between the two monomers.
Furthermore, if we assume that we are starting from a random
monomer orientation, we can ‘bury’ the y rotation by putting

R̂Ryð& ÞR̂Rð!; "; #Þ ¼ R̂Rð!0;"0; # 0Þ ð13Þ

to give

R̂Rð!0;"0; # 0ÞAðrÞ$ T̂TzðDÞR̂Ryð!ÞR̂Rð!0;"0; # 0ÞBðrÞ: ð14Þ

As shown below, we can use a one-dimensional FFT search
near the origin to determine the parameters ðD; !0;"0; # 0Þ. We
can then transform the solution back to the original coordi-
nate frame by applying the operator T̂TzðSÞR̂Ryð Þ to each side.
In other words, if the FFT search finds solutions ðD;!0; "0; # 0Þk,
the transformation matrix, MA

k , that should be applied to
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Figure 1
The coordinate systems used for pair-wise docking in Cn. The figure on
the left shows the computational coordinate frame for a pair of
monomers, A and B, with A at the origin in the xz plane and B at a
distance D along the positive z axis. The figure on the right shows the
symmetry frame of a C3 trimer with the monomers arranged about the y
axis (which points out of the plane towards the viewer). Here, ! ¼ 2$=n
is the Cn symmetry angle. From basic geometry, S ¼ D=ð2 cos ’Þ ¼
D=½2 sinð!=2Þ+ is the distance from the principal symmetry axis to the
centre of each monomer. We also have  ¼ $& ’ ¼ ð$=2 þ !=2Þ, which
defines the rotation that relates the two coordinate systems.



locate the A monomer on the positive z axis for the kth
docking solution is given by

MA
k ¼ TzðSkÞRyð$=2 þ !=2ÞRð!0k; "0k; # 0kÞ: ð15Þ

Similarly, the docked B monomer may be located by applying
the matrix

MB
k ¼ TzðSkÞRyð$=2 þ !=2ÞTzðDkÞRyð!ÞRð!0k;"0k; # 0kÞ: ð16Þ

Because it can be seen that MB
k ¼ Ryð!ÞMA

k , it follows that all
remaining symmetry mates may be generated from the coor-
dinates of the A monomer.

Regarding the actual FFT calculation, by putting

AðrÞ0 ¼ BðrÞ0 ¼ R̂Rð0;"0; # 0ÞAðrÞ; ð17Þ

and by exploiting the fact that R̂Rzð!0Þ and T̂TzðDÞ commute, the
docking equation in the computational frame becomes

T̂TzðDÞ
&1AðrÞ0 $ R̂Rzð!0Þ

&1R̂Ryð!ÞR̂Rzð!0ÞBðrÞ
0 ð18Þ

or more simply

AðrÞ00 $ R̂Rzð!0Þ
&1R̂Ryð!ÞR̂Rzð!0ÞBðrÞ

0: ð19Þ

The Fourier series representation of the A monomer may be
rotated and translated using

A0nlm ¼
P
m0

DðlÞmm0 ð0;"0; # 0ÞAnlm0 ð20Þ

and

A00nlm ¼
P
kj

T jmjnl;kjð&DÞA0kjm; ð21Þ

where DðlÞmm0ð!; "; #Þ are matrix elements of the Wigner rota-
tion matrices for the spherical harmonics (Biedenharn &
Louck, 1981) and each T jmjnl;kjðDÞ is a translation matrix element
for the SPF basis functions (Ritchie, 2005). Then, writing the
rotations for monomer B in terms of the Wigner rotation
matrix elements (Appendix B) gives

R̂Rzð!0Þ
&1R̂Ryð!ÞR̂Rzð!0ÞBðrÞ

0 ¼
P
nlm

P
rpq

DðlÞmrð&!0; 0; 0Þ

,DðlÞrpð0; !; 0ÞDðlÞpqð!0; 0; 0ÞB0nlqRnlðrÞYlmð%; ’Þ; ð22Þ

and hence

R̂Rzð!0Þ
&1R̂Ryð!ÞR̂Rzð!0ÞBðrÞ

0 ¼
P

nlmp

exp½&iðp& mÞ!0+

, dðlÞmpð!ÞB0nlpRnlðrÞYlmð%; ’Þ: ð23Þ

Taking the complex conjugate of AðrÞ00 and integrating over
the product with B then gives an OðN4Þ complexity docking
score

Sð!0;!;D;"0; # 0Þ ¼
P

nlmp

exp½&iðp& mÞ!0+ dðlÞmpð!ÞB0nlpA00'nlm:

