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Abstract

The confined and crowded environment of developing brains imposes spatial constraints on

neuronal cells that have evolved individual and collective strategies to optimize their growth.

These include organizing neurons into populations extending their axons to common target

territories. How individual axons interact with each other within such populations to optimize

innervation is currently unclear and difficult to analyze experimentally in vivo. Here, we

developed a stochastic model of 3D axon growth that takes into account spatial environmen-

tal constraints, physical interactions between neighboring axons, and branch formation.

This general, predictive and robust model, when fed with parameters estimated on real neu-

rons from the Drosophila brain, enabled the study of the mechanistic principles underlying

the growth of axonal populations. First, it provided a novel explanation for the diversity of

growth and branching patterns observed in vivo within populations of genetically identical

neurons. Second, it uncovered that axon branching could be a strategy optimizing the over-

all growth of axons competing with others in contexts of high axonal density. The flexibility of

this framework will make it possible to investigate the rules underlying axon growth and

regeneration in the context of various neuronal populations.

Author summary

Understanding how neuronal cells establish complex circuits with specific functions

within a developing brain is a major current challenge. Over the last past years, enormous

progress has been done to precisely resolve brain anatomy and to dissect the mechanisms

controlling the establishment of precise neuronal networks. However, due to the extreme

complexity of the brain, it is still experimentally difficult to investigate in vivo how neu-

rons interact with each other and with their physical environments to innervate target ter-

ritories during development. Here, we have developed a framework that integrates a

dynamic 3D mathematical model of single axonal growth with parameters estimated from

neurons grown in vivo and simulations of entire populations of growing axons. The emer-

gent properties of our model enable the study of the mechanistic principles underlying the
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growth of axonal population in developing brains. Specifically, our results highlight the

impact of mechanical interactions on both individual and collective axon growth, and

uncover how branching regulate this process.

Introduction

In vivo, neurons extend processes that must navigate through the extremely dense and com-

plex environment of developing brains to find their targets and assemble into functional net-

works. This environment provides the diffusible extracellular cues that guide neuronal

processes to their destination by orienting their growth and promoting their extension or

retraction [1–6]. As revealed by recent work, axons are not only capable of sensing and

responding to external chemical signals, but are also guided by local changes in the mechanical

properties of their surrounding [7–9]. Beyond providing chemical or mechanical cues orient-

ing axon navigation, the confined and crowded environment of the brain also imposes spatial

constraints on the organization and growth of neuronal projections. Thus, strategies to opti-

mize growth in the context of increasing numbers of neurons have been developed across evo-

lution. These include organization of neurons into populations that coordinate to grow and

innervate target territories [10, 11]. Although studies have revealed that inter-neuron coordi-

nation and interactions are particularly important in the context of a developing population

[10, 12–15], axon growth has so far been mainly studied in vitro on isolated neurons, or in vivo
on whole populations of neurons. However, to fully understand population growth, one needs

to understand the behavior of single constituent neurons, and how they interact and influence

themselves to produce global growth. This is experimentally not trivial, as tools to reproducibly

visualize and manipulate axon-axon interactions in vivo in populations of growing axons are

either lacking or heavy to implement.

To overcome these difficulties, we have developed a 3D dynamic mathematical framework

that generates simulations yielding realistic single cell morphologies and accurately reproduces

the process of axon growth in a population context. Although models taking into account dif-

ferent aspects of axon competition have been described [16–21], 3D models considering spatial

constraints and mechanical neuron-neuron interactions are so far rare [22–25]. Torben-Niel-

sen and De Schutter, for example, elaborated a framework for context-aware neuron develop-

ment where growth rules are mainly phenomenological [23]. Zubler et al. proposed a model of

neuron growth based on physical forces between objects and diffusion of substances through

the extracellular domain [24]. Vanherpe et al. proposed a framework for the development of

non-intersecting tubular-like structures in confined spaces, which highlighted the dependence

of axon elongation and final morphology on spatial boundaries and axonal density [25].

Together, these models stressed the importance of considering space-embedded processes and

interactions with the cellular environment when studying neuronal morphologies. However,

they have not, or could not, use parameters estimated from real data, and did not showcase

explicative or predictive aspects of their models.

In this work, we developed a flexible framework that can integrate data from biological

samples with mathematical modeling to uncover the principles underlying axon growth in a

population context. First, we proposed a 3D stochastic model for the growth of individual

axons which relies on parameters that can be estimated from data. This model can be imple-

mented with branch formation, and applied to the simulation of individual axons. Second, we

simulated the growth of populations of axons, letting them grow simultaneously, in a spatially
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constrained environment where they compete for space and change their path when encoun-

tering obstacles.

To test our model on biological data, we took advantage of a database of confocal images

representing single mature axons grown in the context of Drosophila brains. Strikingly, our

framework generated a range of growth and arborization patterns similar to that observed in

Drosophila brains, when implemented with parameters estimated from in vivo data, providing

a mechanistic explanation for the origin of observed morphological diversity. Furthermore,

modulating the capacity of axons to form branches influenced axon growth. At the population

level, branching axons grew more efficiently than non-branching ones. At the single-cell level,

non-branching axons were out-competed by branching ones, generating defective growth pro-

files similar to those observed in vivo upon inactivation of imp, a gene known for its role in

axon growth and branching. While the importance of branching has so far been mostly con-

sidered in the context of establishing connections with partners [26, 27], our results thus sug-

gest that branching may also be a strategy adopted during development to overcome spatial

competition and optimize growth in contexts of high axonal density. Together, the simple,

explicative and predictive framework we have developed enables mechanistic studies of

the principles governing the collective growth of axons in realistic spatially constrained

environments.

Results

Here, we propose a simulation framework for the collective growth of axonal extensions. Indi-

vidual 3D axonal morphologies are generated by a mathematical model for single axonal path

generation, and an algorithmic implementation of branch occurrence. Time is also imple-

mented algorithmically, and interactions between individuals are considered via volume exclu-

sion. Parameters can be estimated from real data, which allows the model to be not only

generative, but also explicative of key aspects of the growth process, and predictive.

Modeling individual axonal trees

Axonal paths. Axonal paths are modeled in 3D as the successive addition of discrete seg-

ments of fixed length, where the orientation of each new step follows a Markov chain that

depends on the orientation of the previous step (Markov property), and the directionality of

the attractive field (Fig 1A). This can also be expressed as a persistent (Markov property)

biased (external field) random walk, as described in [28]. Our axonal path model (Eq 1)

depends mainly on the following parameters: α, representing axon rigidity (axon capacity to

bend, referred to as the persistence parameter) and β, representing the attraction to the exter-

nal field (ψ) or bias. Other variables are also considered such as the step size Δρ and the

dynamic parameter nmax, which sets the maximum number of steps an axon grows during a

time unit tj and thus the maximum growth speed (vmax) (Table 1). The external attractive field

ψ should be proposed depending on the specific axon type to model. It may be designed as a

simple uniform field parallel to the x axis (as in Fig 1 and S1 Fig), or acquire more complex

morphologies, varying in function of space or time. Δρ defines the spatial resolution of the

model, and can be fix or dynamic. In this work, Δρ was considered fix and chosen according to

data sampling.

