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Abstract—The situation arising in path planning under kine-
matic constraints, where the valid configurations define a mani-
fold embedded in the joint ambient space, can be seen as a limit
case of the well-known narrow corridor problem. With kinematic
constraints the probability of obtaining a valid configuration
by sampling in the joint ambient space is not low but null,
which complicates the direct application of sampling-based path
planners. This paper presents the AtlasRRT algorithm, a planner
specially tailored for such constrained systems that builds on
recently developed tools for higher-dimensional continuation.
These tools provide procedures to define charts that locally
parametrize a manifold and to coordinate the charts forming an
atlas that fully covers it. AtlasRRT simultaneously builds an atlas
and a bi-directional Rapidly-Exploring Random Tree (RRT),
using the atlas to sample configurations and to grow the branches
of the RRTs, and the RRTs to devise directions of expansion
for the atlas. The efficiency of AtlasRRT is evaluated in several
benchmarks involving high-dimensional manifolds embedded in
large ambient spaces. The results show that the combined use
of the atlas and the RRTs produces a more rapid exploration of
the configuration space manifolds than existing approaches.

Index Terms—Path Planning, Kinematic Constraints, Mani-
folds, Higher-Dimensional Continuation

I. INTRODUCTION

T he problem of path planning, i.e., to determine how to

move a robotic system from an initial to a goal state

avoiding collisions, is ubiquitous in Robotics as it appears

in most of the addressed tasks [1, 2]. Sampling-based path

planners [3, 4] have been largely successful and are the

standard for industry-level solutions [5]. They rely on the fact

that while representing the obstacles in configuration space

is hard, checking whether a particular configuration is in

collision or not is relatively simple. However, these planners

have difficulties in the so called narrow corridor problems,

where the solution must necessarily traverse a tiny area, i.e.,

an area with relatively low probability of being sampled. The

case where the problem includes kinematic constraints can be

seen as a limit case of the narrow corridor problem. In this

case, the constraints define a configuration space that is a null-

measure manifold embedded in the ambient space formed by

the robot joint variables [6]. Thus, the probability of directly

sampling on the configuration space by selecting random joint

values is not just low, but null, which complicates the use of

sampling-based path planners.
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supported by CSIC under a JAE-Doc fellowship partially founded by the
ESF.

The authors are with the Institut de Robòtica i Informàtica Indus-
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Fig. 1. Example of exploration with AtlasRRT. (a) Full atlas of the bi-
dimensional configuration space of the cyclooctane. (b) AtlasRRT intertwines
the construction of a bidirectional RRT with an atlas construction. The trees
rooted at the start and goal configurations are represented in yellow and in
green, respectively. (c) When the two RRTs are connected, a solution path
(represented in red) can be readily computed. Observe that only a small
fraction of the full atlas is necessary to connect the query configurations.

Path planning under kinematic constraints is a classical topic

in Robotics [7]–[10] and it appears, for instance, in complex

manipulation problems [11], parallel robots [12], robot grasp-

ing [13], constraint-based object positioning [14], or surgery

robots [15]. This problem is also crucial in Biochemistry, when

analyzing the conformational changes in molecular loops [16].

Moreover, the popularization of robots such as two-armed

service robots [17], anthropomorphic hands [18], or humanoid

robots [19] where loop closures appear very often has strongly

pushed the research in this field during the last years [20]–[25].

In the quest of a general and efficient solution, most of the

existing approaches try to adapt the sampling-based planners

to the constrained case.

The efficiency of the sampling-based path planning ap-

proaches relies on the ability of drawing samples and of

growing branches that cover the configuration space. If some

information about the environment is available, the distribution
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of samples can be adapted to the problem [26]. However,

in the absence of such information, a uniform distribution is

preferred. This distribution of samples can only be easily ob-

tained using an isometric parametrization of the configuration

space. Moreover, the branch extension is typically based on

linear interpolation between samples, which also relies on a

parametrization of the configuration space. Whereas for non-

constrained systems such parametrization is straightforward,

this is not the case when the kinematic constraints reduce

the dimensionality of the configuration space. Due to this

issue, existing attempts to adapt the sampling-based planners

to problems with kinematic constraints are either limited to

particular families of mechanisms or unable to efficiently

explore the configuration space.

To address these limitations, we propose here a method

called AtlasRRT based on a coordinated construction of an at-

las and a bidirectional RRT. On the one hand, the atlas is used

to adequately sample configurations and grow branches on

the configuration space manifold and thus, to retain the RRT

exploration efficiency, despite working on a non-Euclidean

configuration space. On the other hand, the RRT is used

to determine directions of expansion for the atlas, so that

the charts generated are those useful to find solution paths.

An example of problem solved with AtlasRRT is shown in

Fig. 1 that represents the two-dimensional configuration space

of the cyclooctane molecule, a bi-directional RRT, and the

solution path obtained with the proposed approach. AtlasRRT

is an evolution of the algorithm introduced in [27]. Here,

the change of the underlying formulation, the improvements

in the coordination between the RRT and the atlas, and the

new strategies to control the growth of the trees result in a

significant speed up with respect to the preliminary version of

the algorithm. Moreover, small modifications are introduced

in the algorithm to guarantee its probabilistic completeness.

This paper is organized as follows. Next section frames the

proposed planner in the context of the previous work. Then,

Section III introduces the concepts of charts and atlas and

how to use them to represent an implicitly-defined manifold.

Section IV presents a way to integrate the atlas-based manifold

representation with an RRT exploration. Section V formally

describes the algorithms implementing the AtlasRRT planner

and Section VI compares its performance to state of the art

methods for several benchmarks involving high-dimensional

manifolds embedded in large ambient spaces. Finally, Sec-

tion VII summarizes the contributions and limitations of this

work and indicates points that deserve further attention.

II. RELATED WORK

As already mentioned, the main issue for path planning

under kinematic constraints is to devise proper ways to sample

the configuration space manifold and to connect the samples

between them.

For some particular families of mechanism with kine-

matic loops, distance-based formulations provide a global

parametrization that can be readily used to sample and to grow

branches in the configuration space [23, 28]. Other approaches

try to learn the parametrization from large sets of samples

Fig. 2. Two RRTs of 500 samples built on a torus-like manifold. Top With an
ambient space sampling method, the exploration focuses on the outer parts of
the torus and many samples do not produce any tree extension. Bottom With
an AtlasRRT, the diffusion process is largely independent of the ambient space
which improves the coverage.

on the configuration space [22], but they can only deal with

relatively simple manifolds.