ð24Þ

Summing over n and l using

Cmp ¼
P
nl

dðlÞmpð!ÞB0nlpA00'nlm ð25Þ

reduces this to

Sð!0;!;D; "0; # 0Þ ¼
P
mp

Cmp exp½&iðp & mÞ!0+: ð26Þ

The !0 rotation (which here is restricted by symmetry to the
range 0 $ !0 < $) may be scaled back onto the natural range
of the FFT (see Appendix B) by putting !00 ¼ 2!0 and writing

expð&is!0Þ ¼
P

t

&ð$Þst expð&it!00Þ ð27Þ

to obtain

Sð!0;!;D;"0; # 0Þ ¼
P
mpt

Cmp&
ð$Þ
p&m;t expð&it!00Þ: ð28Þ

Finally, summing over m and p as

Qt ¼
P
mp

Cmp&
ð$Þ
p&m;t ð29Þ

gives a one-dimensional Fourier series in !00:

Sð!0;!;D; "0; # 0Þ ¼
P

t

Qt expð&it!00Þ: ð30Þ

Because we now have a simple complex exponential on the
right-hand side, this expression shows that for a given trans-
lation D and rotation ð"0; # 0Þ the pair-wise docking score in an
arbitrary Cn system may be calculated over a range of samples
in !00 by using a one-dimensional FFT.

2.3. Dihedral complexes

In addition to having a principal Cn axis, the Dn point
groups also have n twofold rotational axes in the plane
perpendicular to the Cn axis. Thus, applying a flip about any
one of these twofold axes will produce an indistinguishable
arrangement. It is therefore natural to consider making a D3

structure from two C3 solutions, for example. However, this
involves determining one additional translational and one
rotational DOF with respect to the principal rotation axis.
Thus, in the SPF basis, it is convenient to let the principal
rotation axis in Dn coincide with the global z axis. This is
shown in Fig. 2, where TzðEÞ and Rzð'Þ denote the two addi-
tional DOFs.

If we make Cn dimers using the above FFT procedure, we
will obtain a list of parameters, ðDk;!k;"k; #kÞ, for each pair-
wise docking solution, k. However, it should be borne in mind
that the two Cn structures could be arranged in either a ‘head-
to-head’ or a ‘tail-to-tail’ orientation (Fig. 2). Taking into
account the above transformations leads us to define the
following operator:

M̂MX
ki ¼ R̂Rzð!jÞR̂Ryð(iÞ

!
R̂Rxð&$=2ÞT̂TzðSkÞR̂Rð!k;"k; #kÞ

"
: ð31Þ

Here, X ¼ A represents the A monomer (!0 ¼ 0) on the
positive y axis, X ¼ B represents the B monomer
(!þ 1 ¼ 2$=n) and X ¼ C represents the C monomer
(!&1 ¼ &2$=n) in Dn> 2 systems. Similarly, (0 ¼ 0 and (1 ¼ $
represent a possible flip about the y axis, which will soon be
useful. Using this notation, we can locate three monomers of
the kth solution using

AkiðrÞ ¼ M̂MA
kiAðrÞ; BkiðrÞ ¼ M̂MB

kiAðrÞ; CkiðrÞ ¼ M̂MC
kiAðrÞ: ð32Þ
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Furthermore, it is convenient to consider a new pseudo-
molecule, denoted as P1;kiðrÞ, constructed as the union of the
A, B and C monomers of the first Cn ring system:

P1;kiðrÞ ¼ AkiðrÞi þ BkiðrÞ þ CkiðrÞ: ð33Þ

A pair of such pseudo-molecules could then be docked by
performing a restricted rigid-body docking search with respect
to the z axis using two new operators T̂TzðEÞ and R̂Rzð'Þ. The
presence of the perpendicular C2 axes may be embedded in
the search space by introducing an additional rotation, R̂Ryð$Þ.
Consequently, a trimer of the second Cn system [denoted as
P2ðrÞ] may be located using

P2;kiðrÞ ¼ R̂Rzð'ÞT̂TzðEÞR̂Ryð$ÞP1;kiðrÞ: ð34Þ

Thus, taking into account the multiplicity of pair-wise inter-
actions, for n - 3, the docking interaction between the two
cyclic systems may be calculated as a series of point evalua-
tions:

Ski ¼ n
R

A1;kiðrÞ
'P2;kiðrÞ dr: ð35Þ

In principle, calculations involving equation (35) could be
accelerated by a one-dimensional FFT search in ', but we
currently sample ' explicitly because we expect that a one-

dimensional FFT will not give a large
speedup when n > 2. Thus, by iterating
over a range of samples (E, ', () for
each Cn solution defined by
ðDk; !k;"k; #kÞ, we obtain a ranked list
of parameters ðEm; 'm; (mÞ from which
the Dn multimer may be built. For
n ¼ 2, we set the C coefficients to zero,
and for n > 3, we shift the A1;kiðrÞ$
P2;kiðrÞ system to the origin for better
numerical stability (details not shown).