We use spherical coordinates (Δρ, ϑ, φ), where ϑ represents the angle in the xy plane and φ
the elevation along the z axis. Each new vector step is placed after the previous one. Because

the step size Δρ is constant, the model is reduced to two variables (ϑ, φ). Moreover, we consider

that both angles are independent, reducing the full model to two sub-models with only one

variable each: ϑ/φ.
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Fig 1. 3D mathematical model of individual axon growth. (A) The axon elongates step by step (grey segments), each step being delimited

by the current point in space i and the previous one, i − 1. Each ith new step is described by its spherical coordinates (Δρ, ϑ, φ) (represented

in 2D for simplicity; see upper left corner for a 3D view), and placed after the previous position i − 1. The exact position of the ith point is

defined (in 2D) by y
i
xy ¼ f ð�

i
x;yÞ, which is drawn from a conditional Normal probability distribution (in green). The most probable value

(mean of the distribution (μ)) considers the directions of the last step i − 1 and of the attractive field, each contribution weighted by α and β
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The probability distribution of the ith axonal tip Cartesian position (x, y, z)i knowing the

previous one (x, y, z)i−1, is thus directly defined by the probability distribution of (ϑi, φi) condi-

tioned by (ϑi−1, φi−1), and defined by

Pðyijyi� 1Þ / exp � ½aðyi � yi� 1Þ
2
þ bðyiÞ

2
�; ð1Þ

where

yi ¼ tanð
Wi � ci� 1

2
Þ; ð2Þ

and ψi−1 is the direction of the external attractive field at the position (x, y, z)i−1. The transfor-

mation in Eq 2 sets the domain of the model to (−1,1), allowing a direct implementation of

the Normal distribution. By providing a closed-form expression, this model marginalization

(or renormalization) enables the comparison of models generated with data of different resolu-

tions and using different simulation scales. Furthermore, it avoids using the Bessel functions

respectively. For each time unit tj, a maximum number of steps (nmax) is allowed. (B) Algorithmic implementation of branch generation.

During tj, a certain number of growth steps are performed (3 in this schematic representation). At the end of tj, a certain “condition” is

evaluated and, if true, a branch point is placed at the axon tip, or at any other step performed during tj (step 2). (C) Step by step axon growth

scheme during tj considering physical interactions. The axon elongates of n steps (I), until it encounters a mechanical constraint (II) and

retracts (III). During the same time interval tj, it will re-try to reach nmax steps (6 in this example). If no other mechanical constraint is

encountered (CASE A), the axon will advance to reach nmax steps. If, on the contrary, another mechanical constraint is encountered (CASE

B), the axon will retract again and stop its growth until the next time point (tj+1). In this case, the total growth during tj is then smaller than

nmax steps.

https://doi.org/10.1371/journal.pcbi.1006627.g001

Table 1. Summary of model parameters and variables.

Symbol Significance

Morphological Parameters

α Axon rigidity

β Axon external attraction

Δρ Step size

ψ External attractive field

Pb Branch point generation probability in tj
ω Branch initial angle distribution

λb Poisson parameter for branch distance

bl Maximum branch order

d Axon diameter

Numax Number of axons

Dynamic Parameters

nmax Maximum number of steps grown in tj
nr Retraction rate

countermax Maximum value of trials upon interaction

Spatial Parameters

Xmax Maximum traveled distance

ξ Growth cavity

Variables

tj Time point

ϕi Step angle

θi Model angle variable

counter Number of trials upon interaction per growing tip

https://doi.org/10.1371/journal.pcbi.1006627.t001
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for the normalization of the usual von Mises distribution for the angular domain. With this

definition, the variable θi is locally defined in reference to ψ. Furthermore, α weights the

difference between the future and current direction, and β the difference between the ith

step vector direction and the direction of the attractive force. Thus, high values of α favor a

straight axonal trajectory while α! 0 results in a very tortuous one (S1 Fig). Similarly, if the

external attraction is very high (β!1), axons tend to align to the external field gradient

lines, while if this attraction is low (β! 0) they do not follow any preferential direction (S1

Fig). The same model in Eqs 1 and 2 is applied to the elevation angle φi, to define P(ϕi|ϕi−1),

with �i ¼ tan
φi � c0;i� 1

2

� �
.

Notably, the model can be equivalently written as follows:

yi ¼
a

aþ b
yi� 1 þ xi; ð3Þ

where

xi � N ð0;
1

2ðaþ bÞ
Þ: ð4Þ

With this formulation, it becomes clear that at each step of the chain θi conditioned to the

step before, θi−1, follows a Normal distribution with mean m ¼ a

aþb
yi� 1 and variance s2 ¼ 1

2ðaþbÞ

(Fig 1A).

A major advantage of our model is that the main parameters α and β can be directly esti-

mated from real axonal trajectories extracted from data. Finally, as mentioned before, our

model can be rescaled in function of data spatial sampling, allowing closed forms to obtain

equivalent parameters in smaller or higher scales (see Model renormalization in Supporting

Information).

Branch formation. The algorithmic implementation of branch occurrence is described in

Fig 1B. After each time unit tj, if a certain branching “condition” is fulfilled, then a branching

point is placed at the axon tip or at any other step performed during tj. If “condition” is false,

tj+1 begins and the axon continues growing (not shown). “condition” can be arbitrarily set by

the modeler and, for example, follows a uniform probability law. Alternatively, it can be esti-

mated from real data. In the first case, “condition” is fulfilled if a random number from 0 to 1

is smaller or equal to the branching probability Pb. In this case, the branch is placed randomly

at one of the steps performed during tj. Branches are born with random initial angles drawn

from the distribution ω. In this model, we also considered branch density (λb), such that a new

branch appears if its distance to the previous branch is higher or equal to a random Poisson

number with parameter λb. Finally, the parameter bl determines the maximum order of

branches (i.e. bl = 0 means no branching, bl = 1 only first order branches, etc.). Pb, ω, λb and bl
can be estimated from data or imposed (Table 1).

Growth stopping conditions. By default in our framework, axons stop growing when one

of their tips reaches a predefined region. This region depends on the axon spatial environment

-when defined- or can be set arbitrarily (Xmax, see Table 1). It is also possible to indicate a pre-

defined maximum length for branches, following for example a Normal law.

Generation of a variety of axonal morphologies. As illustrated in Fig 2, our framework

can generate axonal trees with realistic and heterogenous morphologies. Indeed, the arboriza-

tion patterns of both zebrafish retina ganglion neurons (left) or human cortical pyramid neu-

rons (right) were successfully reproduced upon simulation of single axons in isolation (listed

in the NeuroMorpho.Org database [29–31]). In these examples, the parameters were set manu-

ally: we first varied simultaneously α, β and Δρ to match the axon sinuosity, and then set the
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parameters related to branch occurrence to simulate the arborization pattern specific to each

population.