In the absence of a global parametrization, Kinematics-

PRM [8] samples a subset of joint variables and uses inverse

kinematics to find values for the remaining ones. Unfortu-

nately, this strategy is not valid for all the mechanisms, and

although some improvements have been proposed [29], the

probability of generating invalid samples is significant. Finally,

the non uniqueness of the solutions for the inverse kinematic

functions and the presence of singularities complicate the

approach [30]. Task-space planners [24, 31, 32] are similar in

the sense that they sample on a subset of variables (those re-

lated with the end-effector), although they typically determine

values for the remaining degrees of freedom using numerical

techniques instead of closed kinematic functions. Thus, they

share the problems of kinematic-based approaches regarding

the multiple solutions for the non-fixed variables.

An alternative strategy to get valid configurations is to

sample in the joint ambient space and to converge to the

configuration space either implementing random walks [9], or

the more efficient Jacobian pseudoinverse method [20, 21, 33].

These approaches are probabilistically complete [34] and easy

to implement, but a uniform distribution of samples in the

ambient space does not necessarily translate to a uniform

distribution in the configuration space [24], and the branch ex-

tensions are many times prematurely blocked, as noted in [35],

which reduces their efficiency. This problem is illustrated in

Fig. 2 where the configuration space to be explored is a torus-

like manifold of diameter four times smaller than the ambient
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space width. Fig. 2-top shows a RRT built from points sampled

in the ambient space that has a poor coverage of the manifold.

With the AtlasRRT presented in this paper, the process of

diffusion is largely independent of the configuration space

shape and of the ambient space bounds which improves the

coverage of the manifold, as shown in Fig. 2-bottom.

To increase the quality of the exploration, one can focus

on a subset of the ambient space around the configuration

space [36]. With this method, though, points are still sampled

in the ambient space, which can be of much higher dimension-

ality than the configuration space. Suh et al [35] introduce a

lazy RRT scheme where loosely coordinated RRTs are built

on tangent spaces that locally approximate the manifold and

that have the same dimensionality as the configuration space.

However, the quality of the resulting RRT is affected by

the possible overlap of tree branches that belong to different

tangent spaces.

From Differential Geometry, it is well known that a mani-

fold can be described by a collection of local parametrizations

called charts, that can be coordinated within an atlas [37].

Higher-dimensional continuation techniques provide princi-

pled numerical tools to compute the atlas of an implicitly

defined manifold starting from a given point, whereas min-

imizing the overlap between neighboring charts [38, 39].

One-dimensional continuation methods, have been strongly

developed in the context of Dynamical Systems [40], whereas

in Robotics, they have been mainly used for solving problems

related to Kinematics [41, 42]. To the best of our knowledge,

higher-dimensional continuation methods have been only used

in Robotics to evaluate the dexterity of mechanisms [43, 44].

In a previous work [25], we introduced a resolution complete

path planner on manifolds based on higher-dimensional con-

tinuation tools. Despite its efficiency, this planner relies on

a discretization of the manifold and the exploration could be

blocked in the presence of narrow corridors, unless using a fine

enough resolution, with the consequent loose in performance.

Moreover, the number of charts generated with this planner

scales exponentially with the dimension of the configuration

space, hindering its application to complex problems. In [27],

we preliminarily explored the possibility to combine the atlas

construction with an RRT. An improved strategy with stronger

theoretical background is presented here.

III. REPRESENTING IMPLICITLY-DEFINED

CONFIGURATIONS SPACES

Let’s consider a system described by a n-dimensional joint

ambient space A and a k-dimensional configuration space

X ⊂ A implicitly defined by a set of equality constraints

X = {x ∈ A | F(x) = 0}, (1)

with F : A → Rn−k, and n > k > 0. We adopt here the

convention where the configuration space X is defined as the

set of points fulfilling the constraints [6] (this is sometimes

called constrained configuration space) that is embedded in

the ambient space of the joint variables (called configura-

tion space in some approaches). The constraints defining the

configuration space may either come from the mechanics of
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Fig. 3. In this paper, a chart Ci defines an exponential map xj = ψi(u
i
j)

between the tangent space at xi and the manifold, as well as a logarithmic map

u
i
j = ψ−1

i (xj) between the manifold and the tangent space. The mapping φi

provides the ambient space coordinates of the tangent space parameters u
i
j .

the system itself (e.g. the assembly restrictions of a parallel

robot) or from the task to be performed (e.g. a tray that must

remain horizontal during a given task). Note that we only

consider kinematic constraints and other constraints such as

those involving dynamical aspects would not be not taken into

account. Moreover, we assume that X is a smooth manifold

everywhere, without considering the presence of singularities.

Let O be the obstacle region of the manifold, such that

F = X \O is the open set of the non-colliding configurations.

Let also assume that xs and xg are the given start and goal

configurations respectively, both in F . Then, the path planning

problem consists of finding a collision free path linking the

query configurations while staying on the manifold i.e. to

find a continuous function σ : [0, 1] → X with σ(0) = xs,

σ(1) = xg , and with σ(τ) ∈ F for each τ ∈ [0, 1].
Representing an implicitly-defined manifold with a global

isometric parametrization is infeasible even for simple man-

ifolds such as a sphere in 3D. However, we can represent it

as a set of local parametrizations, called charts, that form an

atlas that covers the manifold.

Formally, a chart, Ci, locally parametrizes the k-dimensional

manifold around a given point xi with a bijective map,

xj = ψi(u
i
j), between parameters u

i
j ∈ Rk and points xj on

the manifold X , with ψi(0) = xi. The map from the parameter

space to the manifold is known as the exponential map and

the inverse is referred as the logarithmic map (see Fig. 3).