2.4. Tetrahedral complexes

Because the T, O and I groups all
have multiple C3 axes, a natural way to
build complexes with these symmetries
is to begin by making C3 trimers, and
then to assemble an appropriate
number of trimeric copies to build the
final complex. In particular, a tetra-

hedron has one threefold symmetry axis about each of four
lines joining the four face centres and vertices, and one
twofold rotational symmetry axis through each of three lines
joining pairs of opposite edges. The dihedral angle between
two faces is ! ¼ cos&1ð1=3Þ ¼ 70:53.. Seen from the origin,
the angle between any two face centres is $& ! ¼ 109:47.,
which is the classical tetrahedral bond angle in methane, for
example. The angle between the base and the fourth vertex is
half of this angle, i.e. # ¼ ð$ & !Þ=2 ¼ sin&1ð21=2=31=2Þ ¼
54:74..

When building a tetrahedral complex by placing a C3 trimer
at each vertex, it is easy to see that there is one rotational
DOF, ', about its threefold axis with 0 $ ' < 2$=3, and one
translational DOF along that axis, which can be considered as
the ‘radius’, E, of the tetrahedron. Furthermore, like the Dn

case, there is an unknown ‘flip’ of each trimer perpendicular to
the threefold axis which needs to be determined.

Computationally, it is convenient to start with two edges of
the tetrahedron parallel to the x and y axes (Fig. 3) and to let
the global z axis correspond to the two additional DOFs, Rzð'Þ
and T̂TzðEÞ, as before. The following symmetry-preserving
operations may then be used to locate the A monomers
(repeat with MB and MC to locate the B and C monomers) at
the four tetrahedral vertices:

A1ðrÞ ¼ R̂Ryð#ÞR̂Rzð'ÞT̂TzðEÞM̂MA
kiAðrÞ; A2ðrÞ ¼ R̂Rzð$ÞA1ðrÞ;

A3ðrÞ ¼ R̂Rxð$ÞR̂Rzðþ $=2ÞA1ðrÞ; A4ðrÞ ¼ R̂Rxð$ÞR̂Rzð&$=2ÞA1ðrÞ;
ð36Þ

where E is the ‘radius’ of the tetrahedron (the distance
between its centre and one vertex, or its centre and the centre
of mass of one trimer). If D is the docking distance between a
pair of trimers, this corresponds to the length of an edge on the
tetrahedron and the face diagonal of its enclosing cube. Hence
it can be shown from basic geometry that E ¼ ð3=8Þ1=2D.
Then, by calculating a trimeric pseudo-molecule [equation
(33)], an SPF correlation search may be used to assemble
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Figure 3
Computational orientations for tetrahedral (T), octahedral (O) and
icosahedral (I) complexes. For each symmetry type, a solid black line
shows one of the threefold axes. Candidate symmetrical complexes may
be created by placing a C3 trimer at each vertex (white sphere) of the
desired symmetry type.

Figure 2
(Left) Illustration of the C3 point group symmetry with the y axis as the principal rotational
symmetry axis and ! ¼ 2$=n. Each asymmetric protein monomer is represented by a tetrahedron
having four differently coloured faces (red, green, blue and yellow). (Right) A D3 system may be
generated from two planar C3 solutions (but note the change of axes here with respect to the C3

system on the left). When starting from a Cn solution, the Dn assembly problem has one translational
and one rotational DOF, here denoted as TzðEÞ and Rzð'Þ, respectively. From symmetry, the
rotational search range in Rzð'Þ may be restricted to 0 $ ' < 2$=n.



tetrahedral complexes rather efficiently because it allows the
principal monomer–monomer interactions [ðA1 þ B1þ
C1Þ$ ðA2 þ B2 þ C2Þ etc.] to be calculated together, as
shown above for the case of Dn.