Mechanical interactions between simultaneously growing axons

To mimic the crowded environment of the brain, we implemented via volume exclusion the

mechanical and spatial constraints imposed by surrounding tissues an cells, which can occur

upon interaction with another axon, or with the edges of the cavity ξ in which axons grow. We

considered two possibilities for each artificial time point. If space permitted, axon tips grow

Fig 2. Examples of axonal morphologies generated by the model and comparison to real data. (A) Real (left) and simulated

(right) axonal trees of zebrafish retina ganglion neurons. (B) Real (left) and simulated (right) axonal trees of human neocortex

pyramidal neurons. Real axonal trees were obtained from the Neuromorpho.org database. Simulated axons where generated in

isolation, using the following parameter values (Zebrafish/Human): for the main axon α = 15/10 and β = 2/30; for the branches α =

20/100 and β = 0.5/10, Δρ = 1/3, ψ = 0 rad 8x / 0 rad. for x� 60 μm, +(−)1.3 rad for x> 60 μm and y> 0(y� 0), Pb = 0.5/0 for

x< 60 μm and 0.3 otherwise, ω: uniform in all the space/ uniform in a solid angle of p
4

respect to the neurite from which the branch

emerges, λb = 6/1, bl = 2/2, nmax = 10/1, Xmax = 80/110. In addition, for the human neocortex pyramidal neurons, branch maximum

lengths follow a normal distribution of mean 100 μm and standard deviation 70 μm.

https://doi.org/10.1371/journal.pcbi.1006627.g002
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with a maximal speed of vmax ¼
nmaxDr
Dt during tj. If, on the contrary, axon tips encounter another

axon, or the geometrical limits of ξ before accomplishing nmax steps, they will retract the last

few (nr) steps realized during tj (Fig 1C). Then, they will try to regrow in another direction

until nmax steps are accomplished (Fig 1C, CASE A). However, if a second obstacle is encoun-

tered within the same time frame (Fig 1C, CASE B), axon tips will stop their growth after the

retraction of the last nr steps, and will try again growing only in the next time point (tj+1). Such

an alternance of growth and repulsion steps during the axonal elongation process has been

described in the literature [17, 23, 25]. Gallo and colleagues ([7]), for example, observed that

neurons growing under mechanical constraints sample repeatedly the obstacles they encoun-

tered, until they find a free way. Furthermore, Schier and colleagues ([32]) mentioned the exis-

tence of inter-neuron contacts during development, proposing the so-called growth and

repulsion mechanism. For the sake of computational time, as well as to mimic real timing con-

straints imposed by the developmental program, each axon tip has a limited global number of

trials before it stops growing (counter). The maximum value of trials upon interaction (coun-

termax) should be estimated or fixed. The axonal diameter dmay be measured from data or

adapted from already published values. Finally, the shape and dimensions of the growth cavity

ξ should be adapted to the case under study (see Table 1).

In order to handle volume exclusion, the growth of each axon is simulated sequentially in

each time point. After each step, the algorithm checks that the new position of the axon tip is at

least one diameter (d) away from every other axonal structure or cavity limits (ξ). If this condition

gets false (mechanical obstacle), the algorithm proceeds as described in the previous paragraph.

Simulations of collective axon growth. Fig 3 illustrates the importance of taking into

account spatial competition during axonal growth. 400 axons were considered growing in a

cylinder of fixed diameter and length (Fig 3A). We first analyzed the impact of considering

increasing axonal diameter in non-branching axons, and defined the percentage of non-elon-

gated axons as the proportion of the population that did not reach the extremity of the cylinder

(90% of the tube). As shown in Fig 3B, this proportion grows in a logistic way with the diame-

ter size, due to the decreasing fraction of free volume and increasing spatial competition

between axons. A similar trend is observed when increasing axon number (Numax) (S2A Fig).

For a fixed diameter (d = 0.1, d = 0.25 or d = 0.4μm) and a fixed number of axons (Numax =

400), we then analyzed the percentage of non-elongated axons when increasing the probability

of branching (Pb), and thus the number of branches per axon (Fig 3C and S2B Fig). For axonal

diameters of 0.1 and 0.25 μm, forming branches decreased the percentage of non-elongated

axons for any branching probability, reflecting a higher chance to have one axon branch tip

reaching the extremity of the cylinder. For d = 0.4 μm, forming more than one branch was

prejudicial to the overall growth success of the population, reflecting an increase in neuronal

density and in the probability of encountering mechanical obstacles. In contrast, increasing

countermax (duration of growth) promotes axon elongation (S2C Fig), enabling axons to com-

plete their growth within the considered time window.

Biological model: Drosophila Mushroom Body γ neurons

To understand the importance of considering mechanical interactions and confinement when

studying axons growing as a population in vivo in brains, we applied our model to Mushroom

Body (MB) γ neurons. These neurons project stereotypically in each hemisphere of the Dro-
sophila brain (Fig 4A). MB γ axons (about 650 in total) fasciculate proximally to form a dense

fiber projecting ventrally: the peduncle (Fig 4B). More distally, adult axons de-fasciculate to

innervate the so-called medial lobe where they form branches of various lengths, with at least

one reaching the distal tip of the medial lobe (Fig 4C, red arrows and [33]). Remarkably, a
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range of arborization patterns is typically observed within populations of genetically identical

γ neurons. As described previously by Rubin and colleagues [34], MB γ axons establish contact

with specific sets of input and output neurons projecting to functional and anatomical com-

partments distributed along the medial lobe (Fig 4D).

To quantitatively analyze the morphology of individual axons within the population, we

genetically labeled single MB γ neurons and imaged their adult arborization patterns by

Fig 3. Simulations of axons growing collectively in a confined environment. (A) 400 axons were simulated growing inside a cylinder of fixed diameter and length.

Left: whole population. Right: example of an individual properly-elongated axon generated with d = 0.4 μm and Pb = 0.5. Axons were defined as properly elongated if at

least one of their branch tip reached 90% of the cylinder length. The external field (ψ) directionality is represented as an arrow. (B) Percentage of non-elongated axons in

function of the axon diameter value. (C) Percentage of non-elongated axons in function of branch number for different axonal diameter values. The error bars in B and

C represent the standard deviation observed after running 3 simulations. The following parameter values were used: α = 9 and β = 2, Δρ = 1, ψ = 0 rad, ω: uniform in all

the space, λb = 15, bl = 1, d: indicated in each case, Numax = 400, nmax = 6, nr = 2, countermax = 140, Xmax = 70 and ξ: tube of radius 13 μm. Pb = 0 was used in B and for

the “no branch” condition in C. Increasing values of Pb were used to increase the number of branches per axon (S2B Fig).

https://doi.org/10.1371/journal.pcbi.1006627.g003
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Fig 4. Characteristics of adult Mushroom Body γ neurons. (A) Wild-type adultDrosophila brain expressing the membrane-tagged CD8-GFP construct in γ neurons,

under the control of the MB009B-Gal4. Nuclei are labeled in white with DAPI. The dotted line on the top view image corresponds to the midline. (B) 3D reconstruction

of one Mushroom Body where γ neurons only were labeled. Genotype: MB009B-Gal4/UAS CD8-GFP. (C) Axonal arborizations of two individual adult γ neurons

labeled by GFP using the MARCM technique. Confocal images taken along the z axis were projected (Maximum Intensity Projection). Dotted lines delimit the shape of

the medial lobe. Red arrows indicate axon tips that reached the extremity of the medial lobe. (D) Schematic representation of the different anatomical domains

(distinguished with different colors) defined along the medial lobe and innervated by distinct input and output neurons. Adapted from [34]. Scale bars: 20 μm in A, 50

μm in B and 10 μm in C. (E) Top panel: schematic representation of how directionality angles were measured. We have considered the angle between the vector defined

by the first and last point of the mother branch (red segment), and the vector defined by the first and last point of the considered branch (yellow segment) projected on

the xy plane. Bottom panel: frequency distribution of the directionality angles of long (>10 μm, type I) and short (<10 μm, type II) branches measured on reconstructed

wild-type adult γ axons. The frequency values are presented as a percentage of each group (n = 97 and 283 for type I and II branches respectively). The middle circle

represents 10 and 15% for type II and I respectively. ��� stands for p = 4.4−13 (Kruskal Wallis test).

https://doi.org/10.1371/journal.pcbi.1006627.g004
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confocal microscopy. We then reconstructed the skeletons of each individual axonal trees

(n = 43; available at NeuroMorpho.org), and included them all in the same reference lobe

after normalization (Supporting information and S3A–S3D Fig). As shown in S3C and S3D

Fig, reconstructed axons spread over the entire reference lobe and exhibited a wide range of

morphologies, indicating that our database is representative of the variety of growth patterns

that γ axons may adopt. Analyzing the average directionality of individual axonal segments

along the medial lobe revealed that MB γ axons are strongly oriented toward the midline

(S3E Fig). Furthermore, measuring the deviation angles of branches from the branch they

emerge, revealed that branches could be classified into two groups with distinct properties.