Following [38], an approximation of the exponential and

logarithmic maps can be implemented using the k-dimensional

space tangent at xi. An orthonormal basis for this tangent

space is given by the n× k matrix, Φi, satisfying
[

J(xi)
Φ
⊤

i

]

Φi =

[

0

I

]

, (2)

with J(xi) the Jacobian of F evaluated at xi, and I, the k×k
identity matrix. Using this basis, the exponential map ψi is

determined by first computing the mapping φi from parameters

in the tangent space to coordinates in the joint ambient space,

x
i
j = φi(u

i
j) = xi +Φi u

i
j , (3)

and then, orthogonally projecting this point on the manifold

to obtain xj . This projection can be computed by solving the

system
{

F(xj) = 0,
Φ
⊤

i (xj − x
i
j) = 0,

(4)
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Fig. 4. Validity area of a chart Vi defined from Eqs. (7) to (9). To ensure
a correct mapping between the chart and the manifold, the distance and the
curvature with respect to the tangent space must be bounded. Moreover, Vi

is bounded to cover an area of maximum radius ρ to obtain a regular paving
of the manifold. In the figure, the green point is not part of Vi since it does
not fulfill these conditions.

using a Newton procedure where xj is initialized by an

approximation of the solution (xi
j if no better approximation

is available) and is iteratively updated by the ∆xj increments

fulfilling
[

J(xj)
Φ
⊤

i

]

∆xj = −

[

F(xj)
Φ
⊤

i (xj − x
i
j)

]

, (5)

until the error is negligible or for a maximum number of

iterations [45].

The logarithmic mapping ψ−1

i can be computed as the

projection of a point on the tangent space

u
i
j = ψ−1

i (xj) = Φ
⊤

i (xj − xi). (6)

Note that this projection can be also applied to points not

on the manifold to obtain their parameters in a given tangent

space.

The area of the manifold properly parametrized by a given

chart is limited. As the norm of u
i
j increases, the distance to

the manifold and the difference in curvature typically increase

too, and the Newton process implementing ψi could even

diverge. Thus, the validity area Vi of chart Ci is defined as

the set of points u
i
j such that ψi can be safely computed and

where

‖xj − φi(u
i
j)‖ ≤ ǫ , (7)

‖Φ⊤

i Φj‖ ≥ cos(α) , (8)

‖ui
j‖ ≤ ρ , (9)

with Φj the basis of the tangent space at xj = ψi(u
i
j). The

first condition limits the maximal distance error between the

tangent space and the manifold whereas the second condition

ensures a bounded curvature in the part of the manifold

covered by Ci, as well as a smooth transition between charts

(see Fig. 4). Combined, these two conditions bound the dis-

torsion introduced by the exponential map. Thus, they ensure

that a uniform distribution of samples in Vi translates to an

approximately uniform distribution of configurations on the

manifold, and that a straight line in tangent space gives a

path on the manifold that has a bounded error with respect to

the geodesic [46]. Finally, the third condition is introduced to

obtain a more regular paving of the manifold.

xi

x
i
j

u
i
j

xjX

Vi

Vj

2 u⊤ui
j = ‖ui

j‖
2

Fig. 5. When a new chart is defined at xj , the validity areas of the two
charts, Vi and Vj , are coordinated to avoid overlaps.

Fig. 6. Left Atlas of a sphere. Each polygonal patch corresponds to a
given Pi, a conservative approximation of the validity area for the associated
chart. Right A roadmap can be extracted from the atlas where the nodes
are the chart centers and the edges are given by the neighborhood relations
between charts. This roadmap could be used to devise collision free paths
between any two given configurations.

The applicability area of a given chart, Vi, is never empty

and it always includes the center of the chart, xi, but its

shape can be arbitrarily intricate. Thus, Vi is conservatively

approximated with a convex polytope, Pi ⊂ Vi. This polytope

is respresented with a set of linear inequalities, Li, defined

in the tangent space associated with the chart [38]. This set

is initially empty and is enlarged as the borders of Vi are

discovered. If a parameter vector u
i
j is in Vi but ui

j +∆u is

not in this set for a small ∆u, then a new chart Cj is added

to the atlas at xj = ψi(u
i
j) and the following inequality

2 u⊤ui
j ≤ ‖ui

j‖
2 , (10)

is included in Li, as shown in Fig. 5. Such inequality reduces

the validity regions of the charts by cropping a half space

defined in the tangent space associated to Ci given by the

plane orthogonally bisecting vector ui
j . Actually, the new chart

is coordinated not only with Ci but with all the charts Cl in

the atlas such that xj ∈ Vl. Thus, the set of inequalities for Cj
is initialized with the inequalities defined from u

j
l = φ−1

j (xl),
the projection of the centers of the nearby charts, Cl, on the

new chart Cj .

Using the exponential and logarithmic maps, a full atlas of

the manifold can be defined from where a roadmap whose

edges are given by the neighboring relations between charts
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can be extracted (see Fig. 6). In principle one could implement

a resolution complete planner using such roadmap to deter-

mine an optimal path between any two given configurations.

However, this process would be computationally too demand-

ing, specially in high dimensions [25]. Therefore, we propose

to intertwine the atlas construction with the definition of a

RRT to focus the exploration on the regions of the manifold

relevant for the considered path planning problem.

IV. RAPID EXPLORATION OF IMPLICITLY-DEFINED

CONFIGURATION SPACES

Instead of extending the atlas by following a predefined

sequence of steps, we propose to use a RRT to devise

random directions of expansions for the atlas. This trades

off completeness in the exploration by efficiency: the RRT

drives the growth of the atlas towards yet unexplored regions

of the configuration space, delaying the refinement of already

explored areas.

A RRT construction mechanism is based on three basic

operations that are described next for the case of implicitly-

defined manifolds: sampling in the space to explore, detection

of nearest-neighbors, and extension of the tree towards a given

point.

A. Random Sampling

To sample in X we take advantage of the partially built

atlas. First, a chart Cr is randomly selected and then, a point

is randomly sampled within the ball of radius ρs > ρ defined

on the tangent space associated with this chart. If the random

point is not in Pr, the polytope that approximates the validity

region of Cr, it is discarded. This process is repeated until a

valid sample ur is eventually found. When the sampling is

successful, ur can be translated to coordinates in the ambient

space using the corresponding φr mapping to get xr. Note

that there is no need to map the parameters to X since the

branch extension is actually performed in the tangent space,

projecting on X when necessary.

For a given atlas, the probability of generating a valid

random point in chart Ci is proportional to the volume of Pi

and therefore, the sampling process selects points uniformly

distributed within the region covered by the atlas. Since the

atlas is defined incrementally, chart generated at the beginning

of the process can be selected more times. These charts,

however, typically have a larger rejection ratio than charts

at the frontier of exploration, that have sampling areas much

larger than their actual validity areas. Therefore, in practice,

the exploration is pushed towards non-explored regions of

the configuration space. Actually, the ratio 1− (ρ/ρs)
k gives

an upper bound of the proportion of sampled points that

are outside the validity region of a given frontier chart and,

thus, the ratio of points that will trigger the creation of

new charts. Therefore, by changing ρs, we can directly tune

the balance between exploration and refinement, that is an

important feature of the RRT-based algorithms [47].

xi

xj

xi

xj

Fig. 7. Top RRT nodes parametrized by the chart at xi. Bottom When a new
chart is created at xj , some of the nodes are now parametrized by the new
chart. The nodes whose parametrization changes are represented in green.