2.5. Octahedral complexes

The O group has eight threefold rotational symmetry axes
(as well as three fourfold and six twofold axes). Therefore, as
before, it is natural to begin by making a C3 trimer. In this
case, it is convenient to start with the diagonals of the cube
parallel to the coordinate axes. Then, from basic geometry, the
angle between the vertical axis and each of the top vertices is
given by # ¼ tan&1ð21=2Þ ¼ 54:74.. The following symmetry-
preserving operations may be used to locate the A monomers
(repeat with MB and MC to locate the B and C monomers) at
the eight octahedral vertices (Fig. 3):

A1ðrÞ ¼ R̂Ryð#ÞR̂Rzð'ÞT̂TzðEÞM̂MA
kiAðrÞ; A2ðrÞ ¼ R̂Rzð1$=2ÞA1ðrÞ;

A3ðrÞ ¼ R̂Rzð2$=2ÞA1ðrÞ; A4ðrÞ ¼ R̂Rzð3$=2ÞA1ðrÞ;
A5ðrÞ ¼ R̂Ryð$ÞA1ðrÞ; A6ðrÞ ¼ R̂Ryð$ÞA2ðrÞ;
A7ðrÞ ¼ R̂Ryð$ÞA3ðrÞ; A8ðrÞ ¼ R̂Ryð$ÞA4ðrÞ:

ð37Þ

As before, once a list of candidate C3 trimers has been
calculated the subsequent octahedral assembly step may be
calculated using trimeric pseudo-molecules [equation (33)].

2.6. Icosahedral complexes

The I group has 20 threefold rotational symmetry axes (as
well as 24 C5 and 15 C2 axes), and so assembling 20 C3 trimers
will give a complex of 60 monomers. In this case, it is conve-
nient to consider 20 vertices of a dodecahedron, which is the
dual of the icosahedron, in which the centre of one of its
pentagonal faces is located on the positive z axis. By initially
locating the first C3 trimer on the positive z axis, we then need
to rotate it onto each vertex of a dodecahedron to define the
20 C3 axes.

The required rotations may be deduced from the geometry
of the dodecahedron. More specifically, it is well known that
the dihedral angle between two pentagon faces is
! ¼ cos&1ð&51=2Þ ¼ 116:56.. Therefore, as seen from the
origin, the angle between the centres of a pair of touching
pentagons is # ¼ $ & ! ¼ cos&1ð1=51=2Þ. This can be used to
calculate the ‘width’ of a pentagon face (distance from the
centre to the middle of an edge) as

W ¼ R tanð#=2Þ; ð38Þ

where R is the distance from the origin to the pentagonal face
centre. Then, in the plane of the pentagon, its ‘radius’ P is
given by

P ¼ W= cosð$=5Þ: ð39Þ

So now we can rotate the initial trimer off the y axis and onto
the first pentagon vertex by applying a rotation of R̂Rxð&"Þ;
where

" ¼ tan&1ðP=RÞ ¼ tan&1½tanð#=2Þ= cosð$=5Þ+: ð40Þ

Now it can also be shown that the distance E from the origin to
each vertex is given by

E ¼ P= sin "; ð41Þ

where P ¼ D=½2 sinð!=2Þ+. Hence, the radial and docking
distances, E and D, are related according to

E ¼ D

2 sinð2$=10Þ sin "
: ð42Þ

Using these distances, the A monomers of C3 trimers may
be located at the dodecahedron vertices (Fig. 3) using the
following symmetry-preserving operations (which should be
repeated with MB and MC to locate the B and C monomers):

A1ðrÞ ¼ R̂Ryð&"ÞR̂Rzð'ÞT̂TzðEÞM̂MA
kiAðrÞ; A2ðrÞ ¼ R̂Rzð2$=5ÞA1ðrÞ;

A3ðrÞ ¼ R̂Rzð4$=5ÞA1ðrÞ; A4ðrÞ ¼ R̂Rzð6$=5ÞA1ðrÞ;
A5ðrÞ ¼ R̂Rzð8$=5ÞA1ðrÞ; A6ðrÞ ¼ R̂Ryð#ÞR̂Rzð$ÞA1ðrÞ;
A7ðrÞ ¼ R̂Ryð#ÞR̂Rzð$ÞA2ðrÞ; A8ðrÞ ¼ R̂Rzð2$=5ÞA6ðrÞ;
A9ðrÞ ¼ R̂Rzð2$=5ÞA7ðrÞ; A10ðrÞ ¼ R̂Rzð4$=5ÞA6ðrÞ;