While long (>10 μm) branches were mainly oriented relatively parallel to the lobe axis (Fig

4E), sometimes reaching the distal end of the medial lobe (Fig 4C), short branches (<10 μm)

exhibited no bias in directionality (Fig 4E). These observations suggested that long and short

branches (that we named type I and type II branches respectively) may be generated via dis-

tinct mechanisms.

To better understand how branches are generated and thus implement them in our frame-

work, we imaged in real-time maturing brains expressing GFP in single γ neurons. MB γ neu-

rons are born during embryogenesis and early larval stages but then undergo developmental

remodeling [34–38], such that growth and branching of adult axonal trees occur during meta-

morphosis. Although live-imaging at this stage did not allow us to follow the entire growth of

γ axons, it enabled us to dynamically record parts of this process. Consistent with our analysis

of fixed samples, two main types of branches were observed in movies: very dynamic short

branches (type II, asterisks), and more static longer branches (type I, arrows) (S1 Video and

S4A Fig). Type II branches exhibited series of growth and retraction events and typically mea-

sured between 2 and 10 μm (80% between 2 and 5 μm and 18% between 5 and 10 μm, n = 484,

see S4B Fig). Longer type I branches had a dynamic activity restricted to branch tips, and were

on average longer than 10 μm. We thus included both types of branches in our model, such

that two scenarios can occur at the end of each tj. In the first one, the axon generates a type I

branch that will then elongate following the previously described rules in Fig 1. In the second

one, no type I branch is generated. A type II branch is then formed if its distance to the previ-

ous branch is higher or equal to a random number from the Poisson distribution with parame-

ter λb. This branch will appear and disappear with different uniform random angles and get

stabilized if it establishes a contact with another branch. Its length is drawn from the distribu-

tion measured from data and described previously. As type II branches are quite short and

dynamics, we did not consider their volume in our model, but only their formation and

stabilization.

Parameter estimation

Beyond enabling quantitative description of axonal trees, reconstructions of real axons allowed

us to directly estimate, or calibrate, all the morphological and spatial parameters from individ-

ual axons grown in vivo as a population (see values in Table 2). Temporal parameters were

arbitrarily fixed and invariant for all the experiments.

α and β: To estimate these parameters, we considered that each kth reconstructed axon of

lengthM can be represented by the sequence y
k
i , applying Eq 2 to each step of length Δρ. It can

be shown that the variance of y
k
i is

s2

yki
¼ s2

0

XM� 1

i¼1

g2i ¼ s2

0

1 � g2M

1 � g2
ð5Þ
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where

g ¼
a

aþ b
; s2

0
¼

1

2ðaþ bÞ
: ð6Þ

When i!1 we obtain the expression

s2

yk1
¼

s2
0

1 � g2
: ð7Þ

It can also be shown (Supporting information) that the variance of the difference y
k
i � y

k
i� 1

(for i!1) is

s2

Dyk1
¼

2s2
0
ð1 � gÞ

1 � g2
: ð8Þ

To obtain the estimations âk and b̂k, we assume that the axons are long enough, and calcu-

late ^s2

yk1
and ^s2

Dyk1
, from where we get ĝ and ŝ2

0
to finally apply Eq (9)

âk ¼
ĝ

2ŝ2
0

; b̂k ¼
1

2ŝ2
0

� âk: ð9Þ

and obtain the estimates of the model parameters for each neuron k. To estimate the parame-

ters of a population containing K axons, we consider the distributions of parameters (âk; b̂k)

obtained from individual axons using Eq 9. However, the distributions of the estimated values

were not well described by their mean or median. Thus, we chose the couple of values (â; b̂)

that maximized the similarity between the distribution of parameters estimated from data and

that obtained from simulations with different values of (α, β), taking into account axon-axon

Table 2. Parameter values and estimation procedure.

Parameter Value Method

Morphological

α 7.45 Estimated from data

β 1.67 Estimated from data

Δρ 1 μm Estimated from data

ψ Field described in S6B Fig Estimated from data

Pb 0.15 Estimated from data

ω Random uniform Hypothesis

λb 6.2 Estimated from data

bl 1 (type I) 2 (type II) Observed from data

d 0.23 μm Calibrated from data and bibliography

Numax 650 From bibliography

Dynamic

nmax 6 Fixed

nr 2 Fixed

countermax 140 Fixed

Spatial

Xmax 70 μm Estimated from data

ξ See S6D Fig Estimated from data and bibliography

https://doi.org/10.1371/journal.pcbi.1006627.t002
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interactions (S4 Fig and Supporting information). The estimated values were: â ¼ 7:45 and

b̂ ¼ 1:67 (Table 2).

Δρ: was set to 1 μm, to be consistent with the general axonal diameter in the images, and

avoid oversampling (see Supporting Information and Table 2).

ψ: the external attractive field was estimated based on the observed directionality of real

axons, as neither the identity nor the source of the cue(s) guiding the growth of γ axons are

currently known. We placed the attractive source at the end of the medial lobe, and evaluated

different gradient geometries by comparing the similarity between real axon orientation and

field directionality (S6A–S6C Fig and Supporting information). The source configuration

maximizing this similarity was selected for further analysis, see Table 2.

d and Numax: the axonal diameter was estimated from published electron microscopy

images [39], and optimized by simulations (see S6E Fig and Supporting information). The

selected diameter value corresponds to the first elbow of the obtained logistic function

(d = 0.23 μm). Nmax = 650 was obtained from the work of [34] (Table 2).

ξ and Xmax: in vivo, adult γ axons grow as a population, in a confined environment defined

by surrounding neuronal and glial cells (Fig 4A and [34]). To consider mechanical constraints

that underlie axon growth in the crowded environment of a maturing brain, we imposed a spa-

tially-restricted environment mimicking MB lobe geometry, and defined based on our confo-

cal images as well as on the work of Aso et al. [34] (Supporting information and S6E Fig).

Pb, ω, λb and bl: We first estimated the probability Pb as the mean of main axon lengths (93

μm) divided by nmax to obtain -roughly- the number of time points (tj) it takes to grow. By sim-

ply dividing the mean number of type I branches per axon (2.25) by this number, we obtained

Pb = 0.15. Based on our observations of real samples, we then hypothesized that branches

(types I and II) are born initially with uniform random angles (ω), and that type I branches

can create type II branches but not type I (i.e. bl = 1 for type I branches and 2 for type II

(Table 2)).