B. Nearest Neighbor

The second basic operation to build a RRT is the iden-

tification of the node xn in the tree closer to the random

node, xr. This should be done using the intrinsic metric of

the configuration space. In a parametrizable space this metric

is simple, but on a manifold, the geodesic distance should

be used. The implementation of an efficient nearest-neighbor

procedure for implicitly-defined manifolds is difficult and it

has been only addressed recently in an approximated way

relying on a representation of the manifold that is very similar

to a partial atlas [48]. However, the approximation is only

adequate for dense set of samples, that is not the case when

building a RRT. An alternative solution, that will be adopted

here, is to resort to the ambient space nearest-neighbor as an

approximation of the geodesic nearest-neighbor, despite this

may sometimes lead to inadequate tree extensions.

C. Tree Extension

When the nearest node, xn, has been selected, the RRT

proceeds to grow a branch towards the random sample xr.

Note that xn and xr can be in different charts and, thus, given

in different local parametrizations. Therefore, the direction

of extension is obtained by projecting xr on the chart Cc
parametrizing xn and eventually translating the resulting point

to ensure that it is at least at distance ‖xn − xr‖ from xn.

Once the nearest node and the random point are represented

in the same parameter space, a new branch can be generated

by linear interpolation between the parameters of these two

points. After each interpolation step, the parameters are pro-

jected on the configuration space and, if the new configuration

is collision free, a new node is added to the tree.

During the tree extension the new branch might leave Pc

or Vc. If it leaves Pc, then the branch extension must continue

on a neighboring chart. If the branch reaches a yet unknown

region that borders Vc, a new chart has to be created at the last
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Fig. 8. The four conditions for stopping the AtlasRRT branch extension
process. (a) The branch reaches the random configuration. (b) A collision is
detected. (c) The distance from the end branch to its origin is larger than the
distance to the random point. (d) The distance traveled is larger than λ times
the distance to the random point.

point within Vc. After creating a chart, the nodes in existing

charts not fulfilling the inequalities introduced by the new

chart move to the area of validity of the new chart (see Fig 7).

Whenever the branch reaches a new or a neighboring chart,

the direction of expansion is recomputed, projecting xr on

this chart and ensuring that it is far enough from the last node

added to the RRT. This projection strategy is different from

the one in [27], where branch extensions were prematurely

stopped in some occasions.

The most expensive step in the branch generation is the

evaluation of Eq. (8) since it requires to build the tangent

space at each considered point. This cost can be alleviated

evaluating the curvature along the direction of expansion of

the branch. This operation only requires the distance between

the previous and the new nodes in parameter and in ambient

spaces, which are readily available. Such simplified curvature

evaluation is not present in [27] and yields a large execution

speed up. Note, however, that the full curvature test is used

when a new chart is added to the atlas. Thus, neighboring

relations between charts always fulfill Eq. (8).

When exploring an Euclidean space with a RRT, a branch

extension stops either when the random sample is reached or

when a collision is detected. When exploring a non-Euclidean

space, a branch can be arbitrarily long due to the manifold

curvature, even when using the two conditions above. To avoid

this issue, the branch extension is also stopped if

‖xj − xr‖ > ‖xn − xr‖, (11)

or if

d > λ ‖xn − xr‖, (12)

with xj the last node added to the branch, xr the random

sample, xn the nearest node in the tree, and d the length

of the branch, as illustrated in Fig. 8. The first condition

prevents the branch to escape the ball centered at xn with

radius ‖xn − xr‖. The second condition avoids the length of

the branch to be larger that a scale factor of the distance

between xr and xn. These two branch termination conditions

were not present in the preliminary version of the algo-

rithm [27] and largely help to improve the quality of the RRT.

Algorithm 1: The AtlasRRT algorithm.

AtlasRRT(xs,xg,F)
input : The query configurations, xs and xg , a set of

constraints, F.
output: A path connecting xs and xg .
Ts ← INITRRT(xs)1

Tg ← INITRRT(xg)2

A← INITATLAS(F,xs,xg)3

DONE ← FALSE4

while not DONE do5

xr ← SAMPLEONATLAS(A, Ts)6

xn ← NEARESTNODE(Ts,xr)7

xl ← EXTENDTREE(A, Ts,xn,xr, TRUE)8

x
′

n ← NEARESTNODE(Tg,xl)9

x
′

l ← EXTENDTREE(A, Tg,x
′

n,xl, FALSE)10

if ‖xl − x
′

l‖ < δ then11

DONE ← TRUE12

else13

SWAP(Ts, Tg)14

RETURN(PATH(Ts,xl, Tg,x
′

l))15

Algorithm 2: Sampling on an atlas.

SampleOnAtlas(A, T )
input : The atlas, A, the tree currently extended, T .
output: A sample on the atlas.
repeat1

r ← RANDOMCHARTINDEX(A, T )2

ur ← RANDOMONBALL(ρs)3

until ur ∈ Pr4

forall li ∈ Lr do5

if DISTANCE(ur, li) < ‖u
i
j‖/20 then6

j ← GENERATINGCHART(li)7

Pj ← ENLARGEPOLYTOPE(Pj , ψ
−1

j (ψr(ur)))8

RETURN(φr(ur))9

V. ATLASRRT ALGORITHM

Algorithm 1 gives the pseudo-code for the AtlasRRT plan-

ner implementing the path planning approach introduced in

the previous section. The algorithm takes xs and xg as start

and goal configurations, respectively, and tries to connect them

with a path on the manifold implicitly defined by a given set of

constraints F. The algorithm implements a bidirectional RRT

with one tree rooted at xs and another at xg (lines 1 and 2).

An atlas is also initialized with one chart centered at each one

of these points (line 3). Next, the algorithm iterates, trying to

connect the two trees (lines 5 to 14). First, a configuration is

sampled from the atlas (line 6) and a RRT branch is extended

from the nearest node already in the tree (line 7) towards

the random sample (line 8). Then, an extension attempts to

reach the last node of the new branch (line 10) from the

nearest node in the other tree (line 9). If this second extension

achieves its objective (line 11), the trees are connected and

their nodes are used to reconstruct a path between xs and xg

(line 15). Otherwise, the two trees are swapped (line 14) and

the extension process is repeated.