A11ðrÞ ¼ R̂Rzð4$=5ÞA7ðrÞ; A12ðrÞ ¼ R̂Rzð6$=5ÞA6ðrÞ;
A13ðrÞ ¼ R̂Rzð6$=5ÞA7ðrÞ; A14ðrÞ ¼ R̂Rzð8$=5ÞA6ðrÞ;
A15ðrÞ ¼ R̂Rzð8$=5ÞA7ðrÞ; A16ðrÞ ¼ R̂Ryð$ÞA1ðrÞ;
A17ðrÞ ¼ R̂Ryð$ÞA2ðrÞ; A18ðrÞ ¼ R̂Ryð$ÞA3ðrÞ;
A19ðrÞ ¼ R̂Ryð$ÞA4ðrÞ; A20ðrÞ ¼ R̂Ryð$ÞA5ðrÞ:

ð43Þ

As before, once a list of candidate C3 trimers has been
calculated, the subsequent icosahedral assembly step may be
calculated using trimeric pseudo-molecules [equation (33)].

3. Results and discussion

To test our approach, we selected a representative example
structure of each complex symmetry type for which three-
dimensional structures exist in the 3D-Complex database.
These examples are listed in Table 2. For each complex, we
manually extracted the first monomer from the PDB file to
serve as the A monomer, and we applied the SPF assembly
algorithm for the given symmetry type using SPF expansions
to polynomial order N = 30.

More specifically, for the Cn correlation search (and for the
initial trimeric search in the higher-symmetry types), the ð"; #Þ
angular samples were generated from an icosahedral tessel-
lation of the sphere with 812 sample vertices with an angular
separation between the vertices of approximately 7.5.. The
FFT search in ! was calculated using 64 steps of approximately
2.8. in the first hemisphere, and up to 64 translational steps of
0.8 Å were applied, starting from an initial inter-monomer
distance estimated from the monomer radius. Thus, a total of
approximately 6, 106 trial A1 $ B1 orientations were
generated and scored in the FFT search. The B1 monomers of
the generated solutions were then clustered using a greedy
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clustering algorithm with a 3 Å root-mean-square deviation
(RMSD) cluster threshold in order to remove near-duplicate
solutions, and the top-scoring member of each of the first 100
clusters was retained as a distinct solution. For the Cn

complexes, any remaining monomer coordinates were gener-
ated by symmetry, and the top 100 solutions were saved as
PDB files. When calculating the FFT correlations in parallel
using these parameters, it takes approximately 30 s to generate
100 Cn complexes on a dual processor workstation with two
2.3 GHz E4510 Intel Xeon processors (eight cores in total).

For the Dn, T, O and I complexes, similar angular and
translational search parameters were then used again in the
subsequent trimeric assembly search using the top 100 trimeric
solutions. For these complexes, the calculation time is
governed by the cost of constructing the trimeric pseudo-
molecules and the cost of performing the subsequent corre-
lation search explicitly, without the benefit of an FFT.

To assess the quality of the generated complexes, the
coordinates of the crystallographically determined complex
structure were used as a reference structure with which to
calculate RMSDs between the calculated and reference
monomer coordinates. For all of the examples in Table 2, the
‘Rank-Cn’ and ‘RMSD-B1’ columns show the rank and RMSD
for the first B monomer of the Cn complexes (or the trimeric
component in the higher-symmetry cases) found within 10 Å
of the crystal structure. This column shows that, in all but one
case (1gun), our one-dimensional FFT search is correctly
identifying a near-native interface between the A and B
monomers. Given that this calculation is rigidly assembling
monomers which should fit perfectly, these very good results
are not especially surprising. Nonetheless, these figures
confirm that our FFT correlation expressions are implemented
correctly. Fig. 4 shows cartoon representations of the first near-
native solution found for each complex.

In order to compare the performance of SAM with some
existing symmetry docking algorithms, we selected M-Zdock
(Pierce et al., 2005) as a good example of an FFT-based
algorithm and SymmDock because it is based on a geometric
hashing technique (Schneidman-Duhovny et al., 2005). Table 2
shows that these algorithms can also successfully find rank 1
solutions with low RMSDs for all of our Cn examples (both M-
Zdock and SymmDock were designed only for Cn complexes)
except for the first C2 structure (1m4g), for which M-Zdock
does not find a solution in its top ten predictions and for which
SymmDock finds a very poor solution only at rank 26.
However, if we consider the seven examples (C3–C11) for
which all three algorithms produce rank 1 solutions, Table 2
shows that SymmDock is approximately twice as fast as SAM,
while SAM is approximately 130 times faster than M-Zdock,
with average execution times of 23 s for SymmDock, 44 s for
SAM and 5734 s for M-Zdock. Furthermore, the RMSD-B1

columns of this table show that SAM often gives considerably
better quality solutions, with average RMSD values of 1.70 Å
for SAM, 2.09 Å for M-Zdock and 2.40 Å for SymmDock.
These results show that SAM performs quite favourably when
compared with these previous approaches.