Impact of branching on the growth of γ axon population

Using our model and the parameters estimated from data, we simulated entire populations of

γ axons. To estimate the capacity of axons to successfully grow, and extend until the extremity

of the medial lobe, we defined a “stopping region” of about 20 μm-wide at the end of the

medial lobe (Fig 5A). Although real axons do not all sharply stop at the extremity of the medial

lobe (midline), they all reach this region. We thus considered as non-elongated axons those

that did not reach this region. In this condition, about 10% of simulated γ axons (n = 3 simula-

tions) failed to elongate properly.

To assess the validity of our branch occurrence hypothesis (random uniform), we then ana-

lyzed the distribution of normalized type I branching point numbers along real lobe axes (Fig

5B, orange bars). This revealed that, in vivo, type I branching points are not uniformly distrib-

uted throughout the lobe, but rather peak in the most central part. Such a distribution corre-

lates with that of axon density (or occupation rate) along the medial lobe (Fig 5B, green line).

This observation led us to consider an alternative hypothesis in which branch occurrence may

be favored in regions of high density and increased spatial competition.

Thus, we proposed that branching condition is true when the axon tip encounters mechani-

cal obstacles (branching upon contact) during a given time interval (CASE B in Fig 1C).

Considering such a mechanical branching, we performed new simulations of entire γ axon

populations, and observed a reduction of the percentage of non-elongated axons (4.9 ± 0.22%;

n = 3 simulations). To more precisely assess the similarity between real and simulated axons in

this condition, we compared the distributions of main axon lengths (defined in Supporting
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Fig 5. Simulation of γ axon growth within a population of interacting axons. (A) Schematic representation of a single main γ axon within the medial lobe.

Both the stopping region (shaded region) and the traveled distance (projection along the horizontal axis) are indicated. Axonal trees that fail to elongate a

branch reaching the stopping region are considered as non-elongated. (B) Correlation between the spatial distribution of type I branching point number and
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information), as well as the distributions of distances traveled within the medial lobe (defined

by the distances from the lobe entry point to the end point projected along the medial lobe

axis, scheme in Fig 5A). As shown in Fig 5C, the distribution profiles of real and simulated

axons were very similar.

In term of branching, simulated γ axons had on average 2.0 ± 0.01 type I branches (n = 3

simulations; standard deviation σ = 1.68), a number very close to that of real axons (2.25 with a

standard deviation of 1.1). Furthermore, they exhibited morphologies matching those of real

axons (Fig 5C).

To quantify the overall similarity between simulated and real axonal trees, we used the dis-

tance between trees developed by [40]. This measurement takes into account the length, the

morphology, and the directionality of main axons, as well as branching characteristics. As

shown in Fig 5D and S7B Fig, the distribution of distances between all pairs of real and simu-

lated axons is close to that of distances between all pairs of real axons and, remarkably, is sig-

nificantly closer to that obtained with axons simulated using the random branching hypothesis

(p value between random and mecha of 3.3e−15). To then determine if our model accurately

reproduces intra-population variability, we compared the distances between each couple of

real axons to those between each couple of simulated ones (Fig 5E and S7C Fig). The distribu-

tions for real axons and axons simulated with mechanical branching were close, while that for

axons simulated with random branching was significantly different (p value between random

and mecha of 9.6e−7). This analysis highlighted that our model recreated morphological fea-

tures that were not initially imposed by the model, but rather emerged from its rules.

Together, integrating axon-axon interactions in our model generated populations of γ
axons with a realistic range of morphologies. Furthermore, this revealed that branching in

response to physical constraints increases the chance that axons successfully elongate, and

reproduces the intra-population variability of morphologies observed for real axons.

Out-competition of non-branching axons by branching ones:

Interpretation of mutant phenotypes

So far, we have considered in our simulations that the whole population of axons follows the

same rules, and have analyzed the emergent collective phenomena. We next wondered what

would happen if the properties of only a single neuron would be altered in a context where the

rest of the population grew according to our model. To address this question, we performed 45

independent simulations where a single axon unable to generate type I branches grew among a

population of surrounding axons capable of branching. As shown by the distributions of axon

lengths and traveled distances of single non-branching neurons, a bimodal behavior emerged

with about half of the simulated single axons failing to grow properly (Fig 6A). This proportion

axonal density. The orange bars represent the number of type I branching points per axon along the lobe axis. The green curve represents the number of axonal

segments found in each lobe region. Data from reconstructed real axons were used for this analysis. (C) Top: Frequency distributions of 2D-projected main

axon lengths (left panels), and traveled distances within the medial lobe (right panels). Data from real wild-type γ axons are shown in the left panels (n = 43),

and data from simulated ones in the right panels (n = 650). The black arrows indicate the stopping region. The distributions of 3D main axon lengths are shown

in S8A Fig. The definition of main axon is provided in Supporting information. Bottom: Examples of reconstructed real single wild-type γ axons (left) and

simulated γ axons (right). (D) Measure of similarity between real and simulated axons. Boxplots of inter-axon distances within the population of real axons

(real, n = 43), and between real and simulated axons, considering either mechanical (mecha) or random (rand) branching (n = 50 in both cases). (E) Measure of

intra-population morphological variability. Boxplots of inter-axon distances within the population of real axons (real, n = 43), and within the population of

simulated axons, considering either mechanical or random branching (n = 50 in both cases). Inter-axon distances were calculated with the ESA distance [40].

Boxplots were created following the original plotting convention of Tukey. The central mark indicates the median, the bottom and top edges of the box indicate

the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered as outliers. Outliers are plotted individually using

the ‘+’ symbol.

https://doi.org/10.1371/journal.pcbi.1006627.g005
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Fig 6. Out-competition of non-branching axons by branching ones. (A) Top: frequency distributions of 2D-projected axon lengths

and traveled distances of single simulated non-branching axons grown in the context of otherwise branching axons. 40% of axons fail

to reach the lobe extremity in this condition (n = 45). Bottom: examples of fully elongated (left) and growth-defective (right) simulated

single axons. (B) Top: frequency distributions of axon lengths and traveled distances of single imp7 mutant axons grown in the context
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is much higher than that observed in condition where all axons in the population do not form

branches (10% in this condition).

The bimodal axon growth distribution we observed for non-branching single neurons was

reminiscent of the growth pattern described for single neurons mutant for the imp gene [41,

42]. To quantitatively compare distributions, we took advantage of a collection of 45 confocal

images obtained from Drosophila brains in which axons mutant for imp grew in the context of

an otherwise wild-type population. These neurons, labeled with GFP, were reconstructed, and

the distribution of their axon length and traveled distance plotted. Strikingly, as shown in Fig

6B, the bimodal distribution profiles of real imp mutant axons were very similar to those dis-

played in Fig 6A, with about half of the mutant individual axons failing to reach the extremity

of the medial lobe. Furthermore, the morphology of reconstructed imp mutant axons was very

similar to that of individual simulated axons (S8B and S8C Fig). In both cases, indeed, few

short side branches were observed along the main axon, and a mixture of short and long axons

was observed (compare Fig 6A and 6B, lower panels and see [41]). These results thus suggest

that branching deficiency might be the primary defect induced by imp inactivation, resulting

in axon growth defects exacerbated by a competition with surrounding wild-type neurons.