In the sampling process, we use the atlas as described in

Algorithm 2. A chart is selected at random with uniform
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Algorithm 3: AtlasRRT tree extension.

ExtendTree(A, T,xn,xr, EXPLORE)
input : An atlas, A, a tree, T , the nearest node in the tree, xn,

the random sample, xr , and EXPLORE, a flag that is
TRUE when extending a tree and FALSE when trying
to connect the two trees.

output: The last node added to the tree or xn if no extension
was performed.

c← CHARTINDEX(xn)1

un ← ψ−1

c (xn)2

ur ← ψ−1

c (xr)3

d0 ← ‖xn − xr‖4

d← 05

x0 ← xn6

if EXPLORE then7

ur ← ur(d0 − d)/‖ur‖8

xr ← φc(ur)9

STOP ← FALSE10

CHARTCREATED← FALSE11

while not STOP and ‖ur − un‖ > δ do12

uj ← (ur − un) δ/‖ur − un‖13

xj ← ψc(uj)14

ds ← ‖xn − xj‖15

NEW ← FALSE16

if COLLISION(xj) then17

STOP ← TRUE18

else19

if ‖xj − φc(uj)‖ > ǫ or δ/ds < cos(α) or ‖uj‖ > ρ20

then
C ← NEWCHART(xn)21

c← ADDTOATLAS(A, C)22

NEW ← TRUE23

CHARTCREATED← TRUE24

else25

if uj /∈ Pc then26

c← NEIGHBORCHART(Cc,uj)27

if CHARTCREATED or (not EXPLORE and28

INTREE(T, c)) then
STOP ← TRUE29

else30

NEW ← TRUE31

if not STOP then32

if NEW then33

uj ← ψ−1

c (xj)34

ur ← ψ−1

c (xr)35

if EXPLORE then36

ur ← ur(d0 − d)/‖ur‖37

xr ← φc(ur)38

T ← ADDNODE(T,A,xj ,xn)39

d← d+ ds40

if ‖x0 − xj‖ > d0 or d > λ d0 then41

STOP ← TRUE42

un ← uj43

xn ← xj44

RETURN(xn)45

distribution among the set of charts reached by the tree to

extend (line 2). Then, a point, ur, is sampled within the

ball of radius ρs bounding the sampling region of this chart

(line 3). The process is repeated until a point in Pr is obtained

(line 4). Sampling only in the charts reached by the tree

being extended produces a more regular exploration than when

using all the charts of the atlas [27]. For the samples close

to the borders defining Pr (line 6), we check whether or

not they are also covered by the corresponding neighboring

chart (lines 7 and 8). In this test, u
i
j is the point used

to generate the linear inequality li and ‖ui
j‖/20 is a tenth

of its distance to the chart center. Such a check ensures a

small overlap between neighboring charts and, thus, that all

the configurations are effectively covered by the atlas and

can be selected as random samples. The parameters of the

random sample in the neighboring chart are obtained using the

exponential map for the chart selected at random, ψr and, then,

the logarithmic map for the neighboring chart, ψ−1

j . Finally,

the random sample returned by the algorithm is formed by

the ambient space coordinates for the selected point computed

using the mapping φr for the selected chart, Cr (line 9).

The addition of a branch to a tree T is done by following

the steps detailed in Algorithm 3. Note that there are two

types of tree extensions. The first one attempts to reach a

random sample defined on the tangent space associated with

a given chart. The second one tries to reach a node in the

other tree and, thus, a point on the configuration manifold. In

the first case, the parameter EXPLORE is set to TRUE and

this results in some differences in how the random sample is

managed during the tree expansion. In any case, the procedure

operates in the chart Cc including the node to be extended,

that is initially the chart parametrizing the nearest node xn

(line 1). The sample from where to start the new branch and

the sample to reach in the tree extension are both projected

on Cc (lines 2 and 3) and the distance d0 between these

two samples is computed (line 4). Moreover, the length of

the new branch, d, is initialized to 0 (line 5) and the initial

branch point is stored in x0 (line 6). The values for d0, d,

and x0 are necessary to eventually stop the branch extension.

If EXPLORE is TRUE, i.e., if the random sample is not on the

configuration manifold, the parameters for the random sample

are displaced to a distance d0 from un (lines 8 and 9) to ensure

a minimum branch length (see Fig. 9). Then, the branch is

extended while none of the possible stop conditions is detected

and the random sample is not reached (lines 12 to 44). At each

iteration, a node is added to the tree. To define the node to

add, a small step of size δ is taken in the parameter space

of Cc from the current node un towards ur (line 13). The

resulting parameters uj are projected on the manifold to obtain

the configuration xj (line 14). If this new configuration is in

collision, the branch extension is stopped (line 18). Otherwise,

the algorithm checks if the new configuration triggers the

generation of a new chart (line 20). If so, the chart is generated

at the previous configuration, that is still in Vc and it is added

to the atlas (line 22). Configurations that do not generate a

new chart might be out of Pc, i.e., they might be in the area

of the manifold parametrized by a neighboring chart (line 26).

If a branch that triggered the creation of new charts enters

a preexisting chart, or if the branch enters a chart already

reached by the tree under expansion when aiming to reach the

other tree, the branch extension is stopped. These situations

are typically produced when a branch is extended too far of
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xj xr

d0

xj

xr

d

(d0 − d)

Fig. 9. Top Samples xr are generated in the tangent space associated with a
given chart. Bottom When the RRT branch that attempts to reach xr generates
a chart, the random sample is projected on this new chart and it is displaced
to ensure that it is at an adequate distance from the sample from where to
continue the branch extension.

when the nearest-neighbor is not actually the closest node to

the target sample. By stopping those branch extensions, we

avoid an excessive refinement of regions already covered by

the tree, which would hinder the efficient exploration of the

configuration space manifold. Whenever the branch extension

is not stopped, the neighboring chart from where to continue

the branch growth is identified (line 27) and the position of

the goal sample is recomputed in this new chart (lines 34

to 38). Then, the new node is added to the tree (line 39) and

the branch length is updated (line 40). This length is used to

determine if the new sample is too far away from the initial

branch node or if the branch is too long (line 41). In any

of these two cases the branch extension is stopped (line 42).

Finally, the new node is set as the point from where to continue

the branch extension (lines 43 and 44).