In order to assess the trimeric pseudo-molecule assembly
step for the Dn, T, O and I complexes, the ‘RMSD-B2’ column
of Table 2 reports the best RMSD found by SAM for the
calculated coordinates of the B2 monomer. This column shows
that our strategy of scoring the interactions between trimeric
pseudo-molecules works very well for all of the examples
except for the D8 complex (PDB code 1q3r). Finally, the
‘Rank’ and ‘RMSD’ columns give the rank and overall RMSD
of the first B1 and B2 solutions found within 10 Å of the crystal
structure. These columns show that in 16 out of the 18
examples the first solution calculated by SAM corresponds
very closely to the crystal structure. For the D5 example (PDB
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Table 2
Example symmetrical complexes assembled from a single monomer by the SAM algorithm with N = 30.

Here, #Res denotes the number of residues in one monomer of each structure, B1 denotes the B monomer of the first Cn system, and B2 denotes a B monomer of
the second ring system in Dn complexes or of an adjoining C3 trimer for T, O and I complexes. All RMSD values are in ångström units and all times are elapsed
seconds for a Linux workstation with dual six-core (2.67 GHz) Intel X5650 processors. ‘N/F’ denotes not found. A hyphen denotes not applicable.

M-Zdock SymmDock SAM

PDB #Res Sym Rank-Cn RMSD-B1 Time Rank-Cn RMSD-B1 Time Rank-Cn RMSD-B1 RMSD-B2 Rank RMSD Time

1m4g 182 C2 N/F N/F 5963 26 21.47 6 1 1.82 – 1 1.82 45
1f7o 117 C3 1 2.33 4641 1 2.32 14 1 2.82 – 1 2.82 48
1f8c 389 C4 1 2.00 11171 1 2.37 62 1 2.04 – 1 2.04 40
1g8z 104 C5 1 1.87 3187 1 2.02 15 1 1.62 – 1 1.62 43
1gl7 412 C6 1 1.41 14228 1 1.41 40 1 0.68 – 1 0.68 50
1i81 75 C7 1 1.95 2571 1 4.02 7 1 1.17 – 1 1.17 43
1v5w 240 C8 1 2.49 7354 1 2.93 14 1 2.51 – 1 2.51 44
1qaw 68 C11 1 2.61 2196 1 1.75 5 1 1.09 – 1 1.09 43
1xib 389 D2 – – – – – – 1 1.01 0.68 1 0.86 319
1gun 68 D3 – – – – – – 2 1.35 0.99 1 1.19 308
1b9l 120 D4 – – – – – – 1 1.34 1.57 1 1.46 393
1l6w 221 D5 – – – – – – 1 1.26 3.61 5 2.70 479
1znn 246 D6 – – – – – – 1 1.34 1.92 1 1.66 439
1yg6 194 D7 – – – – – – 1 1.94 3.30 1 2.70 381
1q3r 519 D8 – – – – – – 2 3.65 10.83 25 7.98 397
2cc9 65 T – – – – – – 1 1.97 2.63 1 2.32 199
1ies 175 O – – – – – – 1 1.24 0.94 1 1.10 201
1hqk 155 I – – – – – – 1 1.45 1.88 1 1.68 200



code 1l6w), the first near-native structure is found at rank 5.
Although a good trimer is found at rank 2 for the D8 example
(PDB code 1q3r), the subsequent trimer assembly step finds a
rather poor near-native orientation only at rank 25.

Despite these rather promising results, we know that one
limitation of the SPF approach is that most of the zeros in the
basis functions appear within about 50 Å from the origin. This
means that very large protein domains, typically greater than
about 500 residues, cannot be represented accurately by a
single SPF polynomial expansion. We believe that this
explains the poor performance of the 1q3r example (519
residues per monomer). Taking into account the possibility
that one monomer might consist of several chains, we have
calculated that 87% (9024/10 176) of Cn complexes, 91%
(2704/2965) of Dn complexes, and 43% (60/139) of the T (43 /
86), O (12 /47) and (non-viral) I (5/6) complexes in the 3D-
Complex database have fewer than 500 residues per monomer.
In other words, we estimate that SAM could be usefully
applied in approximately 89% of protein docking problems
that involve point group symmetry. One way to circumvent the
monomer size limitation would be to use a coarse-grained
force-field model to perform the trimeric assembly step, for
example. Indeed, since the FFT correlation function used here
is based on a simple surface skin density model of protein
shape (Ritchie & Kemp, 2000), it would be advisable to refine
and rescore the SAM models using a conventional molecular
mechanics force field if clash-free atomic models are required.