They also demonstrate the biological relevance of our mathematical framework, and its capac-

ity to propose a mechanistic interpretations of in vivo phenotypes. An interesting prediction of

our model is that the defective growth of individual non-branching axons can be rescued by

increasing their apparent growth speed. Indeed, increasing nmax in non-branching axons sur-

rounded by branching axons increased their chance to properly elongate, both in the context

of a theoretical cylindric volume (S9A Fig), and in the context of an in vivo environment

(increasing nmax by five fold reduces the percentage of non-elongating non-branching axons

to 5%; not shown). In contrast, increasing nmax did not significantly affect elongation success

in a homogeneous population of growing axons (S9B Fig).

Model sensitivity to α/β values

Our model of individual axon growth relies on two main parameters estimated from in vivo
data: α and β. To investigate how differences in parameter values affect the system, we sepa-

rated the wild type in vivo data set in two random halves, and estimated the parameters sepa-

rately in each population. Similar values of α and β were obtained for the two populations

(S5B” Fig). We then simulated the growth of γ axon populations using these two pairs of

parameters, and obtained a growth efficiency of above 95% in each case (data not shown). This

reveals the stability of the model in response to small changes in the parameter values, as well

as the parameter estimation coherence within the data set.

To further test the robustness of the model, we then calculated the percentage of the γ axon

population that fail to elongate in simulations of collective growth upon larger variations in

the α and β values (see resulting map in Fig 7A). Remarkably, the combination of parameter

values estimated from data, and used in our model (α = 7.45 and β = 1.67) is close to the theo-

retical combination that minimizes the percentage of axons showing defective growth (αo βo)
(Fig 7A).

Interestingly, we noticed that the αo βo combination, while optimal for axon growth effi-

ciency, generated axons with a reduced complexity (Fig 7B; to be compared with Fig 5C), and

a lower number of type I branches (1.6 +/- 1.4 vs 2.25 +/- 1.1 for real axons). As further

of a wild-type population. A bimodal behavior similar to that generated by simulations is observed (n = 45). Lower panels: example of

fully elongated (left) and growth-defective (right) imp7 single axons grown in a wild-type environment and labeled with GFP. Scale bar

10 μm.

https://doi.org/10.1371/journal.pcbi.1006627.g006
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Fig 7. Impact of α and β values on axon morphologies. (A) Percentage of axons failing to reach the lobe extremity in function of pairs of parameter values. The

dotted lines correspond to the parameter values estimated from data (see Parameter Estimation). The square shows the pair of parameter values minimizing the

percentage of axons that do not reach the lobe extremity (αo and βo). (B) Examples of γ axon morphologies from simulations with the parameters that optimize

axon growth at the population level (αo βo). (C) Boxplots of inter-axon distances within the population of real axons (real, n = 43), axons simulated with the

estimated parameters (estimated α β, n = 50), and axons simulated with the αo βo parameters (n = 50). Inter-axon distances were calculated with the ESA distance

[40]. Boxplots were created following the original plotting convention of Tukey. The central mark indicates the median, the bottom and top edges of the

box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered as outliers. Outliers are plotted

individually using the ‘+’ symbol.

https://doi.org/10.1371/journal.pcbi.1006627.g007
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illustrated by the measure of intra-population morphological variability (Fig 7C), the popula-

tion of axons simulated with these values was more homogeneous than the real one, failing to

reproduce the diversity of axon morphologies observed in vivo (p value between axons simu-

lated with estimated parameters and αo βo of 1.5e−44). Thus, the pair of parameters estimated

from real data does not only represent an optimal combination ensuring efficient growth, but

also generate biologically-relevant morphological diversity and complexity.

Discussion

In this work, we have proposed a stochastic model for 3D axon growth and branching that

takes into account spatial constraints imposed by the environment, as well as physical interac-

tions between neighboring axons of the growing population. As shown, the proposed model is

not only generative of axonal morphologies, but also explicative and predictive.

Model parameters reflect biological properties

A major strength of this model is that it relies on parameters that are related to the biological

process of axon growth, and can be estimated or calibrated from data or literature (when

available).

Individual axon path, for example, is modeled by a succession of discrete steps, governed by

a Gaussian Markov Chain with two parameters that are linked to the physiological and

mechanical properties of individual axons. Specifically, it embeds a first term reflecting the

axonal rigidity (α), and a second term modeling the attraction provided by an external field

(β). Thus, the model includes three main influences on axon growth: rigidity, attraction

towards a target area and randomness (representing not only the inherent stochasticity of the

biological process, but also the presence of other surrounding cells). Similar ways of modeling

axonal growth have already been described in previous work [43–47], considering different

mathematical formulations. Most of previous models, however, were developed in 2D, and did

not allow the estimation of parameters from data. Furthermore, they relied on many parame-

ters, and sometimes parameters without direct biological meaning. Our 3D model overcomes

these limits, in part because it is invariant to data spatial sampling, which is an important

advantage when dealing with discrete models and discrete datasets of possibly different spatial

resolutions. Classically, the parameters of such models can be estimated from data with second

order statistics. However, we observed that the proposed model is broken when axons growing

in a population context hit surrounding cells or other axons. Therefore, we proposed a scheme

that alternates population simulation and parameter estimation to take into account these

environmental constraints, and accurately estimate the parameter values. Remarkably, the

parameters we thus estimated from real neurons generated populations of axons that not only

recapitulated, but also predicted the properties of real axons growing in vivo in the context of

the Drosophila brain.

Model parameters can be divided into three articulated sets (morphological, spatial and

temporal), which enables both flexible and step-specific dissections of the axon growth pro-

cess, and the study of a wide-range of growth patterns. Highlighting the versatility of our

model, a variety of morphologies could be simulated by adapting parameter values (Fig 2).

Origin of morphological diversity within a population of genetically

identical neurons

Another major strength of our model is that it can provide mechanistic interpretations of neu-

ron behavior. For example, the diversity in γ axonal trees observed in vivo is well reproduced

and explained by our model that generates collections of neurons with unique morphology.
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Part of the variability observed after simulation is triggered by intrinsic factors, including the

intrinsic stochasticity of the axon growth process modulated by the properties of the axons.

Increasing axon sensitivity to the attractive field, indeed, generated populations of neurons

with reduced morphological heterogeneity (Fig 7B and 7C), suggesting that differences in

intrinsic properties may partly explain the various degrees of morphological variance observed

in vivo in different populations. Interactions with the surrounding environment also largely

contribute to the variability in axon morphology observed in our model. In particular, mecha-

nistic constraints imposed by other γ neurons growing synchronously and competing for

space define final axon paths and impact on the formation of branches. Remarkably, previous

work has shown that, like mammalian brain structures, MBs exhibit a unique degree of flexi-

bility in their organization, with neurons establishing plastic synapses and receiving unstruc-

tured rather than stereotyped inputs [48–50]. Thus, establishing a dense network of non-

stereotypic axonal branches may be an optimal strategy for MB γ neurons to perform their

described integration function, and in particular contextualize novel sensory experiences to

provide adapted output behavior [51, 52].