A. Computational complexity

Besides the cost of collision detection, the most expensive

steps in the algorithm are the search for nearest nodes in

the RRTs (lines 7 and 9 of Algorithm 1), the search for

the neighboring charts when adding a chart to the atlas

(line 22 of Algorithm 3), the creation of new charts (line 21

in Algorithm 3), and the computation of the mapping ψc

(line 14 of Algorithm 3). The two search operations can be

implemented using hierarchical structures reducing their cost

to be logarithmic in the number of nodes of the corresponding

RRT and in the number of charts in the atlas, respectively. The

cost of generating a new chart is O(n3) due to the computation

of the tangent space basis for which a QR decomposition

is used. Note, though, that the generation of new charts is

seldom necessary and, thus, this cost is amortized over several

iterations. Finally, the cost of computing the mapping ψc also

scales with O(n3) since it is implemented as a Newton process

with a bounded number of iterations where at each iteration

a QR decomposition is used. This Newton process, though,

typically converges in very few iterations since it can be

initialized at xn, which is very close to the solution point.

B. Parameters

The algorithm basically uses six parameters: ǫ, the max-

imum error with respect to a chart used in Eq. (7), α, the

maximum angle between neighboring charts used in Eq. (8), ρ,

the maximum radius of the validity area of a chart used in

Eq. (9), ρs, the sampling radius, δ, the size branch extension

steps, and λ, the length factor used to eventually stop the

branch extensions. Note that both δ and a bound on the space

to sample (the role ρs in our case) are also used in RRTs in

Euclidean spaces.

The parameters ǫ, α, and ρ control the size of the validity

area of the charts and, thus, the number of charts in the atlas.

Whereas ǫ and ρ can safely span over a wide range, α should

be limited to avoid a large distorsion between the tangent space

and the manifold [46]. The ratio between, ρ and ρs sets the

balance between refinement in current charts and exploration

since the larger ρs with respect to ρ, the stronger the bias

towards unexplored regions. Thus, the ratio (ρ/ρs)
k should

decrease as the dimensionality of the configuration manifold

increases, to emulate the exploration bias of RRT in Euclidean

spaces. Since no collision nor curvature test is done between

two consecutive points in a RRT branch, a small δ should

be used to avoid undetected collision or sharp changes in the

manifold curvature. Finally, λ must be larger than 1. However,

the performance of the algorithm is not very sensitive to its

actual value since the branch termination condition using this

parameter is seldom active.

C. Probabilistic completeness

To show the probabilistically completeness of the proposed

approach, recall that we assumed the configuration space to

be a k-dimensional smooth manifold, X , with a Jacobian that

is full rank everywhere. Under these conditions, X and its

Jacobians are continuous in an open k-dimensional ball around

any given point on X and, thus, X is singularity free and

of constant dimensionality. Thus, a path between any two

given configurations never includes points on any particular

low dimensional subset with null measure. Additionally, by the

implicit function theorem, the above conditions also guarantee

that the validity area Vi of a given chart centered at xi includes

a non-null measure ball around this point, i.e., Vi is not null

in all directions. Moreover, since transitions between different

connected components of the manifold are not possible, we

assume that the start and the goal configurations are in F , the

connected component of the collision free part of X including

both configurations. For simplicity, we consider a version of

AtlasRRT where a single tree is generated (the extension of

the argument to bidirectional trees is straightforward) and we

assume that for each RRT node the curvature test in Eq. (8)

is performed, instead of the simplified version described in

Section IV-C. In this way, points out of the validity area

are detected, independently of the direction from which they
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are approached. Finally, we also assume that the measure

of F , µ(F), is finite either because its has a closed topology

or because it is cropped to some domain, D. Note that this

is typically the case in Robotics, where F is bounded by the

joint ranges and the presence of obstacles.

As proved in [34], under the above assumptions, any RRT-

like method able to densely sample F is probabilistically

complete, even if the samples are not uniformly distributed. In

the AtlasRRT, the sampling is obtained using the atlas. Thus,

if we prove that the atlas fully covers F , i.e., that any point

on F is mapped from a point on the atlas, the probabilistic

completeness will be guaranteed. To show that an atlas defined

using the method presented in Section III fully parametrizes F ,

we will adapt the argument given in [38]. This argument

basically shows that each new chart increases the coverage

of F until it is fully covered.

Let FA be the part of F already parametrized by the current

atlas A, i.e., the projection on F of the validity areas of all

the charts in A where the validity area of chart Ci is

Vi = Bk(ρ) ∩ Pi, (13)

with Bk(ρ) the k-dimensional ball of radius ρ and Pi the

polytope associated with the chart. This area is projected on a

patch of F using Eq. (4). Moreover, the sampling area of the

chart is

Si = Bk(ρs) ∩ Pi, (14)

with ρs > ρ. For any open chart, i.e., a chart where Si * Vi,

a sample out of FA, xr, will be generated with probabil-

ity µ(Si \ Vi) > 0. The RRT branch toward xr necessarily

crosses the border of FA connecting a RRT node xn ∈ FA

to xr. When this happens, a point on the border of FA is

determined using a dichotomic search and a new chart is

defined on it. Since the validity areas of the charts are not null

in all directions and the chart is defined at the border of FA,

this new chart will parametrize an area not previously in FA

and, thus µ(FA) is increased. Note that µ(FA) is increased

even if this chart is close to the border of F and, thus, it also

parametrizes regions in collision, i.e., not in F . In practice,

new charts are defined on xn and the dichotomic search is

only performed if xn is already the center of a chart. This

procedure is not detailed in Algorithm 3 for the sake of clarity.

The creation of a new chart removes part of the sampling area

for the chart previously parametrizing xn and, thus, all charts

will eventually become closed, i.e., charts where Si = Vi.

Closed charts might include areas where their parametriza-

tions are not valid, i.e., where Eqs. (7) to (9) do not hold.

Under the taken assumptions, these areas have non-null mea-

sure and, thus, there is a non-null probability of generating

a sample on them. When such sample is generated, the same

reasoning as that used with open charts leads to an increment

of µ(FA).
Special care must be taken to ensure that the addition of a

new chart to A does not decrease µ(FA). According to [38]

in very curved regions unmapped gaps between charts might

appear. The procedure at the end of the sampling process

(lines 5 to 8 in Algorithm 2) allows removing these gaps,

if any, ensuring that no part of FA is lost.

xn xr

xj

Fig. 10. The branch generation procedure used in the CB-RRT algorithm.
The next sample in the RRT branch, xj , is determined by first interpolating
a point in ambient space between the last point in the branch, xn, and the
random sample, xr , and then projecting it on the manifold using a Jacobian
pseudo-inverse procedure.