While this article has focused on complexes having point
group symmetry, we expect it would be relatively straightfor-
ward to extend the SAM algorithm to deal with complexes
having translational symmetry, such as cylindrical and helical
structures. Cylindrical structures could be made in the same
way that we make a Dn complex from two Cn systems, but
without applying a flip [R̂Ryð(1Þ] in equation (31). Helical
structures could be made by introducing an additional trans-
lational DOF in our Cn assembly algorithm. This would
correspond to replacing R̂Ryð!Þ with T̂Tyð'ÞR̂Ryð!Þ throughout
x2.2, where T̂Tyð'Þ represents a translation along the major
helical axis.

The SAM program may be downloaded for academic use at
http://sam.loria.fr/.

4. Conclusion

We have presented a novel FFT-based approach called SAM
for building models of protein complexes with arbitrary point
group symmetry. The basic approach relies on a very fast one-
dimensional symmetry-constrained spherical polar FFT search
to assemble cyclic Cn systems from a given protein monomer.
Structures with higher-order (Dn, T, O and I) symmetries may
be built by performing a subsequent symmetry-constrained
Fourier domain search to assemble trimeric pseudo-molecules.
Overall, our results demonstrate that the SAM algorithm can
correctly and rapidly assemble protein complexes with arbi-
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Figure 4
The example symmetrical complexes assembled by SAM, starting from a single monomer from the crystal structure. Computational details are provided
in Table 2.



trary point group symmetry from a given monomer structure
in 17 out of 18 test complexes. The main limitation of our
approach is that the resolution of the SPF representation
begins to degrade with monomers having more than about 500
residues, and this therefore sets a limit on the size of
symmetrical complexes that can be modelled. We propose that
one way to address this limitation would be to use a residue-
based coarse-grained force-field representation in place of the
Fourier domain pseudo-molecules during the final trimeric
assembly stage.

APPENDIX A
Restricting the a range in Cn

Because there exist n C2 axes perpendicular to the principal
Cn axis, the range of ! in equation (8) must be restricted to
0 $ ! < $, instead of the natural Euler range of 0 $ ! < 2$, in
order to avoid generating duplicate configurations in the Cn

multimer. To prove this mathematically, we need to show that

Pn&1

j¼0

R̂Ryð!jÞT̂Tzð"ÞR̂Rð! þ $; "; #ÞAðrÞ

¼ R̂Rzð$Þ
Pn&1

j¼0

R̂Ryð!jÞT̂Tzð"ÞR̂Rð!; "; #ÞAðrÞ: ð44Þ

Because R̂Rzð$Þ and T̂Tzð"Þ commute, and using the fact that
R̂Ryð!jÞR̂Rzð$Þ ¼ R̂Rzð$ÞRyð&!jÞ, we can rewrite the left-hand
side as

Pn&1

j¼0

R̂Ryð!jÞR̂Rzð$ÞT̂Tzð"ÞR̂Rð!; "; #ÞAðrÞ

¼ R̂Rzð$Þ
Pn&1

j¼0

R̂Ryð&!jÞT̂Tzð"ÞR̂Rð!; "; #ÞAðrÞ: ð45Þ

Then, noting that R̂Ryð&!jÞ ¼ R̂Ryðþ !n&jÞ and changing the
order of the summation, we obtain

R̂Rzð$Þ
Pn&1

j¼0

R̂Ryð&!jÞT̂Tzð"ÞR̂Rð!; "; #ÞAðrÞ

¼ R̂Rzð$Þ
P0

j¼n&1

R̂Ryðþ !jÞT̂Tzð"ÞR̂Rð!; "; #ÞAðrÞ: ð46Þ

This proves equation (44).

APPENDIX B
Real and complex SPF basis functions

Here, we let ylmð%; ’Þ and Ylmð%; ’Þ represent real and complex
spherical harmonic basis functions, respectively, where
Ylmð%; ’Þ are defined by

Ylmð%; ’Þ ¼
#
ð2l þ 1Þ

4$

ðl & mÞ!
ðl þ mÞ!