Axon branching facilitates axon elongation

An interesting finding of our work is that γ axons forming side branches grow more efficiently

than axons unable to branch. Indeed, populations of branching axons reach the end of the

medial lobe with a higher overall frequency than non-branching axons. Furthermore, popula-

tions of branching axons also complete overall growth more rapidly (half the time to complete

growth at 95% compared to non-branching axons), which could be beneficial in the context of

maturing brains subjected to the timing constraints of developmental programs. The impor-

tance of branching is also visible at the single cell level, as simulating the growth of individual

non-branching axons in a competition context revealed that axons unable to form branches

are out-competed by branching neighbors. This prediction fits with the growth defects

observed in single impmutant neurons grown in vivo in a wild-type environment.

How does axon branching promote elongation? The main advantage of forming branches

is likely to provide neurons with the possibility to overcome local mechanical hindrances pre-

venting the growth of axonal processes by re-deploying their axonal trees into less spatially

constraint regions. Such a process may be compared to the “selective branching” model pro-

posed to explain the oriented growth of terminal axonal arbors in response to guidance cues

[53, 54]. In both cases, forming branches that can optimally respond to external cues, and thus

exhibit preferential growth, represents an efficient means to regulate the elongation of axon

arbors, and to adapt it to variations of the local chemical or mechanical environment.

Importance of axon-axon interactions in populations of growing neurons

Another finding of this study is the importance of axon-axon mechanical interactions when

considering in vivo axonal growth. Such interactions were shown in different contexts to

underlie the establishment of functional neuronal architecture, by promoting the self-organi-

zation of axonal arrays and their incorporation into interconnected fibers and circuits, or by

defining adapted target innervation patterns [15]. Axon-axon fasciculation, for example, pro-

motes the sorting of axons into bundles, thus facilitating the coordinated long-range naviga-

tion of axon populations [15, 55]. Axon-axon repulsion, in contrast, is essential in tiling

strategies, where branches must maximize the surface they cover and minimize overlap

between neighboring arbors [32, 56]. In DrosophilaMBs, γ axons de-fasciculate when leaving

the peduncle, and then innervate the medial lobe at high density, filling it with projections [34,
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57]. Axons growing in such a crowded environment thus compete with others for space, and

must evolve strategies to grow optimally.

Here, we have shown that axon branching in response to mechanical obstacles is more

favorable to overall axon elongation than random branching. Indeed, forming new branches

“on demand” may be an optimal strategy to provide responses adapted to local spatial con-

strains while preventing crowding of the growth space. Of note, we have here considered that

the limits of the growth cavity and the neighboring growing axons represent the main source

of mechanical obstacles, but the presence of connecting neurons extending their processes to

reach γ axons is likely to also play a role. Adult γ axons, indeed, establish synapses with distinct

populations of MB output neurons along the medial lobe, and also receive direct inputs from

specific groups of modulatory neurons [34, 58, 59]. Thus, a possibility is that the increased

density of branch points observed in the central part of the lobe (Fig 5B) may also reflect the

presence of a high density of afferent and efferent neurons extending branches in this region.

In the future, it will be interesting to implement in the model the presence of external pro-

cesses extending to connect to γ neurons.

To date, the molecular and cellular mechanisms that may trigger formation of new

branches in response to mechanical hindrance are unknown, but a possibility is that branching

may be induced by axon growth cone pausing. Indeed, real-time imaging of cultured sensori-

motor neurons has revealed that new branches were formed at sites where growth cones had

paused, shortly after they resumed their growth [60]. Pausing was proposed to enable accumu-

lation of material such as cytoskeletal components required for branch initiation [61]. An

alternative hypothesis is that branching may be triggered by a branch-promoting signaling

induced upon contact with neighboring neurons. Such a signal may be mediated by trans-

membrane signaling molecules present at the surface of neighboring cells or via synaptogen-

esis, as both were shown to induce branch formation [62–64].

In conclusion, the new principles that emerged from our model may underlie the growth

and functionality of various populations of axons. For example, cerebellum-like structures,

sometimes described as the vertebrate counterparts of MBs, also consist of large collections of

equivalent cells that project axon-like processes into densely-packed parallel fibers [65, 66]. In

the future, it will also be interesting to apply our model to vertebrate brain interconnected

structures with different neuro-architectures, and to explore its relevance during both develop-

mental and regenerative axon growth.

Methods

Generation and confocal imaging of MARCM clones

MARCM clones were generated as described by Wu and Luo [67], using the following fly

stocks: hsp-flp, tub-Gal80, FRT19A; 201YGal4,UAScGFP; FRT19A and FRT19A imp7. Brains

were dissected at the adult stage, and stained with anti-GFP (molecular probes life technology;

ref A11122) and anti-FasciclinII (1D4, DSHB) primary antibodies, revealed by respectively

anti-rabbit Alexa 546 and anti-mouse Cy5 secondary antibodies (see [41] for a detailed proce-

dure). Brains were mounted in propyl-galate mounting medium, and imaged with an inverted

Zeiss LSM 710 confocal microscope equipped with a 40X/1.1 NA water objective. Z sections

were taken every 0.6 to 0.9 μm, with a xy pixel size of 0.09 μm.

Simulations

Axons continue growing if i) they have not reached the end of the medial lobe, ii) their counter

is smaller or equal to a fixed maximum value, and, iii) no other type I branch from the same

neuron has reached the extremity of the medial lobe. The value of the counter is incremented
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by two at each time point tj if the axon fails to elongate nmax steps. Axons finding too many

mechanical obstacles along their way will thus reach the maximum counter value before reach-

ing the lobe extremity. The simulation is completed when there is no growing axon left.

Branching may occur at every time point tj after elongation. Type I branch origin can be

random (with uniform probability Pb) or upon contact (after encountering two mechanical

constraints in the same time point). In the first case (random branching), the branching point

is placed at a step performed during tj and selected randomly, while in the second one (branch-

ing upon contact) it is placed at the axon tip. We estimated the Poisson parameter λb based on

the distances between branching points in our data set. A type I branch (random or upon con-

tact) effectively emerges if a random uniform number from zero to one is less or equal than

the value of the Poisson probability for the distance from the tip to the nearest branching

point. To place a type II branch, a random distance is drawn from the Poisson distribution. If

it fits (randPoisson� DPB (Distance to the Previous Branch)) the branch is placed at that dis-

tance from the last branch. Both types of branches initially emerge with a random uniform

angle. Type II branches measure between 2 and 10 μm, and appear and disappear randomly

during all the simulation until they contact another branch tip or branching point and get sta-

bilized. If they do not stabilize by the end of the simulation they get lost. Type I branches grow

following the same rules as main axons.

Main axons were automatically defined using a previously described algorithm ([42] and

Supporting information). For visualization, main axon length were projected to the xy plane

(in 2D) to avoid the bias due to the low resolution of confocal images in z, and to the compres-

sion of the sample along the z axis. 3D length distributions are shown in S7A and S8A Figs.

The simulation code is written in MATLAB and is provided as an annotated source code.

Supporting information

S1 Text. Supporting methods.

(PDF)

S1 Fig. Influence of α and β values on axon trajectories. α represents the axon rigidity; values

near zero (<< 1) result in very tortuous trajectories, while higher values (>> 10) lead to the

formation of straight axons. β represents the axon sensitivity to the external field (represented

by the yellow arrow). Values near zero (<< 1) indicate no perception of the field direction,

leading to lost axons. Axons with high β (>> 10) follow with high fidelity the field direction

(in this case, straight). Scale Bar: 10 μm.