Summarizing, since µ(F) is finite and FA monotonically

increases with every new chart, the atlas will eventually

cover F . The extension of the atlas can not be stalled before

covering F since, this would imply to have a chart in A
including a region not in FA with null probability of being

sampled, which contradicts the taken hypothesis. When the

atlas is fully defined, F can be densely sampled and this

guarantees the probabilistic completeness of the algorithm. In

practice, though, paths are typically found far before the full

atlas is defined.

VI. EXPERIMENTS

We implemented the AtlasRRT planner described through

Sections IV and V in C. The implementation uses SOLID [49]

as collision detector, the GNU Scientific Library [50] for the

linear algebra operations, and the kd-tree described in [51] for

the nearest-neighbor queries. The resulting software package

as well as the examples used in the experiments reported below

can be downloaded from [52]. The preliminary version of At-

lasRRT [27], relied on a formulation of the mechanisms with

redundant variables that yields a system of simple equations

only containing linear, bilinear, and quadratic monomials [53].

In this paper, we propose to use a standard Denavit-Hartenberg

formulation for the joints [54]. Due to the high non-linearity

of this formulation, the manifold tends to be more convoluted,

which may hinder the projection of samples from the tangent

to the configuration space, and the trace of this space using

continuation-based methods. The experimental results show

that this effect is compensated by the speed up obtained due

to the reduction in the dimensionality of the ambient space.

The experiments presented herein aim to verify that the

proposed planner is able to explore the configuration man-

ifolds arising in realistic problems, even when the solution

paths must traverse narrow corridors and avoid local minima.

Moreover, we aim to test the sensitivity of the approach to

the variations of the different parameters and its scalability

with respect to the dimensionality of the configuration space.

Finally, we aim to determine the efficiency of the approach,

as compared with the most relevant existing methods.

For the sake of comparison we use the HC-planner [25]

and CB-RRT, a planner that includes the mechanisms for path
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(1) Cyclooctane (2) Barrett arm

(3) PR2 with a box (4) Schunk hand

(5) Four Rx60 (6) PR2 with a pitcher

Fig. 11. The six benchmarks used in this paper. For each benchmark, the left and right pictures correspond to start and goal configurations, respectively.
(1) The cyclooctane molecule. (2) The Barrett arm solving a maze problem. (3) The PR2 robot moving a box. (4) The Schunk anthropomorphic grasping a
needle. (5) Four Säubli Rx60 arms collaborating to move a circular piece in an industrial environment. (6) The PR2 robot putting a pitcher into a fridge.

planning on manifolds of the CBiRRT2 planner introduced

in [24]. The task-space aspects of CBiRRT2, however, are

not included in CB-RRT since AtlasRRT does not use them.

The HC-planner is a resolution complete planner on manifolds

based on a greedy best first search method on a graph implic-

itly defined on the atlas that is build along with the search. The

CB-RRT planner shares the bi-directional search strategy with

AtlasRRT, but the random samples xr are generated in the

joint ambient space. Then, the algorithm interpolates between

the nearest point already in the RRT, xn, and xr to get a

point xj that is projected on the manifold using the Jacobian

pseudo-inverse procedure [55], as illustrated in Fig. 10. The

process of interpolation and projection is repeated to grow

branches on the configuration manifold. Note, however, that

this process tends to produce short branch extensions when

the interpolation direction approaches the orthogonal to the

manifold [35]. For a fair comparison, both the HC-planner

and the CB-RRT are applied on the same formulation used by

AtlasRRT.

Figure 11 shows the start and goal configurations for the six

benchmarks used in this paper, sorted by increasing dimen-

sionality of its configuration space. These benchmarks have

been inspired by examples previously used in path planning

under kinematic constraints [10, 24]. The first one is the

cyclooctane, a molecule whose kinematics is a 8-revolute loop.

Here, we have to find a path between two conformations

that avoids collisions between carbon and hydrogen atoms

(depicted in the figure in cyan and white respectively). This is

a very constrained problem where the solution path requires

to pass through three narrow passages. The second benchmark

involves the Barrett arm solving a maze problem. The stick

moved by the arm has to stay in contact with the maze plane

and perpendicular to it, without rotating about its axis. In the

third problem, a PR2 robot with fixed base must move a box

located under a table onto this table, without rotating it. The

gap between the robot and the table is narrow considering

the size of the box, which increases the complexity of the

problem. In the fourth problem, the Schunk anthropomorphic

hand [18] grasps a needle which must be moved avoiding a

couple of U-shaped obstacles that introduce local minima in

the planning. In the fifth problem, four Stäubli Rx60 industrial

arms must perform complex coordinated motions to extract a
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TABLE I
DIMENSION OF THE CONFIGURATION AND AMBIENT SPACES, SUCCESS RATES, NUMBER OF NODES/CHARTS, AND EXECUTION TIMES IN SECONDS FOR

THE THREE METHODS COMPARED IN THIS PAPER.

HC-Planner CB-RRT AtlasRRT

Benchmark k n Succ. Charts Time Succ. Nodes Time Succ. Charts Nodes Time

(1) Cyclooctane 2 8 0.28 420 19.67 1.0 43333 13.88 1.0 139 5812 1.94
(2) Barrett Arm 3 9 0.20 336 2.59 1.0 49248 30.23 1.0 80 5316 2.43
(3) PR2 box 4 16 0.97 671 135.36 1.0 13657 15.00 1.0 58 1393 0.88
(4) Robot Hand 5 23 0.25 1657 204.13 0.5 55098 256.22 1.0 50 1503 8.23
(5) Four Rx60 6 24 0.01 1355 170.16 1.0 25013 62.87 1.0 566 10838 15.54
(6) PR2 pitcher 8 16 0.01 284 493.99 1.0 8237 12.31 1.0 111 2683 2.37

large piece from two hooks in the ceiling and insert it into a

peg. Finally, in the last problem, the PR2 robot with a fixed

base has to put a pitcher into a fridge maintaining it vertical

with its left arm and at the same time open the door with its

right arm.