$1=2

Plmðcos %Þ expðim’Þ ð47Þ

and where Plmðcos %Þ are the Legendre polynomials (Hobson,
1931). The real and complex basis are functions related by a
unitary transformation matrix UðlÞ as

ylmð%; ’Þ ¼
P
m0

UðlÞmm0Ylm0 ð%; ’Þ; ð48Þ

where the matrix elements of UðlÞ have the form (Biedenharn
& Louck, 1981)

yll

ylm

yl0

ylm

yll

0

BBBB@

1

CCCCA
¼

1
21=2 0 0 0 ð&1Þl

21=2

0 1
21=2 0 ð&1Þm

21=2 0
0 0 1 0 0
0 ið&1Þm

21=2 0 &i
21=2 0

ið&1Þl
21=2 0 0 0 &i

21=2

0

BBBBB@

1

CCCCCA

Yll

Ylm

Yl0

Ylm

Yll

0

BBBB@

1

CCCCA
: ð49Þ

Together with the spherical harmonics, we use real ortho-
normal Gauss–Laguerre radial basis functions in order to
provide a complete orthonormal three-dimensional basis set

RnlðrÞ ¼
#

2

&3=2

ðn & l & 1Þ!
!ðn þ 1=2Þ

$1=2

expð&)2=2Þ)lLðlþ 1=2Þ
n&l&1 ð)2Þ;

ð50Þ

where )2 ¼ r2=& and & is a radial distance scale factor. In this
work, we set & = 40 Å.

Although it is convenient to calculate a polar Fourier
expansion of protein shape initially in real space with real
expansion coefficients, anlm (Ritchie & Kemp, 2000),

AðrÞ ¼
P
nlm

anlmRnlðrÞylmð%; ’Þ; ð51Þ

subsequently it is often more convenient to work in the
complex basis using

AðrÞ ¼
P
nlm

AnlmRnlðrÞYlmð%; ’Þ; ð52Þ

where the complex expansion coefficients, Anlm, are related to
the original real coefficients by

Anlm ¼
P
m0

UðlÞm0manlm0 : ð53Þ

In the complex basis, the rotation operator is represented as
the complex Wigner rotation matrix:

DðlÞmm0ð!; "; #Þ ¼ expð&im!Þ dl
mm0ð"Þ expð&im0#Þ: ð54Þ

Note that a pure rotation about the y axis may be expanded as

R̂Ryð"Þ % R̂Rzð&$=2ÞR̂Ryð&$=2ÞR̂Rzð"ÞR̂Ryð$=2ÞR̂Rzð$=2Þ: ð55Þ

This expansion is useful in the polar Fourier representation
because it allows dl

mm0 ð"Þ to be expanded as a product of
exponentials (Edmonds, 1957):

dl
mm0 ð"Þ ¼

P
t

expðim$=2Þ dl
mtð&$=2Þ expð&it"Þ

, dl
tm0ð$=2Þ expð&im0$=2Þ: ð56Þ

Then, by writing

"l
tm ¼ dl

tmð$=2Þ ¼ dl
mtð&$=2Þ; ð57Þ

and by collecting constant terms
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!l
mtm0 ¼ exp½iðm& m0Þ$=2+"l

tm"l
tm0 ¼ im&m0"l

tm"l
tm0 ; ð58Þ

the Wigner rotation matrix elements may be written in a
completely exponential form:

DðlÞmm0 ð!; "; #Þ ¼
P

t

!l
mtm0 expð&im!Þ expð&it"Þ expð&im0#Þ:

ð59Þ

In order to perform three-dimensional rotational FFT
searches over the Wigner rotations, it is necessary to scale the
" rotation onto the natural domain of the FFT. This may be
achieved by putting "0 ¼ 2" and then writing

expð&it"Þ ¼
P

j

&tj expð&ij"0Þ: ð60Þ

It can be shown that the coefficients &tj may be determined to
reproduce exactly a finite set of M" rotational samples by
treating equation (60) as a discrete Fourier transform (DFT)
analysis equation (Ritchie et al., 2008):

&ð"maxÞ
tj ¼ 1

M"

XM"&1

n¼0

expð&itn"max=M"Þ expð2$ijn=M"Þ; ð61Þ

where "max ¼ $ here. Hence, we can collect coefficients as

#um
lv ¼

P
t

!tm
lv &
ð$Þ
tu ð62Þ

to obtain

DðlÞmm0 ð!; "; #Þ ¼
P

t

#l
mtm0 expð&im!Þ expð&it"0Þ expð&im0#Þ:

ð63Þ

We use this scaling technique in a restricted Cn FFT search
(Appendix A) in order to scale the allowed ! angle range
(0 : $) back to the natural range of the FFT (0 : 2$).
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