(EPS)

S2 Fig. Influence of other key parameters on axon properties. (A) Influence of the total

number of axons (Numax) on axon elongation. (B) Average number of branches per axon in

function of the branching probability Pb for random branches, and different axonal diameter

values (d). (C) Influence of total growth duration on axon elongation (countermax). For all the

experiments, the error bars represent the standard deviation (n = 3 simulations). The following

default parameter values were used: α = 9 and β = 2, Δρ = 1, ψ = 0 rad, ω: uniform in all the

space, λb = 15, bl = 1, d = 0.4 μm, Numax = 400, nmax = 6, nr = 2, countermax = 140, Xmax = 70,

ξ: cylinder of radius 13 μm and Pb = 0.2.

(EPS)

S3 Fig. Generation of axon reconstructions from confocal 3D images: Description of the

database. (A) Maximum intensity projection of a confocal image depicting a single γ neuron

stained with GFP (in white, top), its skeleton after segmentation (in red, middle) and the over-

lay between the original axon and its reconstructed skeleton (bottom). (B) Standard medial
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lobe used for the registration of individual axons to a reference lobe. The Fasciclin II staining

is used to visualize the entry into the lobe (red line), as well as the lobe extremity (green line).

The yellow dot depicts the coordinate origin and the blue dotted line shows the axis used to

rotate all the axons. Scale bar: 10 μm. (C) Database of the 43 reconstructed wild-type γ axons.

(D) Collection of wild-type γ axons reconstructed from original confocal images and placed

together in a reference medial lobe. Individual axons were labeled with distinct false-colors for

visualization (n = 43). (E) Local mean directionality (red arrows) of γ axons along the medial

lobe (2D projection). The lobe was divided into rectangular parallelepipeds, and the mean

directionality of all the axonal segments included in this volume was calculated. The dotted

line on the right represents the midline.

(TIF)

S4 Fig. Characterization of type II branch length and dynamics using live-imaging of

growing γ axons. (A) Image sequence extracted from S1 Video, where a single neuron from a

wild-type brain undergoing metamorphosis is shown over three time points (15 min total),

during the regrowth phase. Short (type II) and long (type I) branches are highlighted with light

blue asterisk and purple arrows, respectively. Light blue asterisks highlight the same type II

branches over three consecutive time points, revealing the dynamicity of these branches. Scale

Bar: 5 μm. (B) Frequency distribution of Type II branch length measured as described in the

Supporting information.

(EPS)

S5 Fig. Parameter estimation from in vivo data. (A) Frequency distributions of parameters esti-

mated from real axons (top), or obtained for individual Markov Chains (middle) and individual

Markov Chains with discontinuities (bottom). The p values are calculated using a Kruskal Wallis

test. (B-B”) Parameter estimation functions. (B) Addition of the p values comparing the distribu-

tions from real data with simulated axons with discontinuities, in function of α and β. (B’) Poly-

nomial surface that approximates the function in (B). The black square indicates the pair of

parameters that maximizes the surface. (B”) Parameter estimation surfaces for two random

halves of real samples. The black square indicates the pair of parameters that maximizes the sur-

face for the entire population (the same as in (B’)), and the smaller grey ones the values that max-

imize the surfaces corresponding to each random half of the population. The simulations were

done considering an entire γ population of 650 neurons and type I branching upon contact.

(EPS)

S6 Fig. Estimation of attractive field, medial lobe geometry and axon diameter. (A) Sche-

matic representation of the D and V distances used to generate different attractive field config-

urations. The attractive source is positioned at the end of the medial lobe, and depends on two

variables (D, V). D describes the extent of the source along the dorsal part of the lobe, and V its

extent along the ventral part. The origin point (D, V) = (0, 0) is also shown. (B) Attractive field

configuration used for the simulations. The blue color code is used to illustrate the orientation

of the gradient along the lobe, and the yellow color depicts the inverted C shape of the source.

(C) Similarity index in function of D and V. The attractive field configuration used in this

study ((D, V) = (45, 30)) is represented by a black dot. Its similarity value is 0.779. This index is

represented as a heat map (yellow: highest similarity and blue: lowest similarity). (D) Percent-

age of axons failing to complete their growth in simulations considering different plausible

diameter sizes. The simulations were done considering an entire γ population of 650 neurons

and type I branching upon contact. The diameter value used in the model is the highest for a

percentage of non-elongated axons lower than 5%. (E) 3D geometry of the medial lobe used in

the simulations. Axons start their growth perpendicular to the purple plane, representing the
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peduncle transversal section, and their growth is constrained to the volume delimited by sur-

faces represented by the blue lines.

(EPS)

S7 Fig. Simulated γ axon morphologies: Random versus mechanical branching. (A) Fre-

quency distributions of 3D main axon lengths from real and simulated axons. Data from real

wild-type γ axons are shown in the upper panels (n = 43), and data from simulated ones in the

lower panels (n = 650). (B,C): Frequency distributions of inter-axon distances reflecting the

similarity between simulated and real axons (B) and the intra-group variability (C). Inter-axon

distances were calculated with the ESA distance [40]. In grey, Real vs real; in light green, Real

vs Simu and dark green represents the overlap of the two histograms. Values shown in these

graphs correspond to those displayed in Fig 5D and 5E.

(EPS)

S8 Fig. Simulations of single non-branching axons: Comparison with real data. (A) Fre-

quency distributions of 3D main axon lengths from real and simulated axons. Data from simu-

lated single non-branching axons are shown in the upper panels (n = 45), and data from real

single imp mutant γ axons in the lower panels (n = 45). (B) Frequency distributions of inter-

axon distances reflecting the similarity between simulated and real imp mutant axons. Inter-

axon distances were calculated with the ESA distance [40]. In grey, Real vs real; in light green,

Real vs Simu and dark green represents the overlap of the two histograms. (C) Measure of sim-

ilarity between real impmutant and simulated axons. Boxplots of inter-axon distances (mea-

sured with the ESA distance [40] within the population of real impmutant axons (real, n = 45),

and between real imp mutant and simulated axons.

(EPS)

S9 Fig. Influence of apparent growth velocity (nmax) on axon elongation. (A) Percentage of

individual non-branching axons failing to elongate in function of nmax. 40 non-branching

axons growing together with 360 branching axons were simulated (Numax = 400). While the

speed (nmax) of branching axons was left constant (nmax = 6), increasing values were used for

non-branching axons. The error bars represent the standard deviation (n = 3 simulations). (B)

Influence of nmax on a homogeneous population of growing axons. In these simulations, all

axons were branching. The following parameter values were used: α = 9 and β = 2, Δρ = 1, ψ =

0 rad, ω: uniform in all the space, λb = 15, bl = 1, d = 0.4 μm, nr = 2, countermax = 140, Xmax =

70, ξ: cylinder of radius 13 μm and Pb = 0.2.

(EPS)

S1 Video. Single wild-type γ axon growing in the medial lobe of a pupal brain (30h APF

stage). The recorded γ neurons was labeled with GFP using the MARCM technique (See

Methods and Medioni et al., 2015 Nat Protoc. 2015 Apr;10(4):574-84. doi: 10.1038/nprot.2015.

034. Epub 2015 Mar 12). Scale Bar: 5 μm. Time lag: 5 min. Genotype: hsflp122, tub GAL-80;

FRT19A; 201Y GAL4, UAS cGFP.

(AVI)

S1 Folder. Original scripts and raw data.

(ZIP)
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