Table I shows the performance comparison between

the HC-planner, the CB-RRT and the AtlasRRT, averaged

over 100 runs and for a maximal execution time of 600 seconds

on a Intel Core i7 at 2.93 Ghz running Mac OS X with

parameters set to ǫ = 0.1, α = 0.45 rad, ρ = 1, δ = 0.05,

and λ = 2 for all the experiments. Two different sampling

radius ρs are used taking into account that a small ρs is more

adequate in low dimensional spaces or when the problem is

very constrained by obstacles and a large ρs is better suited

when a large configuration space must be explored. Thus, we

set ρs = 2 for experiments (1), (2), and (4) and ρs = 7 for

experiments (3), (5), and (6). For each benchmark, the table

gives the dimensionality of both the configuration space, k,

and the ambient space, n. It also provides for each planner,

the percentage of successful runs (in the Succ. column), and

for these runs, the number of charts and RRT nodes required

(given in the Charts and Nodes columns, respectively), as well

as the execution times in seconds (in the Time column).

A first remarkable result is that in problems such as the

Barrett arm problem, where the configuration space is of

low dimensionality (2-3), the HC-Planner can be even faster

than the CB-RRT because the search relies on an atlas that

captures the structure of the configuration manifold. However,

the HC-Planner is only successful in few of the experiments

because it tends to be blocked in narrow passages whereas the

CB-RRT can successfully negotiate them. AtlasRRT combines

the advantage of the two methods since it takes advantage

of the atlas while avoiding being blocked by obstacles. In

problems of moderate dimensionality (4-5), the performance

of HC-Planner starts to decrease since its computational cost

is exponential with the dimension of the space and CB-RRT

starts to be more efficient. In these situations AtlasRRT has a

better performance than the two other methods. A significant

case is the Robot hand, where both HC-Planner and CB-RRT

have many failures and they are more than 25 times slower

than AtlasRRT, when they succeed. In higher dimension (6-8),

HC-Planner is almost unable to find a solution path, whereas

both the CB-RRT and the AtlasRRT are successful in all cases,

with AtlasRRT being more efficient.

Since CB-RRT and AtlasRRT share the same search strat-

egy, the better performance of the second can be explained

by the higher quality of the samples obtained from the atlas

and for the more robust branch extension mechanisms, both

possible thanks to the parametrization provided by the atlas.

With the aim of elucidating which of these two factors is

more relevant, we repeated the experiments with AtlasRRT,

but sampling in ambient space. Note that line 3 of Algorithm 3

projects the samples on the tangent space associated with

the nearest node in the RRT. This cancels part of the bias

introduced by sampling in the ambient space. Despite this

correction factor, the execution times double with respect to

those obtained with the standard AtlasRRT. The exceptions are

the robot hand example where the execution time is 10 times

larger and the experiment with the four Rx60 robots, where

the execution time hardly varies. In this case, the advantage of

the AtlasRRT is mostly provided by the more efficient branch

generation procedure.

The Barrett arm experiment was used to evaluate the in-

fluence of the different parameters required by AtlasRRT. We

varied ǫ from 0.05 to 0.25 in steps of 0.05 and we observed

that the execution time remained in between 2 and 3 seconds

in all cases. The number of charts, thought, increases from

80 to 200 when ǫ is set to the lowest value. Similar results

are obtained when varying α from 0.2 to 0.7 in steps of 0.1
radians. When varying ρ from 0.25 to 1.5 in steps of 0.25, we

observed that for the lower values of the parameter the number

of charts increases up to 350 and the execution time increases

up to 4 seconds. This increment is due to the overhead of

creating the charts. Note, however that the performance is

still remarkably good. When λ varies from 2 to 7 in steps

of one unit, neither the execution time nor the number of

charts change significantly. Finally, we performed a series of

experiments varying ρs from 2 to 6 in steps of one unit. For

large values of this parameter the execution time increases up

to 6 seconds since most of the branches are stopped due to

collisions, which hinders the effective exploration of the RRT.

This is a well known issue of sample-based path planning

that is addressed by the dynamic-domain approach [47], which

adapts the size of the sampling areas in different parts of the

configuration space. Such technique could be incorporated into

the AtlasRRT, but we leave this point as a future work.

Finally, note that using the preliminary version of the

AtlasRRT, a problem involving two Stäubli Rx60 robots and

no obstacles was solved in about 14 seconds in average [27].

With the improvements introduced in this paper, the same
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problem is solved in about 0.2 seconds. These improvements

allow addressing significantly more complex problems, such

as the four Stäubli Rx60 example.

VII. CONCLUSIONS

In this paper, we presented the AtlasRRT algorithm, an ap-

proach that uses an atlas to efficiently explore a configuration

space manifold implicitly defined by kinematic constraints.

Since defining the full atlas for a given manifold is an

expensive process, the AtlasRRT algorithm intertwines the

construction of the atlas and the RRT: the partially constructed

atlas is used to sample new configurations and to generate

new branches for the RRT, and the RRT is used to determine

directions of expansion for the atlas. The approach retains the

exploration bias typical of RRT approaches in the sense that

the tree is strongly pushed towards yet unexplored regions of

the configuration space manifold. In the experiments reported

in this paper, AtlasRRT is more efficient than existing state

of the art approaches although this might not be the case in

problems where the configuration space is relatively similar

to the ambient space, i.e., non very constrained problems. The

computational tools used in AtlasRRT are more complex than

the ones used in existing approaches, although we provide

an implementation where new benchmarks can be easily

tested [52].

A fundamental aspect not considered in the present work

is the presence of singularities. When reaching a singularity,

control problems might appear and the forces in the robot

actuators might be undetermined, possibly leading to failures

in the motors. Thus, ideally, the path planner must be able to

determine singularity-free paths. This is an aspect not usually

addressed in the literature and we are currently working

on extensions of the presented planner to determine such

paths [56]. Changes in the dimensionality of the configuration

manifold also represent an issue for the presented planner.

If these changes occur in the transition between consecutive

stages of a given task, the presented planner can be used for

each one of them separately.

Several extensions to the basic AtlasRRT algorithm can

be devised. In particular, it might be useful to exploit the

atlas to obtain a more meaningful distance between samples

than the Euclidean one, in a way similar to what is done

in [48]. Additonally, we would like to integrate cost functions

to focus the planning on the relevant parts of the configuration

space [57] and to explore the possible extension of the

proposed planner to problems with differential constraints.

Finally, the solution paths found so far are jagged, as it is

usually the case with sampling-based path planning methods.

We are currently investigating the possible extension of the

asymptotically-optimal path planners [58] to the context of

path planning under kinematic constraints [46].
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